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ABSTRACT The manufacturing industry utilizes computing technology, robot technology, artificial
intelligence, and IoT to improve production processes and quality. In particular, object detection technology
is used in various industrial fields, and object detection methods based on deep learning are attracting
attention. The tobacco processing industry requires automated production facilities, and quality control for
defects in product appearance is essential. Mainly because tobacco products are sold at high prices, poor
appearance is a significant issue in terms of consumer complaints and processing costs. Therefore, accurate
cigarette detection is essential. We propose a modified network structure based on the YOLOv4-Tiny
network, and use it to build a network optimized for cigarette detection. The modified network uses a single
circular bounding box for learning and fast detection. It utilizes visual techniques, such as gradient-weighted
Class Activation Mapping (Grad-CAM) to analyze the degree of activation of the network to construct an
optimal network. This reduces the size of the network and increases processing speed, while maintaining
detection accuracy. This paper is expected to play an important role in quality control and efficient production
in the manufacturing industry.

INDEX TERMS Circular bounding box, detecting defective cigarettes, tobacco processing, you only look
once (YOLO).

I. INTRODUCTION
The modern manufacturing industry is making efforts to
produce high-quality products with high efficiency while
minimizing human intervention in the manufacturing pro-
cess due to technological advancements in various fields,
such as computing technology, robot technology, artificial
intelligence, and the Internet of Things (IoT) [1], [2].
Defects in product appearance significantly impact product
quality for consumers, so many methods include inspection
processes. While the process was initially carried out by
utilizing the visual ability of skilled workers, it was not
easy to inspect all produced products. In addition, it is
inefficient, as there is a great deal of variation depending
on the worker’s ability. Since then, with the development
of advanced computer vision-related technologies, such as
digital cameras, product exteriors can be visually inspected
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in even faster production processes, and have been applied
to many processes [3], [4]. These machine vision systems
use image processing technologies in computer vision to
distinguish features that only defective products demonstrate,
such as shape, color, and brightness, distinguishing between
standard and defective products in product exterior images
obtained from cameras. Among them, object detection
technology is advantageous compared to other technologies
in applications such as multi-object detection, as it can
distinguish the location and the type of object in the image.
It has been widely studied throughout academia and industry
due to its diverse application potential. Object detection
methods incorporating deep learning technology, which has
excellent generalization and high classification performance
while enabling real-time processing, are also widely used
[5], [6], [7].

In particular, among manufacturing industries, the tobacco
processing industry is an equipment industry that requires
boundaries of scale and automated production facilities
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for many processes, from processing raw materials to
final packaging. Despite controversy over the dangers of
cigarettes, demand is high due to steady growth due to
population growth in developing countries, and national tax
policies are being used as a primary source of revenue
for national finances, leading to a significant increase in
the tobacco processing industry. Due to the high price of
these tobacco products, there are many consumer complaints
about defective product appearance, and high processing
costs are incurred in compensating for defective products,
making them more sensitive to quality control. In addition,
production costs that are adjusted by external factors
make it challenging to maintain limited consumer prices,
so optimized automation equipment is essential to improve
production capacity per unit time, and reduce losses through
accurate defect detection. Most of the cigarettes currently
sold on the market are cigarette-type, in which well-dried
tobacco leaves are cut into small pieces, rolled in paper,
combined with a filter, and shaped into sticks. They are
generally packaged in multi-packs of 20 cigarettes, and
distributed in packs.When the consumer opens the pack cover
and tries to remove the cigarette, if the quantity of cigarettes is
insufficient, or the cigarette is aligned in the wrong direction,
this can cause great dissatisfaction from the consumer. These
defects can occur when the produced cigarettes are turned
over while being transferred to the conveyor, or are packaged
in an unstable alignment during packaging. If such a defect is
discovered during the packaging process, all cigarettes used
in packaging must be discarded, so for efficient production,
accurate detection is essential. Early inspection methods
included a sensor that directly touches a cigarette with a
rod of varying length, and a photo sensor, which uses the
characteristics of light reflection depending on the presence
or absence of a cigarette. In addition, image processing
is utilized by applying a machine vision system. Still,
continuous performance detection is difficult due to the
influence of the surrounding environment, such as dust and
lighting. Additionally, a speed of up to 600 packs per min
is required in automated cigarette manufacturing devices for
defect detection. This requires high-speed image processing
at 100 ms per pack. Recently, there have been cases of
using a deep learning-based object detection system with
superior classification accuracy. Still, there is a lack of
related research, so research is needed for accurate cigarette
detection [8], [9], [10], [11], [12].

Deep learning-based object detection technology uses deep
learning to distinguish objects of interest in an image from
the background, proposes an area by regressing the object
location on the image to the bounding box coordinates, and
classifies the type of bounding box to determine the final
object. In the early days, many studies consisted of separate
neural networks for region proposal, and neural networks
for classification. As more and more studies aimed to
improve accuracy, fast performance, and learning efficiency,
it gradually developed into a single-step detection method.
The Region-based Convolutional Neural Network (R-CNN)

[13], an early representative detection method, is a selective
search algorithm for network input images. The R-CNN
groups areas with a high probability of objects, extracts
feature through CNN, and detects objects using Support
Vector Machine (SVM). However, the CNN, SVM, and
regression learning steps are all separated in a structure
necessary for learning, which takes too much time. Fast
R-CNN [14] further simplifies the learning step by outputting
the softmax classifier loss and bounding box regression loss
simultaneously, reducing the time required for learning. Still,
it is inefficient, because a separate network for the candidate
region proposal exists. Faster R-CNN [15] applies the Region
Proposal Network (RPN) to directly propose candidate
regions, which speeds up the overall processing time, making
it usable. However, it is insufficient for real-time object
detection. You Only Look Once (YOLO) [16], which has
dramatically improved this processing time problem, is a
representative first-stage detection method. There is no
separate network for extracting the region of interest, the
overall configuration of a single network is relatively simple,
and it solves object recognition problems. This is a structure
that approaches the task as a single regression problem. Since
learning was performed on all input images, it showed high
detection accuracy even for new images that were not used for
learning, but had the disadvantage of low accuracy for small-
sized objects. Afterward, YOLOv2 [17] was proposed to
increase detection accuracy further, while YOLOv3 [18] has
improved overall detection accuracy compared to YOLOv2.
However, detection takes more processing time, due to a
more profound and complex network configuration. Since
then, detection performance has been improved in many
studies designed with various methods and structures. There
are differences in detection performance depending on the
environment or field to which it is applied [19], [20], [21],
[22]. A general deep learning-based object detection method
detects objects using several predetermined bounding boxes
to increase the probability of accurate object estimation. The
greater the number of predetermined bounding boxes, the
greater the amount of calculation. In factory automation,
many types of objects are recognized, while there are many
cases where only simple, standardized objects are recognized.
Recognition of these standardized objects does not require
recognizing many types of objects, and requires a network
optimized for those to be identified. Recently, when detecting
objects of the same size, such as cigarette detection, some
studies reduce the computation time by using only a single
bounding box [23], and instead of the commonly applied
rectangular bounding box, a circular bounding box is applied
to detect the object. One study also proposed a network
with less surrounding background [24]. Therefore, when only
specific, standardized objects need to be detected, such as
cigarette detection, a single circular bounding box that fits the
object shape is more effective. Additionally, since the size of
the object to be detected does not change significantly, a layer
for recognizing the same objects with different object ratios
can be removed from the network.
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FIGURE 1. The Cigarette Manufacturing Process.

This study proposes a modified network structure opti-
mized for cigarette detection based on the YOLOv4-Tiny
network, which is widely used for object detection in images.
Themodified network achieves fast learning and performance
speed using a single circular bounding box. It recognizes
objects by visually analyzing the activation degree of the
network, such as gradient-weighted Class Activation Map-
ping (grad-CAM), for faster network computation. We want
to construct an optimal network by cutting out networks
that do not affect the main network. The proposed network
shows detection accuracy equivalent to the YOLOv4-Tiny
network while reducing the size of the network to about
12%, requiring less memory to run the network, and enabling
processing that is about twice as fast. Therefore, it was
confirmed that the proposed networks are entirely usable.
In addition, we wish to introduce the process of effectively
increasing a small number of learning data using rotation
transformation and image synthesis for efficient network
learning.

II. RELATED WORK
A. CIGARETTES MANUFACTURING PROCESS
Cigarettes are made by cutting well-dried tobacco leaves
into thin pieces, grinding them into powder, rolling them
in paper to form a stick, and combining them with a filter
that blocks smoke appropriately [8], [25]. Fig. 1 shows the
general manufacturing process for producing, packaging,
and shipping these cigarettes. In the Cigarette Making
Machine, tobacco powder, a raw material, is wrapped in
paper, made into a cigarette-shaped bar, cut into appropriate
sizes, combined with an input filter, and then combined to
produce cigarettes. Only good quality cigarettes that have
passed the Cigarette Inspection System (CIS) are transferred
to the conveyor, and stored sequentially in the Cigarette
Buffering Machine. The Cigarette Buffer Machine has a
First In, First Out (FIFO) structure, in which the first
stored cigarettes are sequentially transferred to the Cigarette
Packing Machine by conveyor. During this process, the glue
used to make cigarettes in the Cigarette Making Machine

is sufficiently dried while passing through the Cigarette
Buffering Machine. The Cigarette Packing Machine receives
a Pack Blank for cigarette packaging, and shapes it into
a pack. Cigarettes transferred from the Cigarette Buffering
Machine are collected in a certain quantity, and bundled into
a 2- or 3-layer structure on paper or aluminum foil, and one
pack is packaged by assembling it with a pre-folded Pack
Blank. In the next pack assembly process, normal packs that
have passed various quality inspection devices are delivered
to the Pack Wrapping Machine to wrap the film to maintain
moisture. Afterward, the pack with completed film packaging
is packaged into a carton by the Pack PackingMachine, which
receives paper or film, and repackages the pack to bundle it in
a certain quantity. The cartons made this way are transferred
to the Carton Packing Machine by conveyor, packed into box
blanks, and then transported to the shipping location as a
case on a conveyor belt. In this study, we aim to design a
defective cigarette detector with an optimizedYOLOnetwork
in cigarettes transported to the Cigarette Packing Machine.

B. CIGARETTE DETECTION METHOD
In manufacturing cigarettes, the process in which cigarettes
are missing or aligned in the reverse direction mainly
occurs at the packaging stage with the Pack Blank. Reverse
alignment may arise if the direction is changed during
high-speed production in the CigaretteMakingMachine, or if
the alignment of cigarettes is disturbed and the direction
is wrong, due to various reasons during the conveyor
transfer process connecting the Buffering Machine and
Packing Machine. In addition, the cigarettes transferred to
the Cigarette Packing Machine are arranged in a multi-stage
format according to the quantity to be included in the pack,
and the cigarettes placed in multi-stages are pushed into the
foil, and wrapped. During this process, problems may arise if
the quantity required for cigarette packaging is insufficient.
Fig. 2 shows a turret created to imitate the operating situation
in a Cigarette Packing Machine, and three situations in which
cigarettes are aligned. The number of cigarettes that must be
contained in a pack is 20, and they must be packaged in three
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FIGURE 2. Examples of cigarette packs before packaging. (a) Normal; (b) Missing; (c) Inverse.

layers in a 7-6-7 structure. Fig. 2a shows a case where the
cigarettes are usually well aligned, while Fig. 2b shows a case
where cigarettes are missing, and Fig. 2c shows a case where
a cigarette is aligned in the reverse direction.

The initial method to filter out these defects utilized capac-
itive or optical sensors in pockets connected to a rotating
turret or conveyor belt to inspect the presence or absence of
cigarettes or normal alignment [26], [27], [28]. This method
makes it difficult to accurately match the operating points of
the sensors and instruments used in the inspection method;
durability issues due to long-term use and detection errors
due to surrounding foreign substances are frequent, making
management difficult. Since then, with the development of
control technology and camera technology, machine vision
systems with excellent performance have been utilized, and
the device configuration for inspection has been simplified,
resulting in a relatively wide inspection range and improved
accuracy and usability. Park et al. [29] separated colors from
RGB images captured by a camera to inspect the quality
of packaged cigarettes, and applied the K-mean clustering
technique to classify them by individual cigarette type.
Sarkar et al. [30] usedVision Builder, amachine vision-based
automatic inspection program available on the LabVIEW®

platform of Next Instruments (NI), and Vision Assistant,
an auxiliary program, to inspect the number of cigarettes
inside the pack and obtain satisfactory results. Qu et al. [31]
reduced the detection error by reprocessing 3D images for
differences in brightness depending on height to accurately
measure the number of filters in the Filter Tray supplied
as raw materials during the cigarette manufacturing process.
Wang et al. [32] designed a geometric model based on a nor-
malized intensity distribution histogram and showed robust
performance, despite changes in lighting brightness. These
methods also require resetting detection parameters by pro-
fessional personnel to obtain optimal detection performance
under changes in the surrounding environment, and changes
in production brands. These factors can affect production
efficiency by reacting sensitively to small environmental
changes. Recently, a study by Park et al. [23] proposed three
improved network structures based on YOLOv4-Tiny for fast
cigarette detection as a deep learning-based object detection
method that shows robust performance even in changes in
the surrounding environment, and excellent performance.
The proposed method can process operations about two
times faster and with a network size of 10 %, compared
to YOLOv4-Tiny. Nevertheless, there are limitations to its

actual use in high-speed automation equipment in low-level
embedded environments. Therefore, an optimal network
design applicable to high-speed automated equipment for
detecting cigarette defects is needed. A typical object detector
must classify objects of different sizes and many types. The
convolution layer is set to be very complex and large to
extract all the features of various objects from the network.
As the network is connected to lower layers, the resolution
is reduced, and the number of channels is increased through
down-sampling. This reduces network memory and changes
the output layer that is classified depending on the object’s
size. Generally, the largest object is estimated in the final
output layer, and the output of the upper layer estimates the
smallest object. Therefore, when the object size is constant,
multiple output layers are unnecessary. An object detection
system suitable for an automated cigarette defect detection
system requires small network memory and fast execution
speed.

C. OBJECT DETECTION IN THE YOLO NETWORK WITH A
SINGLE CIRCULAR BOUNDING BOX
The YOLO object detection method has a relatively simple
structure, because the input and output are composed of one
network, and directly learn the entire loss function of the net-
work. This is a representative one-step detection method that
simultaneously processes object detection and classification,
and is characterized by fast object detection. As the input
image passes through the network, the candidate bounding
box coordinates that estimate the object location and type and
the probability value for the object type are output as network
output. This method selects the final bounding box using the
Non-Maximum Suppression (NMS) method, which among
the multiple estimated candidate bounding boxes determines
the one with the highest probability value. Objects in an
image vary in size and number, and two objects of different
sizes may simultaneously be in the same location. Objects
may overlap in the image, reducing the detection probability.
To solve this problem, recent deep learning-based object
detection methods increase the likelihood of accurate object
estimation by determining the number of specific boxes by
searching or directly setting the average object size in the
learning data. However, if too many predetermined numbers
of specific boxes are designed, the amount of calculation
increases, while the detection performance is low for new
objects that have not been learned [33]. Therefore, when the
object’s size is almost constant, such as the cigarette detection
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FIGURE 3. Circle Intersection of Union [34].

problem we wish to address in this study, applying it as
just one specific box can reduce the amount of calculation,
and fast computation can be expected. Additionally, no prior
learning data analysis work is required to determine a
particular box, and the preparation process for network
learning is simple and effective. In addition, the rectangular
bounding box used to designate the object area can express
the position and size, so it can be fully utilized even when the
object size is diverse, and the arithmetic operation is simple,
so it is used in many object-detection models. However,
if the object’s shape is complex, or the object is rotated
more than a certain angle, a lot of surrounding background
other than the object is included within the designated area.
In methods such as deep learning, which finds and learns
the characteristics of objects on their own, the background
surrounding the object can also learn and affect detection
performance, so better performance can be expected by
applying a bounding box type that can specify only the
object [34], [35]. Therefore, since the tip of a cigarette is
shaped like a circle, using a circular bounding box suitable for
this is expected to increase the learning process’s efficiency,
and improve detection performance.

Fig. 3 shows the process of calculating the degree to
which two circular bounding boxes overlap. The center
points of the two circular bounding boxes are CA and CB,
respectively, while the radii are rA and rB, respectively,
with rA being larger. The distance between the center
points of the two circular bounding boxes is d =√
(CBx − CAx)2 + (CBy− CAy)2. For two circular bounding

boxes to overlap, the |rA − rB| ≤ d ≤ |rA + rB| condition
must be satisfied. If satisfied, the degree of overlap between
the two circular bounding boxes can be defined as shown
in (1):

cIoU =
Area(CA ∩ CB)
Area(CA ∪ CB)

(1)

The area where the two circles overlap is defined as (2),
and all areas where the two circles overlap can be obtained
using (3):

Area(CA ∩ CB) = θr2A + ϕr2B −
1
2
r2Asin 2θ −

1
2
r2Bsin 2ϕ

(2)

Area(CA ∪ CB) = πr2A + πr2B − Area(CA ∩ CB) (3)

where, θ = cos−1 r2A+d2−r2B
2rAd

, and ϕ = cos−1 r2B+d2−r2A
2rBd

.

III. THE PROPOSED METHOD
A. TRAINING IMAGE COLLECTION AND IMAGE LABELING
Training data for cigarette detection is not publicly available,
and related research is lacking. Due to security issues, filming
data collection in manufacturing plants is also difficult. The
turret of the cigarette manufacturing machine was made
using a 3D printer, and a filming system consisting of
the manufactured turret, a camera, and a controller for
filming and storage was configured on a test bed. Cigarette
images were collected to simulate defects that could occur
during the manufacturing process. The cigarette used in
this study is KT&G’s SEASON® [36] product, which is
readily available at retail stores in Korea. The form of the
cigarette is cylindrical, being about 8 mm in diameter and
84 mm in length, and is sold in packs. One pack contains
20 cigarettes, and measures 56 mm × 88 mm × 22 mm of
width × height × depth. Fig. 4 shows the environment of
the personally constructed test bed, and the images obtained
by alternately placing normal-aligned and reverse-aligned
cigarettes on the Turret. The resolution of the acquired
images was 608 × 304 pxl; 85 normal-aligned cigarette
images were taken under various environmental conditions,
and 39 reverse-aligned cigarette images were acquired. The
objects in the images number 340 normal-aligned cigarettes,
and 156 reverse-aligned cigarettes.

This study aims to detect cases where the number of
cigarettes packed in a pack is missing, or individual cigarettes
are packaged in the wrong direction. The objects to be
classified are in two states. Therefore, the objects in the
image were labeled by dividing them into two types, and
labeled using a single circular bounding box to match the
characteristics of a cigarette with a circular shape of a specific
size. Equation (4) gives the definition of the circular bounding
box for labeling. Table 1 summarizes the labeling, color, and
number of objects, while Fig. 5 shows the labeling results for
cigarettes in the image expressed as a circular bounding box.

cBBoxij = (Bxij,Byij,Brij) (4)
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FIGURE 4. Image acquisition system and the acquired images. (a) Testbed for image acquisition; (b) Acquired images (normal and inverse
aligned).

FIGURE 5. Examples of data labeling.(a)Normal labelling; (b)Inverse labelling.

TABLE 1. Summary of image acquisition and data labeling.

where, i is the circle Bounding Box (cBBox) number, j is the
label index, (Bxij, Byij) is the center coordinate of the cBBox,
and Brij is the radius of the cBBox.

B. DATA AUGMENTATION
Cigarettes are made by wrapping tobacco powder in paper,
and cutting each cigarette to a specific size. The shape of the
cut surface at the end of the cigarette appears in countless
forms depending on the type of tobacco powder, the direction
in which it is collected, and the amount collected, so it
has numerous characteristics. Additionally, the number of
image data collected for learning is small, so expansion of
the learning data is necessary for effective network learning.
Therefore, in this study, to effectively increase learning data,
labeled raw data is used to cut out the cigarette portion
of the image into a circular shape to create each cigarette
image. Then, the individual cigarette images are rotated at
a certain angle to increase the number of individual images.
In addition, the number of learning data was expanded by
combining individual cigarette images pre-stretched in a
randomly created circular bounding box so that they did
not overlap with the background-free image to the size of
the raw image. Fig. 6 shows the process of increasing raw

data. The rotation of individual cigarette images was set to
355◦ at 5◦ intervals. All individual cigarette images created
by rotation were made into a list, and the order of the list
was randomly shuffled to create the final five new lists.
In addition, a single learning datumwas created by combining
a randomly generated circular bounding box with an overlap
of less than 0.1 in an image without a background and
individual cigarette images sequentially selected from five
pre-created lists. This method was repeated to ensure that
all images in the five lists were included, creating the final
learning data set. Additionally, the brightness was randomly
adjusted when selecting an image from the list to reduce
the influence of the same image due to repeated use of
individual cigarette images. Through this process, 12,200
items of learning data were finally created, and the total
number of objects in the learning data was 56,143 for reverse-
aligned cigarettes, and 122,364 for normal-aligned cigarettes.

C. ANALYSIS THROUGH NETWORK LAYER VISUALIZATION
The capacity of a deep learning network is determined
by the number of parameters that can be learned. In general,
the network is connected to lower layers by down-sampling
and increasing the number of channels, and depending on
the shape of the bounding box, the type of object, and the
number of specific bounding boxes, there may be slight
differences in the final output layer. However, in the case
of the YOLOv4-Tiny model, the CBL module consisting
of the Convolution Layer, Batch normalization Layer, and
LeakyReLU activation function is repeatedly appropriately
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FIGURE 6. Data augmentation.

placed and connected, and the total number of learnable
parameters in the entire network is about 5.8 Mb. Fig. 7
shows the network structure of the YOLOv4-Tiny model for
cigarette detection with a circular bounding box, and the
parameters of each layer are based on the size of the prepared
input image.

The number of learning parameters is generally determined
by the kernel size and channel depth of the convolution layer,
and as the number increases, detection accuracy increases.
However, as the number of parameters increases, the space
occupied inmemory increases, while the resulting calculation
time also increases, which may affect the performance
in areas where fast processing is required. When fast
computational processing is necessary for an embedded
environment to be applied to manufacturing machines, such
as a cigarette detection system, a network configuration that
allows rapid processing with a small memory footprint is
required. Park’s method [23], proposed by modifying the
YOLOv4-Tiny model for fast cigarette detection, used only a
single bounding box due to the constant size of the cigarette,
reducing the learning and computational processing speed.
However, a layer designed to improve detection performance
for object size changes may not be necessary.

To design a network optimized for cigarettes, checking
how each network element judges the cigarette object would
be more efficient. Existing research includes methods such
as Grad-CAM [37], which adds the connection strength from
the network output to the backward-connected layer, and
allows visual confirmation by projecting it onto a test image.
However, Grad-CAM is a visualization technique that is
designed to solve classification or regression problems of
CNNnetworks. It is not easy to apply to structures that predict
objects using bounding boxes, as in this study. Therefore,
in this study, we focused on YOLO-Head, the final output
stage where images are input into the network, to check the
network activity level visually. The structure of YOLO-Head
contains bounding box information for each channel. When

input to the network, an image passes through all layers.
This indicates the degree of prediction of the object at
the final output stage, depending on each layer’s activation
degree. The YOLO-Head consists of predicted values for
the location, reliability, and type of bounding box, and a
channel connects each element. Therefore, the area affecting
object detection can be partially confirmed by checking the
value of a specific channel of YOLO-Head. In selecting an
object among many object candidates, critical values are
the reliability and the predicted value of the object type.
Therefore, one map is created by multiplying the predicted
value and reliability for each object type among YOLO-Head
channels by the element, and the size of this map is upscaled
using bicubic interpolation to equal the input image size.
When projected onto an image, the degree of network
activity for object detection can be visually confirmed,
as with the input image. Fig. 8 shows the activation level of
YOLO-Head1 andYOLO-Head2 according to the normal and
reverse alignment states of cigarettes in the YOLOv4-Tiny
model. The lower activation value of the map is blue, the
intermediate value is green, and the maximum value is red.
Fig. 8a is an image of a cigarette aligned in the reverse
direction at the upper left edge of the test image. Fig. 8b and
Fig. 8c show the normal state and reverse aligned cigarette
activation level in YOLO-Head1. Both pictures represent
the object to be detected. Fig. 8d and Fig. 8e show the
activation level in YOLO-Head2, there is no red area, and
it has no effect on object detection. Therefore, in this study,
we wish to propose an optimization structure by removing
such unnecessary networks.

D. PROPOSED NETWORK STRUCTURE AND
VISUALIZATION ANALYSIS
The embedded environment for detecting defective cigarettes
in cigarette manufacturing machines requires fast computa-
tional processing and a network configuration with a small
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FIGURE 7. YOLOv4-Tiny network structure.

FIGURE 8. Test image and Activation map of the YOLOv4-Tiny network. (a) Test image; (b) Activation map in YOLO Head1 for Inverse-aligned object;
(c) Activation map in YOLO Head1 for Normal-aligned object; (d) Activation map in YOLO Head2 for Inverse-aligned object; (e) Activation map in YOLO
Head2 for Normal-aligned object.

memory footprint. The method of Park et al. [23] learns
using only a single bounding box due to the constant
size of the cigarette. Then, the YOLOv4-Tiny network’s
repeatedly placed Convolution Layer+Batch normalization
Layer+LeakyReLU (CBL) module and Cross Stage Partial
Connections (CSP) module are simply configured to reduce
memory size and operation processing speed. Here, it is
highly advantageous to check how network elements judge
cigarette objects to design a network structure that is
optimized for cigarettes. Suppose the activation level of
objects in the network output is predicted, and unnecessary
network elements are removed. In that case, a network can
be designed that requires less memory and can perform fast
calculations.

Fig. 9 shows an activation map using the network with the
best performance among the networks proposed by Park et al.
[23] The results in Fig. 9 show that the degree of activation
for the two classes cannot be confirmed in the Head2 of
the networks proposed by Park et al. [23]. Therefore, in this
study, we intend to design a new network by removing the
network associated with Head2.

Table 2 summarizes the number of learnable parameters
of the YOLOv4-Tiny, Park’s, and the proposed networks.
The order of the Module column in Table 2 indicates the
hierarchical connection of the proposed network. If the value
of the cell parameter in the row exists, it is included in the
network structure. Cells marked with ‘-’ are not included
in the network structure. The Proposed-Net1 reduces the
overall number of parameters by reducing the capacity of
the CBL5 module with the most significant number of
parameters in the YOLOv4-Tiny structure. By repeating
the CSP module of the upper layer in YOLOv4-Tiny, the
increased number of channels is removed by removing the
CSP1 and CSP2 modules. The number of parameters has
been reduced by replacing the CBL3 module and CBL4
module, so that the number of channels of the CBL5 module
is adjusted. CBL7, up-sampling, and CBL8 associated with
network Head2 were removed. The final number of learning
parameters is reduced bymore than 5.4Mega bytes compared
to YOLOv4-Tiny, showing a clear difference in the number
of parameters. In addition, the Proposed-Net2 and the
Proposed-Net3 were configured similarly by setting the
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FIGURE 9. Test image and Activation map of the Park’s network. (a) Test image; (b) Activation map in Head1 for Inverse-aligned object; (c) Activation
map in Head1 for Normal-aligned object; (d) Activation map in Head2 for Inverse-aligned object; (e) Activation map in Head2 for Normal-aligned
object.

TABLE 2. Comparison of the number of learning parameters of the
networks.

network input image differently, reducing the number of
parameters by removing the CBL module, and adjusting the
number of channel parameters to match the size of the final
output.

Fig. 10 shows the proposed network structure as a
block diagram. Compared to YOLOv4-Tiny, the network is
very simply configured. The CBL module expressed colors
differently depending on the filter size of the convolution
layer. The blue series uses a 3 × 3 filter, while the yellow
series uses a 1 × 1 filter. Additionally, if the Maxpool layer
is included in the CBL module, it is indicated separately.

Fig. 11 shows the activation map and detection results
after inputting a test image into the proposed networks. The
proposed networks using a single circular bounding box
distinguishes and analyzes objects well in the visualization
analysis even though the YOLO-Head2 network has been
removed. Figs. 11a, 11b, and 11c are the activation maps for

the reverse and normal-aligned object and detection results
in the Proposed-Net1, respectively. Figs. 11d, 11e, and 11f are
the results of the Proposed-Net2 and Figs. 11g, 11h, and 11i
are the results of the Proposed-Net3. Fig. 11g shows that
although a weak predicted value appears in the middle of
the Inverse-aligned cigarette activation map image, it is
well detected in the results. This results from a more vital
prediction value for the Normal-aligned cigarette in selecting
a candidate bounding box, as shown in Fig. 11h.

IV. EXPERIMENT RESULTS AND EVALUATION
A. EXPERIMENT SETTINGS
To compare the performance of the proposed networks
with the YOLOv4-Tiny and Park’s [23] networks, the same
parameters and learning algorithms required for network
learning are used. The optimization algorithm required for
learning used Stochastic Gradient Descent with Momentum
(SGDM), the initial learning rate was set to 0.0001, the
mini-batch size was 32, and the maximum number of
iterations was set to 100. Learning was conducted by
randomly shuffling the data order for all data. In this study,
since the cigarette size is constant and only one specific
bounding box is used, algorithms such as K-means clustering,
which is used to obtain a particular predefined box from the
entire data, were not used. The size of the bounding box
is directly specified to be the same size as the raw data
object image (84 × 84 pxl). Then, the raw data image is
scaled to match the size of the input layer of each network,
and the bounding box data is also adjusted and applied
to the same ratio. For fast processing during the network
learning process, a method is used that does not compare the
predicted bounding box with the raw data if the reliability
of the predicted bounding box is less than 0.5. The degree
of overlap between the bounding box of the raw data and
the predicted bounding box is 0.5. The network loss function
was defined by adding the error for object classification, the
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FIGURE 10. The proposed networks. (a) The Proposed-Net1; (b) The Proposed-Net2; (c) The Proposed-Net3.

error for object reliability, and the error for the bounding box
location and size, as shown in (5). The binary cross-entropy
function was applied for object classification error and object
reliability error, and the least squares error function was used
for bounding box error. The weights for each error are defined
as a, b, and c, and were all used as 1 in this study.

TotalLoss = a× clssloss+ b× objloss+ c× boxloss (5)

where, clsloss is the object classification loss, objloss is the
object confidence loss, and boxloss is the box loss of cBBox.
The boxloss also includes the angular error of the cBBox,
while a, b, and c are the weight factors.
The main specifications of the hardware used in the

experiments of this study are central processing unit Intel
i9-9900K, system memory RAM 32 GB, and graphics card
NIVIDA RTX2090. Additionally, MathWorks’ MATLAB®

was used as a program for network learning and evaluation,
and Deep Learning Toolbox [38] was installed and used to
employ the YOLOv4-Tiny model provided by the program.

B. NETWORK LEARNING AND PERFORMANCE
EVALUATION METHOD
All learning-related parameters and learning methods of the
networks were implemented under the same conditions, and
a small number of image data were effectively augmented to
learn with 12,200 images. Table 3 summarizes the learning
time and final error for all networks:

Table 3 shows that the proposed network learns faster
than YOLOv4-Tiny and Park’s networks under the same

learning conditions. As for the overall error, the larger
the network size, the smaller the final error. In the case
of Net3, the simplest one proposed in this study, the
overall error is 0.1245, smaller than that of Park’s H-Net3.
Therefore, all networks have been sufficiently trained. In this
study, to evaluate the performance of the proposed network,
we defined and used (6), which is commonly used in object
detection methods. True Positive (TP) is defined as the case
where the degree of overlap between the final predicted
classification degree of the object detector and the Ground
Truth (GT) labeled in the image is more than 0.5, and vice
versa, it is defined as False Positive (FP). In addition, if a
bounding box exists in GT but does not exist in the object
detector output, it was defined as False Negative (FN), and
the mean Average Precision (mAP) of the object detector was
calculated as shown in (7) [23].

AP =

N∑
i=1

precision(i)1Recall(i) (6)

mAP =
1
n

n∑
k=1

APk (7)

where, N is the total number of test images, Precision =

TP/(TP + FP) is the precision value for each object class,
Recall = TP/(TP + FN ) is the object recall value, and
1Recall(i) is the change in recall value between i and i −

1 images; and where n is the total number of object classes, k
represents the object class, and APk is the average precision
of each object.
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FIGURE 11. Activation map and results for the proposed networks. (a), (d), and (g) are the activation maps for the reverse-aligned object and (b),
(c), and (h) are the activation maps for the normal-aligned object in the proposed networks. And (c), (f), and (i) are the detection results of the
proposed networks.

TABLE 3. Comparison of the learning time of the networks.

C. PERFORMANCE EVALUATION OF TEST IMAGES
In this study, cigarettes not used for learning were used as test
images for performance evaluation. One hundred ninety-three
test images were taken in cases where 20 cigarettes were
usually placed in the turret, where several cigarettes were
missing, or were aligned in the inverse direction. In addition,
images were taken under various brightness conditions and
environments to evaluate robust performance. To assess the
performance of the proposed networks, the performance of
the YOLOv4-Tiny network and the proposed networks by
Park et al. [23] were compared and analyzed, and Table 4
shows the performance results:

All networks proposed in this study showed excellent
performance with an mAP of 0.98 or higher, and the network
performance speed was faster than other models. Even
in the case of Proposed-Net1, which showed the slowest
computation speed, it showed the same mAP performance as
the YOLOv4-Tiny network, even though it showed a faster
computation speed than the lightest H-Net3 proposed by
Park et al. [23], and the proposed network was sufficient.
It can be confirmed that it is effective. In particular, the
Proposed-Net3 detects objects in images the fastest, with
an average processing time of 0.0237 seconds. It has an
excellent mAP of 0.98 compared to the YOLOv4-Tiny

network, even though its memory size is only 1/65th that of
the YOLOv4-Tiny network. In general, automated machines
used in the cigarette manufacturing process require a speed
of up to 600 pack per min, which is 100 ms per pack. The
proposed models have a much smaller number of parameters,
and the processing time for detection is fast, so it can be seen
that they are all satisfactory in terms of processing time for
cigarette detection. The mean cIoU value compared to test
data GT to measure the accuracy of object detection location
shows about 5 % lower performance than the methods
proposed by Park et al. [23]. However, in a system for
cigarette detection, this is an acceptable error.

Fig. 12 shows an example in which the cigarette detection
results were inaccurate. Even though Proposed-Net1 is a
much smaller network than YOLOv4-Tiny, there are no
incorrect classification results. Fig. 12c is a test image in
which two cigarettes are missing. Proposed-Net2 recognized
these test images as 18 normal-aligned cigarettes and one
reverse-aligned cigarette. This is a case of detecting an
object not in the test image. Because the space created by
missing cigarettes was strongly illuminated, the activation
characteristics for Inverse-aligned were strong, as shown in
Fig. 12a, resulting in incorrect detection of other objects.
Figs. 12d to 12f show the result of incorrect object detection
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TABLE 4. Performance evaluation by networks.

FIGURE 12. Activation map and incorrect detected results for the proposed networks. (a), (b), and (c) are the activation maps for the reverse and
normal-aligned object and incorrect detected results in the Proposed-Net2, respectively. (d), (e), and (f) are the results of the Proposed-Net3.

in Proposed-Net3, where one Normal-aligned cigarette was
incorrectly recognized as one Inverse-aligned cigarette.
In Figs. 12d & e, the Inverse-aligned features appear strongly
in the right part of the activation map. The test image is
very different from the training data in its overall brightness
and color. Therefore, if the network is trained with more
diverse learning images, this problem will be solved. In the
actual cigarette manufacturing process, if there is even one
cigarette aligned in the reverse direction, it must be discarded,
and it is infrequent that the background brightness around
the Turret changes significantly. Therefore, if an appropriate
surrounding environment is set, it will not be a big problem
if applied to the actual process.

V. CONCLUSION
In this study, we proposed a deep learning-based optimized
cigarette detection method to achieve high quality while
increasing productivity by reducing the number of discarded
cigarettes through fast and accurate defect detection in the
cigarette manufacturing process that requires large-scale
production equipment. We propose an optimized network
structure based on YOLOv4-Tiny with a single circular
bounding box to quickly and accurately detect packaging
defects in cigarette production, such as omission, or the
reverse alignment of single cigarettes. Network optimization
selected the optimal network structure through visualization
analysis, and confirmed excellent performance regarding
the network size, number of learnable parameters, network
processing time, and detection accuracy. In particular, while

Proposed-Net1 shows detection accuracy equivalent to the
YOLOv4-Tiny network, the network size is as small as 12
% that of YOLOv4-Tiny, so the memory usage required to
run the network is less, and processing is possibly about
twice as fast. Other proposed networks can also be fully
utilized. In addition, as a learning data augmentation method,
the learning data is augmented by cutting and separating the
original image into an object-based image, and compositing it
with a bounding box generated in a randomly generated table
without a background, to generate learning data efficiently.

In actual cigarettemanufacturing plants, theremay bemore
defect situations, compared to the defects set in this study.
Therefore, if it is possible to secure defects that may occur
in the actual manufacturing process, quality standards for
them, and corresponding image data, it is expected that the
optimized method for cigarette detection proposed in this
study can be utilized by applying it to actual high-speed
automated equipment.
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