IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received 20 November 2023, accepted 13 December 2023, date of publication 18 December 2023,
date of current version 22 December 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3343800

==l RESEARCH ARTICLE

Long-Term Trajectory Prediction Model
Based on Transformer

QIANG TONG “''2, JINQING HU "2, YULI CHEN'->3, DONGDONG GUO'-2, AND XIULEI LIU*"2

!Laboratory of Data Science and Information Studies, Beijing Information Science and Technology University, Beijing 100101, China
2Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Information Science and Technology University, Beijing 100101, China
3State Key Laboratory of Networking and Switching Technology, Beijing University of Posts and Telecommunications, Beijing 100876, China

Corresponding author: Qiang Tong (tongq85 @bistu.edu.cn)
This work was supported in part by the National Key Research and Development Program of China under Grant 2021 YFB2600600, in part

by the Research and Development Program of Beijing Municipal Education Commission under Grant KM202111232003, and in part by
the Key Research and Cultivation Project in the Promotion of University Classification Development under Grant 2121YJPY225.

ABSTRACT Recurrent neural network models have problems such as memory loss and gradient
disappearance when dealing with long time series data. This paper proposes a long-term trajectory prediction
model based on Transformer to process long-term sequence information. Firstly, the position encoding is
used to preserve the relative positional relationship between trajectory points. Secondly, the multi-head
attention mechanism is used to fully learn the feature information between different trajectories, and the
trajectory data can be encoded at one time. Finally, the encoder and decoder mechanism is used to predict
future trajectory data. Compared with the long-term trajectory prediction benchmark method TrajAirNet, the
average displacement error, absolute displacement error of the proposed model on the long-term trajectory
dataset are reduced by about 8.2% and 51.4%, respectively. The experimental results show that the proposed

model has higher accuracy and robustness on long-term trajectory prediction dataset.

INDEX TERMS Trajectory prediction, aircraft trajectory, transformer, ADS-B.

I. INTRODUCTION

The conflict between air traffic volume and airspace
resources is becoming increasingly intense. Traditional air
traffic control only focuses on the control of the safe distance
between each aircraft, can not meet the needs of subsequent
development. Relying solely on the flight plan in air traffic
control, without future trajectory awareness, can easily lead
to flight conflicts. In situations with high air traffic volume,
failure to adjust manually in a timely manner can lead to
congestion in the airspace. This not only increases fuel
consumption for aircraft but also adds to the workload of
air traffic control personnel. Therefore, the air traffic control
system is in urgent need of transformation. To alleviate the
problem of limited airspace resources, enhance the efficiency
of flight control coordination, and improve flight safety,
the International Civil Aviation Organization (ICAO) has
introduced the concept of Trajectory Based Operation (TBO)
and recognized it as the fundamental technology for the future
generation of air traffic control systems [1]. The smooth
operation of TBO is closely related to the four-dimensional
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trajectory prediction of aircraft. Four-dimensional trajectory
prediction refers to the evaluation and estimation of the
changing longitude, latitude, altitude, and other positional
information of an aircraft over time. It aims to reduce
potential conflicts during flights and accurately understand
the overall operational status of the entire airspace, thereby
reducing the workload of air traffic control personnel.
It also supports automated flight control and management,
providing technical support for air traffic safety and traffic
flow management.

Trajectory prediction can be divided into short-term trajec-
tory prediction and long-term trajectory prediction based on
the predicted time scale [2]. Long-term trajectory prediction,
in contrast to short-term prediction, provides flight path
estimates over a more extensive time frame, enabling its
application in air traffic flow prediction, flight planning
optimization, and fuel consumption optimization [3].

In the case of time series data, there is a specific temporal
order and correlation between the current moment and past
moments. Therefore, when using neural networks to process
time series data, it is necessary to consider the patterns of
certain random variables that change over time. Recurrent
Neural Network (RNN) is a widely used model for processing
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time series data [4]. RNN has the ability to retain information
in its memory, but it fails to effectively preserve long-range
dependencies in time series data due to issues such as
vanishing or exploding gradients.

In order to alleviate the gradient problem caused by Recur-
rent neural networks, researchers have proposed methods to
control information accumulation, such as the widely used
models: Long Short-Term Memory (LSTM) [5] and Gate
Recurrent Unit (GRU) [6].

A. MOTIVATION

Models based on recurrent neural networks are trained
with sequential input and can only compute in a left-to-
right or right-to-left order. These leads to two problems.
First, the current result relies on the computation of the
previous moment, which means that the training data needs
to be inputted sequentially. This affects the efficiency of
model computation and increases training time. Information
loss occurs during computation. Although LSTM, GRU,
and similar models with gated mechanisms alleviate the
gradient issues caused by long-term dependencies, they
cannot eliminate them completely.

To address the aforementioned problems and leverage the
benefits of Transformers [7] in handling long time series
data, this paper proposes a long-term trajectory prediction
model named Trajectory Embedding Transformer (TET).
The model first utilizes Positional Encoding (PE) to capture
the relative positional relationships among trajectory points.
Then, by using the attention mechanism, the embedding
operation between the trajectory points is completed in a
single step. At the same time, the use of multi-head attention
allows for the learning of diverse features between trajectory
points across various representation spaces. Overall, the
model predicts the future trajectory based on the encoder-
decoder structure.

In summary, our contributions are as follows:

1) To our knowledge, the proposed TET model is the first
to introduce transformer into long-term trajectory prediction.
By combining multi-head attention mechanism with residual
networks, it effectively captures both long-term and short-
term features of trajectory data, mitigating the limitations of
RNN-based models in feature extraction during training and
inference.

2) Two datasets, Traj-60 and Traj-120, were constructed
and experimentally validated the advantage of our proposed
model in long-track prediction. On the long-term trajectory
data set, the average and absolute displacement errors of the
model are reduced by 8.2% and 51.4%, respectively.

3) We conducted comparative experiments between the
proposed model and the baseline model in terms of accu-
racy, efficiency, and practicality. The experimental results
validated the advantages of our model in these aspects.

The rest of the paper is organized as follows. In section II,
we review related works in recurrent neural network models
for trajectory prediction and Transformer. Section III presents
our proposed methodology, starting with the problem
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formulation and followed by the introduction of our TET
model architecture. Section IV presents the experimental
setup, including the dataset, implementation details, evalu-
ation metrics, and the results and analysis. Section V offers
conclusions, the limitation of our model and suggestions for
future research.

Il. RELATED WORK

A. RECURRENT NEURAL NETWORK MODELS FOR
TRAJECTORY PREDICTION

The increasing prominence of artificial intelligence has led
to the widespread adoption of LSTM and GRU as prominent
techniques for trajectory prediction. Shi et al. [5] imple-
mented an LSTM-based trajectory prediction model, incor-
porating a sliding window technique to maintain trajectory
continuity and enhance prediction accuracy. Zhang et al. [§]
presented a novel LSTM network optimized with the Ant
Lion Optimizer (ALO) algorithm for trajectory prediction.
By controlling the initial weight values of the LSTM
network using the ALO algorithm, the convergence speed
was improved. Han et al. [9] introduced a 4D trajectory
prediction model based on deep learning techniques. In their
study, LSTM was used to model the aircraft’s motion
state. Zhang et al. [10] proposed a hybrid model that
combined Deep Neural Networks (DNN) and LSTM. The
DNN was used to refine the trajectory predicted by LSTM,
thereby improving trajectory prediction accuracy. Further-
more, Zhao et al. [11] proposed a Deep Long Short-Term
Memory (D-LSTM) neural network for aircraft trajectory
prediction, which improved the accuracy of predictions in
complex flight environments. Pang et al. [12] presented
a novel network architecture that embedded convolutional
layers within the repeating modules of LSTM. This allowed
for extracting useful features from the Weather Cube and
addressed the issue of predicting aircraft trajectories related
to pre-takeoff convective weather. Shi et al. [13] proposed a
combined model for short-term trajectory prediction. They
used two methods to predict altitude and obtained the final
altitude value through weighted averaging, which improved
the accuracy of trajectory prediction. Shi et al. [14] introduced
an online-updating short-term trajectory prediction model.
First, the LSTM model was trained using historical trajectory
data, and the model parameters were saved. The model was
then further trained and updated using real-time trajectory
data, improving trajectory prediction accuracy. Liu et al. [15]
proposed a deep generative model that includes an LSTM
encoder network and a mixture density LSTM decoder
network, which improved trajectory prediction accuracy.
Zhang et al. [16] presented an aircraft trajectory prediction
model based on GRU, which enhanced the accuracy of
aircraft flight trajectory prediction.

Although LSTM and GRU alleviate the vanishing or
exploding gradient issues caused by long-term dependencies
and are effective for short-term trajectory prediction, they
do not completely solve the gradient problem and cannot be
directly applied to long-term trajectory prediction.
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B. TRANSFORMER

The groundbreaking Transformer model, introduced by
Google in 2017 for machine translation tasks [7], diverges
from traditional models by eliminating the use of recur-
rent neural networks (RNNs) and instead solely relying
on the attention mechanism for sequence-to-sequence
generation [17].

The application of the attention mechanism originally
emerged within the field of computer vision, inspired by
the observation of animals focusing their attention on key
information when perceiving external objects [18]. The
attention mechanism mimics the way biological systems
observe information by selectively focusing and directing
attention towards the relevant aspects of the observed stimuli.
This allows for the quick identification of desired information
from a complex set of inputs.

Many researchers have applied it to trajectory prediction.
Zhang et al. [19] proposed an attention-based Convolutional
LSTM (AttConvLSTM) network that converts the trajectory
prediction problem into a classification problem by segment-
ing the reachable area. It calculates the arrival probabilities
for each spatial location within the reachable area of the
target aircraft. Jia et al. [20] introduced a trajectory prediction
model based on the attention mechanism and LSTM.
LSTM is used to extract temporal features from trajectories
and improve accuracy, while the attention mechanism is
employed to capture important factors that influence the
variations at the current point for trajectory prediction.
Nathan et al. [21] developed a hybrid model based on the
attention mechanism, demonstrating that it can significantly
improve the performance of convolutional layers and enhance
the dimensional capacity of the learning model.

In Transformer, only use attention mechanical can not
capture the sequential characteristic of series. The sinusoidal
version of position embedding is used to solve this prob-
lem [7]. By summing the position encodings with the input
embeddings and feeding the result the model, it can give the
model a sense of the order in which the token is currently
processed [22].

The Transformer model, at its core, employs an
encoder-decoder structure with the attention mechanism
module as its primary component. Its computational approach
aligns with parallel processing, making it well-suited for
modern GPU frameworks. In contrast to RNN-based models
that rely on sequential training and inference [23], the Trans-
former model offers shorter training and inference times.
Consequently, the Transformer model not only addresses the
issue of long-term dependencies but also showcases higher
computational efficiency when compared to RNN-based
models. These attributes establish the Transformer model as
a compelling choice in diverse research studies [24], [25].

lll. METHODOLOGY

A. PROBLEM FORMULATION

Assuming X represents all the trajectories, including
the trajectories of N aircraft, it can be denoted as
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FIGURE 1. Model framework of TET. After Embedding and Positional
Encoding, the input trajectory data is sent to the encoder in the left
dotted box to get the representation of the trajectory, and then to the
decoder on the right to make the trajectory prediction.

X = {X1,Xy,...,Xy}. When the time step is T =
1,2, ..., teps, the input trajectory of aircraft i is represented
as X; = (x/,y},2}), where fo, denotes the length of the

observation sequence and x! represents the longitude of
aircraft i at time ¢, y;f represents the latitude of aircraft i at
time ¢, and zﬁ represents the altitude of aircraft i at time ¢.
When the time step is T = fopsi1, tobs+2, - - - » Ipred» the real
trajectory of aircraft i is denoted as Y; = (f, ¥, 2, and
the predicted trajectory is represented as Y; = (&/, 3}, 20).
x! denotes the predicted longitude of aircraft i at time 7, 3!
represents the predicted latitude of aircraft i at time #, and 2!
represents the predicted altitude of aircraft i at time ¢.

B. TET MODEL ARCHITECTURE

The architecture of TET, as shown in Fig. 1, primarily
consists of position encoding, encoder modules, and decoder
modules. The historical trajectory is encoded with positional
information, incorporating the relative positions between
trajectory points. This encoded information is then fed into
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the encoder, where feature learning takes place, resulting
in intermediate encoding information. The intermediate
encoding information is subsequently passed to the decoder
for decoding. The decoder combines the intermediate encod-
ing information with the position-encoded real trajectory
information and decodes it. Finally, the decoded information
undergoes linear vector projection and softmax probability
transformation operations to generate the predicted trajectory.

1) POSITIONAL ENCODING

Due to the varying number of trajectory points in each trajec-
tory, before inputting the aircraft data X; = (x!, yi,20), 1 =
1,2,...,tps into the network, an embedding operation
is performed to embed the trajectory data. This involves
mapping the trajectory data to a high-dimensional vector
space ed! using an embedding layer.

ed; = ¢(x], ;. zi; Wea) ey

where ¢ (-) represents the linear embedding function, and Wy
denotes the weight parameters of ¢(-) during the embedding
process.

RNN s possess the capability to capture the temporal order
of input data, as the sequence of input data represents
its positional information. Nevertheless, the utilization of
attention mechanisms instead of RNNs may result in a
potential drawback of losing temporal information across
trajectory points. Consequently, the model becomes unable
to comprehend the relative positional information among
trajectory points is compromised. Therefore, it is necessary to
incorporate position encoding in the trajectory embeddings,
forming a new representation en! that is input to the encoding
layer of the model. This enables the model to learn the relative
positional temporal information. The formula for position
encoding is shown in Equation (2), (3) and (4).

t

pe(t, 2¢) = sin(———;) (2)
10000«

pe(r, 2c + 1) = cos (—) 3)
10000«

en’ = ed’ + pe’ 4)

where d represents the dimensionality of the vector pe’ after
position encoding, which is equal to the dimensionality of the
embedded vector edf. 2c¢ and 2c¢ + 1 correspond to the even
and odd columns of the dimension, respectively.

2) ENCODER

The model consists of multiple encoders that share the same
structure. Each encoder consists of multiple components,
including a multi-head self-attention layer, a normaliza-
tion layer, residual connections (Add & Norm), and a
feed-forward fully connected layer. The role of the encoder
layer is to map all input sequences into a vector space that
contains learned information about the entire sequence. The
structure of the encoder can be represented as follows:

e; = EncoderLayer(e;_1),1 € [1, n] 5)
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where EncoderLayer(-) represents an encoder layer, n
denotes the total number of encoder layers, and e; represents
the output of the encoder layer.

The model captures both long-term and short-term depen-
dencies in trajectory data through the attention mechanism.
Since attention weights are not shared, the multi-head
attention mechanism can effectively learn different features
from the training data. It computes the attention weights for
the input and generates an output vector that contains encoded
information on how each trajectory point should attend to
other points in the sequence.

Another important component in the encoder is the Feed
Forward Layer. After performing attention calculations,
a fully connected feed-forward network is applied to the
vector e, at each position. The vector undergoes two linear
transformations, followed by activation functions, and is then
added to the output of the attention mechanism. Finally, the
result is passed through a normalization function.

FFN(e,;,) = Norm(e,, + Dropout(relu(e,;;W1
+b1)W3 + b)) (6)

where Norm(-) represents the normalization function,
Dropout(-) is the dropout function, relu(-) is the activation
function, and W; and W, are weight vectors, while b; and
b, are position offset vectors.

In the attention mechanism module, the output of each time
step has already integrated the information of all time steps,
so in the following fully connected feed-forward network,
each time step is only a further integration of its own
characteristics, independent of other time steps.

The normalization function serves the purpose of con-
straining the feature values within a reasonable range. This
is necessary because as the path length of the model’s input
and output increases, the calculations involved may result
in excessively large or small values, which can hinder the
convergence rate of the model.

3) DECODER

The decoder, similar to the encoder, accepts the real
trajectory as input, following position encoding. RNNs are
commonly used in traditional Seq2Seq models because the
input processing of the model is sequential. This sequential
processing requires the computation at the current time step
to rely on the result from the previous time step. During the
training process, the model is not allowed to perceive the
future data at time step ¢. The data at time step ¢ + 1 can
only be observed after the computation at time step ¢ has been
completed. However, the RNN is replaced by an attention
mechanism in the encoder module, which poses a problem.
During training, the whole real trajectory truth is exposed
to the encoder. To solve this problem, masked multi-head
attention is employed in the decoder. The decoder is trained
by utilizing a fixed length of trajectory data as computation
units and is solely influenced by historical trajectory data,
disregarding any future trajectory data. Therefore, in order to
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prevent any potential interference with the training outcomes,
the subsequent real data is masked using a triangular matrix.

In the multi-head attention module of the encoder, the
query vector Q comes from the previous sub-layer, while the
keys K and values V come from the output of the encoder.
It establishes the relationship between the encoder and the
decoder, and uses the predicted trajectory information from
the decoder as Q to extract relevant information and integrate
it into the current track features extracted by the encoder,
to make predictions.

4) LOSS FUNCTION

The TET model utilizes the L2 loss method as its loss function
to evaluate the magnitude of the error between the real
trajectory Y; and the predicted trajectory Y,. The relevant
formula is as follows:

1 < 5
Losspy = ~n ) (Yi = Y1)’ ™)

i=1

IV. EXPERIMENTS

A. DATASET

The experimental dataset of this study is from the Auto-
matic Dependent Surveillance-Broadcast (ADS-B) system.
Common sources of ADS-B data include the OpenSky
Network [26], ADSB Exchange [27], and ADSBHub [28].
The OpenSky Network constructs a large-scale trajectory
database using real-time data uploaded by volunteers,
aviation enthusiasts, and academic organizations. It provides
researchers with access to the data to enhance airspace
safety, reliability, and efficiency. ADSB Exchange is the
world’s largest unfiltered public source website for flight
data, containing not only civilian aircraft data but also data
from military and certain private aircraft. ADSBHub offers
real-time ADS-B data sharing and exchange services, but data
access is subject to certain restrictions, granting access to
trajectory data for those who contribute data. Considering the
convenience of data acquisition, The experimental data of this
study is from the OpenSky Network.

The ADS-B data presents problems such as missing
and duplicate trajectory points. The data is represented in
timestamps, making it difficult to visually interpret specific
time information, which hampers subsequent processing.
Moreover, the trajectories have varying lengths, with some
containing only a few points, rendering them unsuitable for
subsequent experiments. Furthermore, since the dimensions
of longitude, latitude and altitude are different, the numerical
differences are large, which may cause the model to be unable
to correctly measure the importance of features in the sample,
affecting the accuracy of model training.

To address the aforementioned issues, we preprocess
the trajectory data, including eliminating duplicates and
completing missing data. The fixed time interval between
adjacent trajectory points in each trajectory is 10 seconds.

Two different datasets, Traj-60 and Traj-120, were con-
structed in this study. The Traj-60 dataset consists of
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trajectories with no fewer than 60 points each, while the
Traj-120 dataset consists of trajectories with no fewer than
120 points each. The Traj-60 dataset contains 2000 trajec-
tories, and the Traj-120 dataset contains 4000 trajectories.
In the experiments, the dataset was partitioned into training,
validation, and testing sets following a 7:2:1 ratio. The
training set was utilized for optimizing the trajectory
prediction model’s hyperparameters, while the validation
played a crucial role in monitoring the convergence of the
model during the training process. Subsequently, the testing
set was employed to evaluate the accuracy of the trajectory
predictions generated by the trained model.

B. IMPLEMENTATION AND EVALUATION METRICS

This experiment employed batch training, with each batch
containing 64 data samples. Each data sample consists
of multiple aircraft trajectories. During training, the input
observation length for each trajectory was set to 10, and
the prediction length was set to 60. The model was trained
for 1500 iterations, with a model dimension of 512 and
8 attention mechanism heads. The Adam optimization
function was used. The training and testing of this experiment
were conducted on the Ubuntu 18.04 operating system. The
GPU used was the NVIDIA GeForce RTX 3090, and the
CPU was the Intel(R) Xeon(R) Platinum 8358P CPU @
2.60GHz. The experiment utilized Python (version 3.8) and
the PyTorch deep learning framework (version 1.11.0), with
CUDA (version 11.6).

The evaluation metrics used to assess the accuracy of the
model’s predictions, as described in reference [29], include
the following:

1) Average Displacement Error (ADE): It measures the
average Euclidean distance between each predicted
trajectory coordinate point and the corresponding
ground truth trajectory coordinate point. The calcula-
tion formula is:

I
1 1<
ADE = -3 . > Ip}, — Py, | ®)
i=1 t=1

2) Final Displacement Error (FDE): It represents the
Euclidean distance between the last predicted trajectory
coordinate point and the last ground truth trajectory
coordinate point. The calculation formula is:

1 n
FDE = -3 b, — i, | ©)

i=1
3) Maximum Displacement Error (MDE): It measures the
maximum Euclidean distance difference between all
predicted trajectory coordinate points and the corre-
sponding ground truth trajectory coordinate points. The

calculation formula is:

n

1
MDE = — max |p§p — Py, | (10)
'f
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In equations (8)-(10), # represents the prediction time
length, and pZ and p:/G , represent the predicted and ground
truth positions, respectively, at the final time step #; for the
i-th trajectory.

C. NUMBER OF LAYERS IN ENCODER AND DECODER
Both the encoder and decoder are important components of
the TET model and hold equal importance in the model.
Therefore, the encoder and decoder were configured with an
equal number of layers. To improve the model’s performance
on the dataset, this study tested the number of layers N, for
both the encoder and decoder while keeping other conditions
consistent. The results of the test are presented in Table. 1.
and Fig. 2.

TABLE 1. Prediction errors of different Nx on Traj-60 dataset.

Ny ADE FDE MDE
2 0.021959 0.019042 0.046227
4 0.021638 0.018963 0.045963
6 0.020170 0.018570 0.043912
8 0.022368 0.020937 0.048923
10 0.022570 0.021674 0.049046
0'050 E T T T T T T ’/“ ________ -‘ -
| @ . ___ e ]
0.045 o
0.040 [ ]
5 [ ADE ]
2 0.035 Y- DE
= -® MDE
= 0.030 | ]
0.025 F ]
a R v
000 F Ve "
2 3 4 5 6 7 8 9 10

number of layers N,

FIGURE 2. Prediction errors of different Ny on Traj-60.

From the results in Fig. 2, it can be observed that initially,
as the number of layers N, increases, the ADE, FDE, and
MDE metrics decrease, indicating that increasing the number
of layers in the encoder and decoder can lead to better
model fitting. When Ny is equal to 6, the ADE, FDE, and
MDE values are optimal. If N, continues to increase, the
computational complexity increases, and the performance
metrics show an upward trend, indicating larger errors
between the predicted and ground truth trajectory points.
Therefore, the TET model’s N, is set to 6.

D. RESULTS AND ANALYSIS
To assess the efficacy of the TET model on long-term
trajectories and compare it with other existing aircraft
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TABLE 2. Prediction errors of different models on Traj-120 dataset.

Models ADE FDE MDE
BP 0.543972 0.728848 0.728850
LSTM 0.020885 0.038698 0.039957
GRU 0.032141 0.061959 0.062385
TrajAirNet 0.010171 0.017699 0.019122
TET 0.009340 0.008602 0.021769
006 [/ -F LSTM 1
GRU
TrajAirNet
005 F @ TET ]
5 oo4f I v ]
] e
3 003} P ]
£ .-
002 ¥ ) ]
001 - ¢g— i
ADE FDE MDE

Evalution Metric

FIGURE 3. Prediction errors of different models.

TABLE 3. Time comparison of different models on Traj-120 dataset.

Models Training time/h  Inference time/ms
BP 0.91 0.24
LSTM 1.39 0.69
GRU 1.18 0.14
TrajAirNet 23.61 241
TET 54.18 2.82

prediction methods, the prediction errors were calculated for
all trajectories in the test set. The BP network utilized the
method described in [30] and consisted of a single hidden
layer. The LSTM network employed the method described in
reference [9] with a single layer of 64 neurons in the hidden
layer and a learning rate of 0.001. The GRU network followed
the method described in [16], with the other parameters kept
consistent with LSTM. TrajAirNet [31] served as the bench-
mark method for long-term trajectory prediction. It combined
temporal convolutional networks, graph attention networks,
and conditional variational autoencoders. Weather factors
were not included in this experiment, and the learning rate
was set to 0.001. The Traj-120 dataset was used in this
experiment. The prediction errors obtained by training and
testing the aforementioned models on the Traj-120 dataset are
shown in Table. 2. and Fig. 3.

From the results in the table, it can be observed that
compared to the LSTM and GRU models, the TET model
achieves higher prediction accuracy. This is because the
TET series of neural network models employ attention
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TABLE 4. Comparison of models under different prediction lengths.

Models Metric 70 80 90 100 110 120
ADE 0.015942 0.025451 0.033419 0.022591 0.025451 0.043752
TrajAirNet FDE 0.021831 0.054216 0.062722 0.047959 0.055326 0.095943
MDE 0.027405 0.055326 0.066017 0.048839 0.054216 0.097671
ADE 0.011207 0.012995 0.014838 0.016503 0.018073 0.020413
TET FDE 0.011516 0.015694 0.023404 0.025936 0.032049 0.040755
MDE 0.025910 0.030348 0.034474 0.038443 0.042552 0.048212
mechanisms in.st.ead of RNN types, al.lowing for hQIistic —
learning of position-encoded trajectory information without —+— ground truth

the issue of losing historical information. This results in a
stronger ability to learn features from long time series data.
Compared to the benchmark model TrajAirNet for long-term
trajectory prediction, the TET model performs slightly worse
in the MDE metric, indicating some individual trajectory
prediction points with larger errors. However, it reduces the
ADE and FDE metrics by 8.2% and 51.4%, respectively. This
demonstrates that the proposed TET model better fits the
overall distribution of trajectory data and exhibits robustness
in long-term trajectory prediction.

Examples of trajectory predictions by TET are shown
in Fig. 4. The total number of input trajectory points is
10, and the total number of output trajectory points is
60. Fig. 4(a) and 4(b) depict the comparison between the
predicted and ground truth results for two randomly selected
data trajectories from the Traj-120 test dataset. In the early
stages, Fig. 4(a) exhibit good prediction performance, but
deviations can be observed in the later predictions. Fig. 4(b)
captures the overall trend of the trajectory, but there are
still some discrepancies in the later predictions. Overall,
the proposed model can capture the data distribution for
simple trajectory variations. However, as the time steps
increase, the deviation between the predicted and ground
truth trajectories gradually increases, indicating that there is
still room for improvement in long-term trajectory prediction
for the model.

To test the practicality of the TET model, this study
conducted experiments to compare the time consumption of
different trajectory prediction models on the Traj-120 dataset.
The observation length was set to 10, and the prediction
length was set to 60. The training time refers to the duration
of model iteration training, while the prediction time refers
to the average time taken to compute predictions for a set
of test data after loading the model. The time comparison
results for different trajectory prediction models are presented
in Table. 3.

From the results in the table, it can be observed that
the BP model requires the least training and prediction
times compared to the other models. This is because the
BP model has fewer parameters and a simpler network
structure. Following the BP model, the LSTM and GRU
models have similar training and prediction times. However,
the GRU model demonstrates slightly shorter times compared
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FIGURE 4. Example graph predicted by the TET model(The red line, green
line and blue line indicate the observed trajectory points, the real
trajectory points and the predicted trajectory points respectively).

to LSTM due to its simpler network structure. In comparison
to TrajAirNet, the training time for TET is longer. This is
due to the larger number of computational parameters in
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FIGURE 5. Prediction errors of the model under different prediction
lengths.

TET and the longer path length from input to output for the
same set of data. The prediction times for both models are
similar and fall within a reasonable range. Overall, the TET
model ensures efficient prediction, meeting the requirements
of practical engineering applications.

Furthermore, this study conducted experiments to compare
the model accuracy of TrajAirNet and TET at different
prediction lengths. Different prediction lengths were set
during model training, while other conditions remained
consistent. The observation length was fixed at 10, and the
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minimum prediction length was set to 60, while the maximum
prediction length was set to 120. The prediction length was
increased by 10 units each time, and the performance metrics
of the models were evaluated on the test set. The experimental
results are presented in Table. 4, and a visualization of the
experimental results is shown in Fig. 5.

From the experimental results, it can be observed that
the TET model achieves higher prediction accuracy com-
pared to the LSTM and GRU models. The TET series
of neural network models employ attention mechanisms
instead of RNN types. This allows for holistic learning
of position-encoded trajectory information without the
problem of losing historical information. This results in
a stronger ability to learn features from long time series
data. Compared to the benchmark model TrajAirNet for
long-term trajectory prediction, the TET model performs
slightly worse in the MDE metric, indicating that there
are some individual trajectory prediction points with larger
errors. However, it reduces the ADE and FDE metrics by
8.2% and 51.4%, respectively. This demonstrates that the
proposed TET model better fits the overall distribution of
trajectory data and exhibits robustness in long-term trajectory
prediction.

V. CONCLUSION

Aiming at the problems of memory loss and gradient
vanishing that occur in RNN-based models when dealing
with long time series data. This paper propose a Transformer-
based long-term trajectory prediction model named TET.
Through experimental comparisons and performance evalua-
tions, we validate the accuracy, effectiveness, and practical
applicability of TET. Compared to the benchmark method
TrajAirNet, the TET model demonstrates higher accuracy and
robustness for longer prediction lengths. However, due to the
large number of model parameters, TET has a drawback on
training time. Therefore, future work will focus on optimizing
the trajectory prediction model to reduce training time and
improve training efficiency.
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