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ABSTRACT Thermal properties are significant for recognizing an object’s material but cannot be determined
via visual and stiffness (or tactile) –based recognition techniques. Most studies have used temperature as a
complementary part of multimodal sensing; however, the thermal signal is an unexplored capability that can
be beneficial for recognizing target objects. Since changes in thermal responses can result from both material
properties and initial temperature, realizing robust and high-accuracy recognition in different environments
is a challenging issue. To tackle the issue, this paper proposes a novel strategy for material identification
that can actively measure heat flow by heating and cooling a robot gripper, enabling the extraction of the
thermal properties of contact materials regardless of the object’s initial temperature variation (referred to as
‘‘active heat flow sensing’’). We use a robotic task as an example of one possible application of the proposed
strategy. For this, we developed a gripper pad embedded in a temperature control system and heat flow sensor
to monitor the thermal exchange during contact with a target object. The paper conducted some experiments
divided into two scenarios. The first experimental results show that active heat flow sensing is realized within
0.4 sec from first contact for 100 % classification of four heated materials. The second experimental results
show that the three materials, whose thermal properties are largely different, can be classified within 0.7 sec
from first contact using different initial temperatures of the training and test data. These results suggest
robustness against environmental change, which has been difficult using conventional temperature-based
methods.

INDEX TERMS Heat flow, material properties, temperature control, thermal sensing.

I. INTRODUCTION
Object recognition can enhance a robot’s perception, allow-
ing it to take the object’s shape, surface, and certain
properties into account for robotic motion planning. Material
recognition is a key technique used to recognize target
objects by extracting material features such as roughness,
compliance, slipperiness, and coldness [1]. Previous works
in material recognition have used contact sensing (e.g., tactile
sensor), contactless sensing (e.g., proximity sensor), or both.

The associate editor coordinating the review of this manuscript and

approving it for publication was Lei Wei .

Vision sensors [2], [3], capacitive sensors [4], [5], or prox-
imity sensors [6] such as radar [7], ultrasound and lasers [8],
[9] are generally used for contactless sensing. Contact sensing
by tactile sensors can directly measure surface texture and
stiffness [10], [11] without high computational cost. Various
robot motions allow tactile sensors to capture unique char-
acteristics of the target object: e.g., roughness and friction
coefficient by sweep motion [12], stiffness by grasping
motion [13], hardness by pressing [14], sounds by knocking
and grasping [15], and fabric properties by squeezing [16].
An approach that combines tactile and vision sensors can
compensate for the drawbacks of contact sensing: low sensor
resolution and low durability. In [17], a tactile sensor with
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depth and RGB images was employed to recognize objects.
Furthermore, in [18], tactile and vision sensors were utilized
in the learning process, with only the vision data used
during the recognition phase to avoid sensor deterioration.
Moreover, multimodal sensors, including pressure, vibration,
temperature, etc., have also been developed [19], [20], [21],
[22], [23], [24] to improve the sensing performance.

Among them, thermal sensing is essential to extract an
object’s thermal properties [25], [26], [27]; it is useful
to recognize objects with similar stiffness and roughness
values, often being included as one of the elements of the
multimodal sensors. As the heat flow sensor tends to have
a hard surface and the cost is expensive, a temperature
sensor, which is a tinier and cheaper sensor, is mainly used
for robotic applications. Thermal-based recognition methods
have been studied for many years [28], [29], [30], [31], and
knowledge has been utilized to stimulate human thermal
perception [32], [33], [34], [35]. Moreover, the classification
accuracy and the response speed have been improved using
machine learning [36], [37]. The study [38] has developed
a specific sensing system for material classification using
multiple temperature sensors to measure the heat flow.

Most studies assume that the targeting objects are at room
temperature and are recognized under the same environment
as the case of learning data acquisition. However, both
temperature and heat flow responses change depending on
initial temperature variations of the robot’s surface and the
target object, which affects the classification accuracy [39].
In particular, the material properties cannot be revealed
when the initial temperature of a robot and an object is the
same. Therefore, high-accuracy recognition independent of
the initial temperature is a challenging issue, and thermal-
based recognition is sensitive to environmental changes and
is mainly used as a subsidiary and complementary element
of multimodal sensing. These studies [24], [40] tackled
the issue; however, more investigation in terms of various
initial temperatures in the training and test phases is needed
to improve the thermal-based method. The authors believe
that improvements in thermal sensing significantly advance
multimodal sensing techniques.

II. CONTRIBUTION AND OVERVIEW
In this paper, instead of temperature data, heat flow data is
used for material identification to handle initial temperature
variations, which directly expresses the amount of thermal
exchange. The proposed recognition system includes a tem-
perature control system. Thus, the temperature of a contact
surface can be actively controlled to generate a temperature
difference with the contact object to induce heat flow in any
case (referred to as ‘‘active heat flow sensing’’ in this paper).

The strategy is implemented by using the grasping motion
of a robot gripper as an application of a robotic task (see
Fig. 1). Experiments at various initial temperatures were
conducted using the developed gripper pad attached to the
gripper, showing robust material identification using active

FIGURE 1. The proposed active heat flow sensing scheme. The proposed
system can induce and monitor heat flow between a gripper and various
material objects by actively controlling the robot gripper’s surface
temperature and extracting the objects’ material properties for
identification.

heat flow sensing. There has yet to be a robot gripper capable
of active thermal control with heat flow sensing for material
identification.

As the paper’s contribution is a novel system design to
derive thermal data correction, any neural network method is
acceptable for material classification in our system. Besides,
recurrent neural networks (RNNs) can learn features and
long-term dependencies from sequential and time-series data
with its context layers and can learn various dynamical
systems. A long short-term memory (LSTM) neural network
is one of the most used types of RNN model that can
consider both the system’s short- and long-term dynamics.
Thus, we used LSTM for material classification in this paper.
We also used primary RNN for comparison.

The proposed active heat flow sensing scheme consists
of a gripper pad to monitor the thermal exchange with the
object in contact and a temperature control system using
circulating water. The thermal contact model is explained in
Sec. III, and Sec. IV presents the active heat flow sensing
apparatus, including the gripper pad design and the water
system. This paper used an aluminum cube and three kinds of
solid materials wrapped in aluminum foil as contact objects,
making it difficult to distinguish visual and tactile sensing.
The obtained heat flow responses are used as inputs of the
LSTM neural network, showing the validity of the active heat
flow sensing concept. The experimental results are shown in
Sec. V. The paper is concluded in Sec. VI and Sec. VII.

III. THERMAL CONTACT MODEL
A. HEAT FLOW AND TEMPERATURE
In this section, ‘‘heat flow,’’ which is used as an input for
material identification, is explained. In this study, the thermal
model of a contact surface between a gripper and an object is
simplified as one-dimensional heat transfer as

∂T
∂t
= α

∂2T
∂x2

, (1)
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where T , t , x, and α stand for temperature [K], time
[sec], heat transfer direction [m], and heat diffusivity [m2/s],
respectively. Equation (1) in the steady state (t = ∞) without
heat generation is presented as

α
∂2T
∂x2
= 0 (2)

When two materials (gripper and contact object in this paper)
physically contact each other (the boundary condition: Tg at
x = 0, and To at x = L, see Fig. 2A), the temperature variable
is derived from (2) as

T (x) = Tg −
x
L

(
Tg − To

)
, (3)

where Tg, To, and L denote the temperature [K] of the gripper,
the temperature [K] of the object, and the heat transfer
distance [m] (thickness of the heat flux sensor), respectively.

In addition, the heat transfer rate (called ‘‘heat flow q
[W]’’) is shown as

q = −λA
∂T
∂x

, (4)

whereλ andA denote the heat conductivity [W/mK] and cross
sectional area [m2], respectively. Here, the heat flow rate per
unit area and per unit of time (see Fig. 2B) is called the ‘‘heat
flux ϕ [W/m2]’’ as

ϕ = −λ
∂T
∂x

(5)

Using (3), the heat flow in (4) can be described as

q =
Tg − To
L/λA

=
Tg − To
Rcon

, (6)

where Rcon is defined as the thermal contact resistance
(TCR) in [K/W]. This assumes that the thermal transfer is
related to the electric circuit (called the thermal network
method, see Fig. 2C). Based on the electrical system’s
analogy, heat flow is equivalent to the flow variable as
current, whereas temperature is the effort variable as voltage.
Equation (6) can be interpreted as Ohm’s law; that is, the
flow variable is proportional to the difference in the effort
variable. Therefore, heat flow can directly express the amount
of thermal exchange between the gripper and the object.
This is an appropriate variable for material identification
that can describe thermal evolution regardless of the initial
temperature. The following section explains the relationship
between the heat flow and material properties of a contact
object, which is the key physical phenomenon for thermal-
based material identification.

B. HEAT FLOW AND MATERIAL PROPERTIES
When the gripper surface contacts the object, dissipating
(outflow) and absorbing (inflow) heat flux (5) between the
gripper surface (subscript g) and the objects (subscript o) are
equal as

−λo
∂To
∂xo
= λg

∂Tg
∂xg

(7)

FIGURE 2. Thermal contact model. (A) Tg, To, and L denote the
temperature [K] of the gripper, the temperature [K] of the object, and the
heat transfer distance [m] (thickness of the heat flux sensor), respectively.
(B) q, ϕ and A present heat flow [W], heat flux [W/m2], and cross
sectional area [m2], respectively. (C) Rcon is thermal contact resistance
(TCR) [K/W].

In general, the thermal dynamics of two contacting materials
can be expressed using the semi-infinite solid model [35],
[41], [42], which is derived from (1) with the initial and
boundary conditions (T (x, 0) = Ti and T (0, t) = Ts) as

T (x, t) = Ts + (Ti − Ts) erf
x

2
√

αt
, (8)

where erf is theGauss error function, and the subscripts s and i
present the contact surface and initial parameter, respectively.
Using the model in (8), (7) can be rewritten as

− (Toi − Ts)
λo

2
√

αot
=

(
Tgi − Ts

) λg

2
√

αgt
, (9)

where Toi and Tgi denote the initial temperature of the object
and the gripper, respectively. Therefore, the temperature of
the contact surface between the gripper and the object is
derived as

Ts =
Toi

λo√
αo
+ Tgi

λg
√

αg

λo√
αo
+

λg
√

αg

=
Toi
√

λoρoco + Tgi
√

λgρgcg
√

λoρoco +
√

λgρgcg
(10)

where ρ and c stand for the density and specific heat,
respectively. Here, Ts is assumed to be in the steady state
(t = ∞), which is converged to a constant value. The term
√

λρc presents a thermal effusivity (contact coefficient) [35],
[41]; each material has its own parameters due to the
thermal properties of the materials. Equation (10) means that
the contact temperature depends on the material properties
and the initial temperature of the gripper and the object.
Therefore, thermal-based material identification has two
drawbacks as follows:

1) The material properties cannot be revealed when the
initial temperature of the gripper (Tg) and the object
(To) are the same.

2) The temperature response for identification is affected
by the initial temperature variations from environmen-
tal change, which causes accuracy degradation.

The active heat flow sensing proposed in this paper can solve
these two issues; this is explained in the next section.
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FIGURE 3. Design of the gripper pad for actively sensing temperature and
heat flow. The silicone pipe was embedded in the thin bottom layer, and
temperature-controlled water was circulated inside the pipe to regulate
the surface temperature. The heat flow sensor is attached to the surface,
monitoring thermal exchange through contacting an object.

FIGURE 4. Overview of active heat flow sensing. STEP 1: Temperature
control of the initial temperature of the gripper pad. STEP 2: Material
identification by contacting (grasping) the object.

IV. PROPOSED ACTIVE HEAT FLOW SENSING
Our solutions to the above issues are as follows:

1) The temperature of the gripper surface is actively
controlled to generate a temperature difference with
the contact object, inducing heat flow for any kind of
object.

2) The heat flow data, directly expresses the amount of
thermal exchange, is used for material identification
instead of temperature data to handle initial tempera-
ture variations.

In this paper, active temperature control is conducted using
heat convection of a circulating water system, which consists
of a micropump and a tank equipped with Peltier elements on
both sides. The water system can switch between forced and
natural convection at the gripper surface by controlling the
water pump, regulating the gripper’s initial temperature, and
monitoring natural heat flow during contact. Thus, to monitor
natural thermal exchange, it is more appropriate to mount the
water circulation system on the contact surface rather than
directly attaching the heat source (a similar mechanism to
human thermal perception based on blood circulation). The
water temperature is regulated by the Peltier devices, and the

FIGURE 5. The learning process of the proposed method
(Encoder-Decoder model). The input data of the learning system is the
time-series heat flow responses of the gripper pad. The data was saved
while the gripper contacted the object, and the 1-second data after
contact, including a peak, was used for the LSTM neural network (two out
of three trials were used for training and one for testing). The time-series
heat flow input data are first processed by an encoder, which includes a
linear layer (N = 64 nodes) and LSTM (N = 64 nodes) (see Appendix B).
The encoded features are then processed by a decoder that outputs four
(Scenario 1) or three (Scenario 2) material labels.

heat convection of the water flow between the Peltier device
and the gripper is expressed as

Cw
dTw
dt
=
Tp − Tw
Rw

−
Tw − Tg
Rg

(11)

Cg
dTg
dt
=
Tw − Tg
Rg

−
Tg − Ta
Ra

, (12)

where T , C , and R denote the temperature, thermal capaci-
tance, and thermal resistance of the Peltier device (p), water
(w), gripper (g), and air (a), respectively. The temperature
command of the gripper T cmd

g is determined based on the
initial temperature of the contact object (Toi) as

T cmd
g = Toi ±1Tgo, (13)

where1Tgo is the temperature difference between the gripper
and the object, which can be set to the intended value. Thus,
the contact temperature in (10) can be expressed as

Ts = Toi ±
1Tgo

1+
√

λoρoco
√

λgρgcg

, (14)

when the initial gripper temperature Tgi is controlled to the
command T cmd

g in (13). Equation (14) shows that the thermal
exchange at the contact surface depends on 1Tgo, and Ts is
constant when Toi = Tgi such that the second term in (14)
becomes 0.

Fig. 3 shows the developed gripper pad for active heat flow
sensing. The silicone pipe (outer diameter:1 mm) was embed-
ded in the thin bottom layer, and temperature-controlledwater
was circulated inside the pipe. The surface temperature is
uniformed by covering a graphite sheet, which has high heat
conductivity. The CAPTEC’s heat flux sensor was attached
to the gripper surface, and a thermocouple (temperature
sensor) was attached to the silicone pipe for comparison
with heat flow sensing. The pad was attached to the robot
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FIGURE 6. Target objects for material identification (aluminum, glass,
acrylic, and wooden cubes). The three kinds of cubes (glass, acrylic, and
wooden) were wrapped in aluminum foil to make it difficult to distinguish
visual and tactile sensing. These materials were selected based on
various thermal properties and high stiffness (hardness) so that the
contact surface remains constant and the thermal-based method is valid.

TABLE 1. Scenario 1: Assessment of proposed active heat flow sensing
(Case I-pro) compared with conventional passive sensing (Case I-cnv).
The room temperature was 24 ◦C.

TABLE 2. Scenario 2: Assessment of robust material identification at
various initial temperatures. The room temperature was 24 ◦C.

gripper (ROBOTIQ 2F-85), and it is in contact with the target
object surface to monitor heat flow. Note that the heat flux
sensor outputs were converted to heat flow by multiplying
the sensor’s surface area (1.5×10−2×1.5×10−2 [m2]).
The proposed active heat flow sensing overview is shown

in Fig. 4. The strategy is divided into two steps: temperature
control of the initial temperature of the gripper pad (STEP
1) and material identification by contacting (grasping) the
object (STEP 2). In STEP 1, the initial temperature of the
gripper is regulated by switching the micro water pump on
and off based on the gripper temperature. The temperature of
the Peltier devices is regulated by a PI controller referring
to its command (T cmd

p ) in advance to heat/cool the water.
Then, in STEP 2, after regulating the gripper’s initial
temperature, the gripper contacts the object and monitors
the heat flow q, identifying materials using the LSTM
neural network. The point is the gripper pad temperature
can be regulated depending on the object temperature,
being able to distinguish the materials in the various initial
temperatures. The experimental results presented in the
following sections use the obtained q (active heat flow
sensing) and Tg (the gripper temperature for comparison)
for material identification, suggesting the advantage of the
proposed strategy.

The overview of the learning process (Encoder-Decoder
model) in our system is shown in Fig. 5. The input data of
the learning system is the time-series heat flow responses of

FIGURE 7. Several cases of experiments with various temperature
differences between the gripper and the objects. Temperature settings in
each scenario are summarized in Tables 1 (Scenario 1) and 2 (Scenario 2).

the gripper pad. We conducted experiments and saved the
data thrice per material under the same condition, using two
data for training and one for testing. The data was saved
while the gripper contacted the object, and the 1-second data
after contact, including a peak, was used for training the
LSTM neural network (8 dimensions: two train data × four
kinds of materials). The sampling time is 1 msec. As for the
temperature data for comparison experiments, 5-second data
were used for classification. The time-series heat flow input
data are first processed by an encoder, which includes a linear
layer (64 nodes) and LSTM (64 nodes) (see Appendix B). The
encoded features are then processed by a decoder that outputs
four (Scenario 1) or three (Scenario 2) material labels (see the
following section).

V. EXPERIMENTAL VERIFICATION
A. EXPERIMENTAL OUTLINE
Fig. 6 shows four kinds of materials used as target objects:
aluminum cubes, glass, acrylic, and wooden cubes wrapped
in aluminum foil (2 cm×2 cm×2 cm). These three kinds
of cubes (glass, acrylic, and wooden) were wrapped in
aluminum foil to make it difficult to distinguish visual
and tactile sensing. The materials were selected based on
various thermal properties and high stiffness (hardness) so
that the contact surface remains constant and the thermal-
based method is valid.

In each experiment, the robot gripper was in contact with
the object for 20 sec at 8.82 N, and the temperature and heat
flow were monitored. We conducted experiments and saved
the data thrice per material under the same condition, using
two data for training the LSTM neural network and one for
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FIGURE 8. [Case I-cnv.] Thermal responses of the heated gripper (34 ◦C)
in contact with the heated objects (34 ◦C): (A) Temperature; (B) Heat flow
and (C) First 1 sec of the heat flow in (B). Two of three trials in each
material were used for training and one for testing. These graphs are
plotted by thinning out the sampling data to 1/10.

testing. The temperature and heat flow responses for material
identification were obtained in two scenarios (five cases) as
follows (also see Fig. 7). Note that the room temperature was
24 ◦C in every case.
In Scenario 1, material identification of heated objects

was conducted to assess the active heat flow sensing.
Generally, thermal-based methods use passive control of a
heater (ON/OFF switching), and most studies do not consider
heated object recognition. Thus, the heated object’s material
identifications (1Tgo =0), which cannot be identified using
a conventional heater system, were conducted to show the
advantage of active heat flow sensing. The contact object
was heated to 34 ◦C in advance, and the classification results
were compared with the active-controlled gripper (44 ◦C)
and passive one (34 ◦C: conventional studies generally
set the gripper temperature to around +10 ◦C from room
temperature), see Table 1. The paper refers to the former case
as [Case I-pro] (the proposed active control method) and the
latter case as [Case I-cnv] (the conventional heating method),
respectively.

In Scenario 2, material identifications in various initial
temperatures were conducted using the active heat flow
sensing system. As initial temperature variations are one of
the drawbacks of conventional studies, the experiments were

FIGURE 9. [Case I-pro.] Thermal responses of the heated gripper (44 ◦C)
in contact with the heated objects (34 ◦C): (A) Temperature; (B) Heat flow
and (C) First 1 sec of the heat flow in (B). Two of three trials in each
material were used for training and one for testing. These graphs are
plotted by thinning out the sampling data to 1/10.

conducted to show the robustness of material identification
against environmental change. Table 2 summarizes the
temperature setting in each case.

B. EXPERIMENTAL RESULTS AND DISCUSSIONS
The temperature and heat flow responses in Case I-cnv and
Case I-pro are shown in Figs. 8 and 9 (The plots in other
cases are shown in Appendix C). Here, two of three trials
in each material were used for training and one for testing.
Using the obtained time series data, the success rate of
classification in each case was compared in two ways and
summarized in Figs 10 and 11. Here, the classification results
are summarized using 0.1 to 1-second heat-flow data (0.1 sec
interval) and temperature data of 1 sec to V sec (1.0 s interval)
after contact, respectively. Each result (blue dot) is linearly
interpolated with colored surfaces (blue to red gradient color
shows low to high classification accuracies).

First, the classification accuracies of heated materials
using the time series temperature and heat flow data in
Case I-cnv and Case I-pro were compared to show the
advantage of active heat flow sensing. Figs. 10A and B show
the classification results of passive temperature and heat flow
sensing, in which the gripper’s temperature was set to+10 ◦C
from room temperature (Case I-cnv). Since the temperature
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FIGURE 10. Classification accuracy (aluminum, glass, acrylic, wood) of heated materials (Scenario 1). The proposed active heat flow sensing (D) compared
with active temperature sensing (C), passive heat flow (B) and temperature (A) sensing in [Case I]. The classification results are summarized using 0.1 to
1-second heat-flow data (0.1 sec interval) and temperature data of 1 sec to 5 sec (1.0 s interval) after contact, respectively. Each result (blue dot) is linearly
interpolated with colored surfaces (blue to red gradient color shows low to high classification accuracies). The required data time based on heat flow
sensing for reliable accuracy is less than that of temperature sensing. The active heat flow sensing is realized within 0.4 sec of first contact for 100 %
classification accuracy (see D). In contrast, temperature sensing required 4 sec and 75 % classification due to the similarities in thermal properties
between glass and acrylic (see C). Less heat exchange quantity causes a decrease in the classification success rate (see A, B).

FIGURE 11. Classification accuracy (aluminum, glass, wood) of active heat flow sensing under different experimental
conditions (Scenario 2). (A) Trained with the dataset [Case I-pro] and tested with [Case II]; (B) Trained with the dataset
[Case I-pro] and tested with [Case III]; (C) Trained with the dataset [Case IV] and tested with [Case V]. In all cases, the
materials were perfectly classified within 0.5 sec (see A, B) and 0.7 sec (see C). These results suggest robustness against
environmental change between the training and test phases of the proposed active heat flow sensing strategy, which has
been difficult using conventional temperature-based methods.

difference between the gripper and the object is almost 0 ◦C,
the heat exchange quantity is less than that in other cases,
and it is difficult to monitor the material properties from the
temperature and heat flow responses (see Figs. 8). This causes
a decrease in the classification success rate.

Figs. 10 C and D show the case of active temperature and
heat flow sensing in which the gripper was actively controlled
to + 20 ◦C from room temperature so that the temperature
difference with the object remained at 10 ◦C. Thanks to the
temperature difference, the material difference is revealed in
the temperature and heat flow responses in Fig. 9.
In particular, the required data time based on heat flow

sensing for reliable accuracy is less than that of temperature
sensing. The active heat flow sensing is realizedwithin 0.4 sec
of first contact for 100 % classification accuracy. In contrast,
temperature sensing required 4 sec, and 75 % classification
due to the similarities in thermal properties between glass and
acrylic.

Table 3 summarizes the classification results at 2000 epochs
using the LSTM neural network compared with RNN,
the straightforward and primary conventional method. The
results show the proposed active heat flow sensing method
achieves the highest classification accuracy. As the results

can be derived using such simple strategies, it suggests
that the proposed method works regardless of classification
methods. The primary contribution of the paper is a novel
system design to derive thermal data correction and identify
the material. We used RNN-based methods as a time-serial
identification model; however, we believe other identification
models can be used instead.

According to the model in equation (10), thermal prop-
erties (thermal effusivity) appear in the steady state of
the temperature response. Thus, temperature-based material
classification takes time. On the other hand, heat flow (flow
variable) depends on the temperature differential (effort
variable), making it possible to obtain high classification
accuracy in less time. Note that the time response limit of heat
flow sensing in our system is 0.2 sec, and the recognition time
can be faster by improving the hardware system.

Second, several classifications were conducted using the
training and test data in different cases to emulate the
environmental change (e.g., the temperature of the objects
or the gripper changes from the training phase to the test
phase). Here, the classification using the data under different
conditions is more sensitive to the difference in the contact
conditions and noise than the classification based on the data
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TABLE 3. The accuracy of the material classification using RNN and LSTM
neural network. The results show the proposed active heat flow sensing
method achieves the highest accuracy regardless of classification
methods.

FIGURE 12. [Case II] Thermal responses of the heated gripper (34 ◦C) in
contact with the objects (24 ◦C): (A) Temperature; (B) Heat flow and (C)
First 1 sec of the heat flow in (B).

in the same situation. Thus, three materials (aluminum, glass,
and wood) whose thermal properties are largely different are
used as contact objects to show the possibility of perfect
classification using heat flow in other conditions. The success
rates are summarized in Fig. 11. In all cases, the materials
were perfectly classified within 0.5 sec (Fig. 11A, B) and
0.7 sec (Fig. 11C). These results suggest robustness against
environmental change between the training and test phases of
the proposed active heat flow sensing strategy, which has been
difficult using conventional temperature-based methods.

VI. SUMMARY
The paper presented the strategy for robust material identi-
fication based on heat flow sensing. The proposed system

FIGURE 13. [Case III] Thermal responses of the heated gripper (29 ◦C) in
contact with the cooled objects (19 ◦C): (A) Temperature; (B) Heat flow
and (C) First 1 sec of the heat flow in (B).

can induce and monitor heat flow between a gripper and
various material objects by actively controlling the robot
gripper’s surface temperature and extracting the objects’
material properties for identification. The experimental
results indicate the following advantages of active heat flow
sensing:
• Rapid and high material classification can be realized.
The response time of active heat flow sensing is faster
and more precise than temperature sensing to reveal the
material properties.

• Robust classification against the temperature variations
of the object is realized by adjusting the initial tempera-
ture difference between the gripper and the objects.

These findings could be useful for developing multimodal
sensing for dexterous robot manipulation to realize high-
precision tasks such as detecting fine scratches or medical
activities.

VII. FUTURE WORK
There are still some challenges to address, as outlined
below. First, in this study, solid cubes with the same volume
as the target object were used to fix the contact area.
However, soft materials can be deformed by applying a
grasping force, and heat flow sensing under changes in the
thermal exchange area is needed. Second, thermal sensing is
still sensitive to environmental change, and materials with
similar thermal properties (e.g., acrylic and glass in this
paper) are challenging to classify completely under different
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FIGURE 14. [Case IV] Thermal responses of the gripper (24 ◦C) in contact
with the heated objects (34 ◦C): (A) Temperature; (B) Heat flow and (C)
First 1 sec of the heat flow in (B).

FIGURE 15. [Case V] Thermal responses of the cooled gripper (19 ◦C) in
contact with the heated objects (29 ◦C): (A) Temperature; (B) Heat flow
and (C) First 1 sec of the heat flow in (B).

initial temperatures. Integrating with other kinds of sensors
(e.g., tactile, vision, etc.) might improve the classification

accuracy; we plan to attempt this approach in the next phase.
We will tackle these problems in our future work to realize a
feasible recognition method based on thermal technology.

APPENDIX A
PSEUDO CODE OF THE NETWORK
The pseudo-code of the LSTM neural network is described in
Algorithm 1. As for the overview of the learning process in
our system, please see Fig. 5.

Algorithm 1 Thermal-based material classification using
LSTM neural network
Require: xt {heat flow dataset}
Require: y {material label dataset}
Require: Model {Learning Model that consists of encoder,

LSTM layer, and decoder}
for iteration i = 1, 2, ..., 5000 do
for tep t = 0,1,...,N -1 do

if t = 0 then
ht = 0

end if
h′t = encoder(xt )
ht+1← LSTM(h′t , ht )

end for
ŷ← decoder(ht+1)
Loss← cross_entropy(ŷ, y) {update Model parameters
by BPTT}

end for

APPENDIX B
PARAMETER OPTIMIZATION OF THE NETWORK
We confirmed the parameter setting of the LSTM neural
network by trying several combinations of the number of
nodes of the linear layer and LSTM using the data in Fig. 9
as shown in Table 4. From Table 4, all combinations, except
the case that the nodes of the linear layer and LSTM are set
to 16, can obtain 100 % classification results. We chose the
number of nodes as 64 and conducted classifications.

TABLE 4. Several combinations of the number of nodes of the linear
layer and LSTM.

APPENDIX C
THERMAL RESPONSES (RAW DATA) IN CASES II–V
The temperature and the heat flow responses in Case II, III,
IV, V are shown in Figs. 12–15. Two of three trials in each
material were used for training and one for testing.
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