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ABSTRACT The accurate detection of honey adulteration is paramount for maintaining the quality and
authenticity of honey products. In this study, we introduce a novel feature selection method, termed
Optimal Subspace Wavelength Reduction (OSWR), and integrate it with reflectance Visible-Near Infrared
(Vis-NIR) spectroscopy to enhance the discrimination between pure and adulterated honey and predict
adulteration levels. OSWR efficiently addresses the dimensionality challenge of large spectral datasets,
reducing 2151 wavelengths to a compact and informative set of 39 wavelengths. We comprehensively
evaluate machine learning (ML) models, focusing on OSWR as a pivotal component of our methodology.
Our results reveal remarkable success in discriminating among pure honey, adulterated honey, and sugar
syrup, with an impressive classification accuracy of 96.67% achieved using OSWR, coupled with Standard
Normal Variate (SNV) preprocessing, Linear Discriminant Analysis (LDA) feature extraction, and K-Nearest
Neighbors (KNN) classification. Furthermore, this study demonstrates the effectiveness of OSWR for
predicting adulteration levels, where it achieves an accuracy of as high as 92.67% when coupled with SNV,
LDA, and KNN. This work highlights the potential of OSWR as a feature selection method in the context
of honey adulteration detection. Through the integration of Vis-NIR spectroscopy and OSWR, our approach
offers a tool for enhancing honey products’ quality and authenticity assessment, potentially simplifying
spectral data analysis.

INDEX TERMS Chemometric analysis, feature selection, honey adulteration, machine learning, optimal
subspace wavelength reduction, Vis-NIR spectroscopy.

I. INTRODUCTION

Honey, renowned for its nutritional and therapeutic attributes,
has garnered global attention as a natural sweetening agent
with remarkable health benefits [1], [2]. Its economic sig-
nificance is evident, with an annual production exceeding
1.2 million tons [3]. The nutritional and economic value of
honey arises from its intricate composition, encompassing
saccharides, aqueous content, proteins, organic acids, vita-
mins, minerals, chromatic constituents, phenolic and volatile
compounds, alongside specific particulate matter [4], [S].
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Regulations imposed by the European Union emphasize
the prohibition of adding or removing constituents from
honey, rendering adulteration unlawful [6]. Adulteration
involves incorporating substandard honey and synthetic arti-
ficial sugars [7]. Due to its distinct health benefits, sensory
attributes, and aromatic complexities, honey is more expen-
sive than alternative sweeteners. Consequently, this has led to
the susceptibility of honey to adulteration practices aimed at
reducing production costs and increasing profits [8], [9], [10].

Methods of honey adulteration encompass feeding bees
starch and inverted syrup, adding sugars like high fructose,
glucose, and sucrose syrups, and blending inferior honey with
premium varieties [9], [11]. Adulteration is a widespread
concern across various stages of honey production and

© 2023 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

144226

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

VOLUME 11, 2023


https://orcid.org/0000-0003-2603-3831
https://orcid.org/0000-0002-1257-2300
https://orcid.org/0000-0002-9504-2275

M. Al-Awadhi, R. Deshmukh: Enhancing Honey Adulteration Detection

IEEE Access

processing. The challenge is exacerbated by the resemblance
between fake and pure honey, hampering detection [12]. Con-
ventional quality assessment methods, such as physicochem-
ical analyses, exhibit limitations in accurately identifying
adulteration [13], [14], [15], [16]. Consequently, the need for
innovative methodologies in honey quality control is evident.

In response, diverse analytical techniques, including chro-
matography [17], [18] and biosensors [19], [20], [21]. have
been proposed for detecting honey adulteration. However,
these methods are expensive, time-consuming, and poten-
tially destructive [22]. Leveraging Visible-Near Infrared
(Vis-NIR) spectroscopy alongside machine learning (ML)
algorithms has demonstrated rapid detection of adulteration
in honey from single botanical sources [7], [23], [24], [25],
[26], and two botanical sources [27]. However, the applica-
tion of this technology to detect adulteration across several
honey types remains unexplored.

Numerous studies have explored the utility of ML algo-
rithms in detecting honey adulteration. However, the major-
ity of these investigations have predominantly relied on
absorbance/transmittance Vis-NIR spectroscopy [7], [23],
[24], [25], [26], [27]. A comparatively limited body of work
has delved into reflectance Vis-NIR spectroscopy, with only
a few notable studies contributing to this branch of research
[28], [29]. Consequently, the present study seeks to fill this
research gap by focusing on the applicability of reflectance
Vis-NIR spectroscopy for detecting adulterated honey and
predicting adulteration levels.

Employing a subset of discriminative wavelengths could
streamline computation and facilitate the design of cost-
effective spectrometers. However, few studies [7], [25]
employed feature selection techniques to identify pivotal
wavelengths for honey adulteration detection. This paper
introduces a novel feature selection approach to identify cru-
cial wavelengths for effective honey adulteration detection
and adulteration level prediction. Additionally, ML models
are developed for multi-type honey adulteration detection
using the selected wavelengths. The key contributions of this
study include:

1) Creation of a Vis-NIR reflectance spectral dataset for
genuine and adulterated honey across various types.
Adulterated samples were prepared by mixing pure
honey with different concentrations of three artificial
sugar syrups.

2) Introduction of a novel feature selection (FS) method,
termed Optimal Subspace Wavelength Reduction
(OSWR), to identify critical wavelengths in the Vis-
NIR spectral region. The proposed method enhanced the
accuracy and speed of ML models for honey adulteration
detection and adulteration level prediction. Furthermore,
the proposed FS approach enables the development
of cost-effective spectrometers for capturing honey
spectra.

3) Development of ML models for detecting adulteration
with various sugar syrups and predicting adulteration
levels across multiple honey types. Model performance
was assessed using Leave-One-Out Cross-Validation
(LOOCYV).

VOLUME 11, 2023

The subsequent sections of this paper are organized as
follows: Section II outlines the materials and methods used in
this study. Experimental results and findings are presented in
Section III. A discussion of the results is given in Section I'V.
Conclusions and recommendations for future work are pro-
vided in Section V.

Il. MATERIALS AND METHODS

This section investigates the viability of integrating Vis-
NIR spectroscopy with ML techniques for detecting adulter-
ation involving diverse artificial sugars across multiple honey
types. Additionally, a pioneering feature selection method is
introduced to facilitate the creation of an economical Vis-NIR
spectrometer for recording honey spectra. This method aims
to identify pivotal spectral wavelengths within the Vis-NIR
spectral range, crucial for both honey adulteration detection
and determination of adulteration levels. Fig. 1 provides
an illustrative block diagram showcasing the methodologies
employed in this study.

A. HONEY AND SUGAR SAMPLES

Our study involved a carefully composed sample set total-
ing 150 samples, designed to encompass a broad range of
honey adulteration scenarios. This meticulously structured
dataset covers various honey varieties, including nine dis-
tinct monofloral botanical sources (Apple, Eucalyptus, Sulai,
Ajwain, Litchi, Acacia, Sidr, Jamun, Sulai) and one multiflo-
ral honey type. These botanical variations comprehensively
represent the floral diversity found in natural honey.

To simulate diverse adulteration scenarios, the sample set
includes three types of sugar syrups: glucose syrup, invert
syrup, and sucrose syrup. The samples span five adulteration
levels, ranging from 0% (pure, unadulterated honey) to 100%
(fully adulterated with sugar syrup).

The 150 samples (10 botanical sources x 3 sugar
syrups X 5 adulteration levels = 150) were thoughtfully
designed to ensure a comprehensive exploration of honey
authenticity and quality assessment. They include 30 pure
honey samples, 90 adulterated honey samples, and 30 sugar
syrup samples. For internal consistency, each of the ten honey
botanical sources has three replicates from the same source in
the pure honey category. Three sets of 30 adulterated honey
samples (10%, 25%, 50%) were prepared. Each sample in
the adulterated honey class reflects a unique combination of
a specific honey botanical source and one of the three sugar
syrups. The sugar syrup group includes ten replicates for each
type (glucose syrup, invert syrup, sucrose syrup), allowing for
a detailed examination of the distinct spectral characteristics
of each sugar syrup type. This carefully designed sample
set serves as a fundamental element of our study, offering a
realistic depiction of honey diversity and enabling a thorough
analysis of authenticity and quality assessment across various
honey types and adulteration levels.

B. Vis-NIR SPECTRA ACQUISITION AND DATASET
DESCRIPTION

The acquisition of reflectance spectra, a pivotal element of
this study, was facilitated by a FieldSpec 4 spectroradiometer,
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FIGURE 1. Block diagram of the honey adulteration detection method proposed in this study.

an instrument crafted by Analytical Spectral Devices (ASD),
Inc., USA (now known as Malvern Panalytical Ltd, Malvern,
UK) [30]. The spectroradiometer harnesses graded-index
InGaAs photodiode Short-Wave Infrared (SWIR) detectors to
capture spectral signatures. Encompassing a broad spectral
gamut from 350 nm to 2500 nm, it effectively envelops the
Vis-NIR (350 nm to 1000 nm) and the SWIR (1001 nm to
2500 nm) spectral regions. The spectrometer offers resolu-
tions of 3 nm and 8 nm in the Vis-NIR and SWIR domains,
respectively. [llumination for spectroscopic data collection is
provided by a 75-watt quartz-tungsten-halogen lamp, with
the RS3 ASD software managing the acquisition process to
generate Vis-NIR spectra for the honey samples.

The acquisition of the honey samples’ reflectance spectra
occurred in a dark room designed to minimize external inter-
ference, as depicted in Fig. 2, emphasizing the importance
of data integrity. Each honey sample underwent 40 individ-
ual scans to reduce the impact of random fluctuations, and
these scans were averaged into a single spectral instance
representing the sample’s reflective characteristics. To facili-
tate data manipulation and interpretation, the spectrometer’s
binary ASD files were transformed into a more accessi-
ble Comma-Separated Values (CSV) file format using an
asdreader Python script [31].

Diversity in the dataset was achieved by adding various
labels to the dataset. These labels, such as sample number,
botanical source, sugar adulterant, adulteration level, and
type, allowed for a comprehensive examination of the spectra.
The sample number served as a distinct identifier, ranging
from 1 to 150. The botanical source attribute categorized
each sample according to its unique floral context among
ten different sources. The sugar adulterant attribute indicated
the three different sugar syrups used for adulteration. The
adulteration level attribute classified samples into five distinct
levels, enabling a detailed analysis of the extent of adulter-
ation. Finally, the type attribute categorized each sample as
pure honey, adulterated honey, or a sugar syrup specimen.
These thoughtfully assigned labels enhanced the dataset’s
versatility, enabling a comprehensive exploration of honey
samples from various angles.
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C. PREPROCESSING WITH STANDARD NORMAL VARIATE
The Standard Normal Variate (SNV) normalization tech-
nique was developed in response to the challenges posed
by spectral perturbations. SNV normalization is designed to
mitigate the multiplicative effects of scattering-induced shifts
and address variations in global signal intensities, thereby
enhancing spectral consistency [32]. The SNV procedure
involves a mathematical transformation applied to each data
point in the spectrum. Specifically, it subtracts each data point
from the spectrum’s mean to isolate it from local influences.
Subsequently, the result is divided by the spectrum’s standard
deviation, ensuring normalization and alignment with the
broader spectral context. This process is briefly represented
by Equation (1).

SNV (xm,n - )_Cm) 1)

m,n B
a1 (o —%m)
N—1
where xSNV

mn 18 the element of the transformed spectrum and
Xm,n 1 the corresponding original element of the spectrum
m at variable n, X, is the mean of spectrum m, and N is the
number of wavelengths in the spectrum.

D. DIMENSIONALITY REDUCTION
1) FEATURE SELECTION
Feature selection, a crucial technique for dimensionality
reduction, involves ranking features based on their signifi-
cance [33]. This approach confers several notable advantages,
encompassing reductions in both classification time and
model complexity, improvement in classifier precision, and
mitigation of overfitting concerns [34]. Within the domain
of spectral data analysis, feature selection assumes an addi-
tional important role by enabling the identification of salient
wavelengths. This capability further supports the design of
cost-effective spectrometers tailored for the precise capture
of spectra at specific wavelengths.

In this study, we propose an innovative feature selection
method calibrated to identify the most discriminating wave-
lengths germane to detecting honey adulteration. To ascertain
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FIGURE 2. The experimental setup used in this study to acquire the reflectance Vis-NIR spectra of the honey and sugar samples. (1) Honey sample,
(2) Sensor lens, (3) Optic fiber probe, (4) ASD Spectroradiometer, (5) Laptop.

the efficacy of our proposition, we undertake a comparative
analysis involving four commonly employed feature selection
methodologies. These encompass the Chi-square method, the
SelectFromModel (SFM) approach, the Recursive Feature
Elimination (RFE) procedure, and the Wavelength Reduction
(WR) technique.

The Chi-square methodology is firmly rooted in statis-
tical testing, leveraging the statistical significance of the
relationship between attributes and the target variable to
discern prominent features. Chi-square values are computed
to encapsulate the degree of correlation between attributes
and target variables, and those features achieving the highest
scores are chosen for selection [34]. This approach treats each
feature as an independent entity, effectively isolating them
from the broader contextual domain. Importantly, it operates
as a filter-based procedure dissociated from any particular
classifier.

In contrast, the Select-From-Model (SFM) technique is
distinguished by its model-centric approach to feature selec-
tion [35]. In this methodology, features are chosen based
on their significance as assessed by the classifier’s feature
attribute. The underlying principle involves identifying fea-
tures that do not meet a pre-defined relevance threshold,
deeming them uninformative, and removing them from the
feature set. This framework uses two well-established ML
models: Support Vector Machines (SVM) and Random Forest
(RF). During this iterative process, selecting an optimal fea-
ture subset is guided by assessing the classification accuracy
obtained through a 10-fold cross-validation procedure.

Parallel to these methodologies, the Recursive Feature
Elimination (RFE) mechanism implements a sequential fea-
ture selection protocol. It commences by initially ranking
features based on their internal coefficients or significance
within a model. Subsequently, the RFE iteratively excludes
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less influential attributes. This iterative process alleviates
model collinearity issues by systematically eliminating spe-
cific characteristics [36]. Like the SFM technique, RFE
interfaces with two external estimators, RF and SVM. The
determination of the optimal feature ensemble is guided by
evaluating classification accuracy through a 10-fold cross-
validation methodology.

The Wavelength Reduction (WR) technique provides a
straightforward yet efficacious approach to reducing data
dimensionality [37], [38]. This method coordinates a sys-
tematic reduction in wavelengths, guided by a predetermined
wavelength reduction rate (WRR). The accuracy of ML mod-
els is assessed using progressively truncated sets of wave-
lengths, ultimately leading to the selection of the wavelengths
that result in the highest predictive accuracy. While WR is
easily implementable, it is important to note that this tech-
nique does not provide a quantifiable scoring mechanism for
the selected features.

The feature selection method introduced in this study, Opti-
mal Subspace Wavelength Reduction (OSWR), is designed to
enhance the effectiveness of ML models in detecting honey
adulteration while dealing with a wide spectral range of data,
specifically, the 2151 spectral bands spanning from 350 to
2500 nm. Notably, not all these spectral wavelengths are
equally informative or discriminative for detecting honey
adulteration, which prompted the development of OSWR.
The OSWR method, visualized in Fig. 3, is a two-phase
process:

a: OPTIMAL SUBSPACE DETERMINATION (PHASE 1)

This phase aims to identify the most effective spectral band
interval within the Vis-NIR region (350-2500 nm). This inter-
val contains the wavelengths that offer the highest utility
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Optimal Subspace Wavelength Reduction (OSWR)

Phase 1

____________________________________________
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FIGURE 3. Optimal subspace wavelength reduction feature selection method proposed in this study.

for maximizing an ML model (e.g. KNN) performance in

honey adulteration detection. This process unfolds in several

steps:

1. The entire spectral range from 350-2500 nm is randomly
divided into multiple subspaces with different starting
wavelengths and lengths.

2. The performance of the KNN model in detecting honey
adulteration is evaluated within these subspaces.

3. The subspace that yields the best KNN performance, thus
being the optimal subspace, is selected.

b: WAVELENGTH REDUCTION (PHASE 2)
This phase addresses the high correlation often observed
among adjacent Vis-NIR wavelengths. The main objective is

144230

eliminating these correlated wavelengths while retaining the
uncorrelated, discriminative ones. The wavelength reduction
technique applied in this phase is straightforward and consists
of the following steps:
1. Multiple Wavelength Reduction Rates (WRRs) are
defined.
2. For each WRR, the following steps are performed:

a. A reduction of the number of wavelengths in the opti-
mal subspace, as determined in Phase 1, is carried out
based on the specific WRR.

b. The performance of the KNN model in detecting honey
adulteration is assessed using the reduced set.

3. The reduced wavelength set that attains the highest
KNN performance is selected as the optimal choice.
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M. Al-Awadhi, R. Deshmukh: Enhancing Honey Adulteration Detection

IEEE Access

In summary, OSWR is a structured method that optimizes the
spectral wavelength selection process, resulting in a reduced
yet highly informative subset of wavelengths for accurately
detecting honey adulteration by ML models. This approach
ensures that the analysis is not burdened with redundant or
irrelevant spectral data, ultimately improving the efficiency
and accuracy of the detection process.

2) FEATURE EXTRACTION

Feature extraction is fundamental in dimensionality
reduction, transforming an initial raw dataset into more
manageable groups for subsequent analysis [39]. Its signif-
icance becomes particularly pronounced when dealing with
extensive datasets characterized by many variables, which
often necessitate substantial computational resources [40].
The core purpose of feature extraction lies in its capacity
to alleviate the computational burden by reducing the data
volume while retaining essential and pertinent information
[40]. Additionally, feature extraction can help minimize the
amount of duplicated data, which is especially valuable for
specific research inquiries [40]. Furthermore, data reduc-
tion accelerates ML algorithms’ learning and generalization
phases [41].

Within the scope of this study, the application of feature
extraction takes on a particular significance. Two distinct
methodologies, Principal Component Analysis (PCA) and
Linear Discriminant Analysis (LDA), were employed to elu-
cidate common patterns within the dataset. These methods
served as tools to discern the inherent attributes that effec-
tively discriminate between different classes [42]. PCA is a
transformative technique that restructures data into a space
characterized by orthogonal axes or principal components,
capturing the most significant variance present in the dataset.
This reconfiguration enables the identification of salient fea-
tures that encapsulate the predominant patterns within the
data.

Additionally, LDA complements the analytical process by
introducing a classification-centric perspective. LDA seeks
to identify discriminative characteristics that enhance class
differentiation by maximizing inter-class variance while min-
imizing intra-class variance [43]. It is essential to highlight
the distinction that while PCA primarily focuses on retain-
ing variance, LDA is specifically designed to facilitate the
creation of features optimized for discrimination between
classes.

Utilizing PCA and LDA feature extraction methodologies,
this study positions itself within a streamlined analytical
framework characterized by a judicious and well-informed
reduction in the dimensionality of the dataset. This approach
offers several advantages, including enhanced computational
efficiency and an improved ability to disentangle and iden-
tify information crucial for detecting honey adulteration and
predicting adulteration levels.

E. CLASSIFICATION
This phase of the study encompasses a rigorous assessment
of the efficacy of four widely utilized ML classification
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algorithms: K-Nearest Neighbors (KNN), Support Vector
Machine (SVM), Decision Tree (DT), and Naive Bayes (NB).
The chosen classifiers span divergent classification categories
and have exhibited robust performance in prior investigations
[24], [44]. The implementation of these algorithms was car-
ried out through the utilization of the Scikit-Learn Python
library [45].

KNN constitutes an instance-based non-parametric learn-
ing paradigm, engendering classification based on the
attributes of its K nearest neighbors [46]. The selection of K
markedly influences the performance of the KNN classifier,
as smaller K values can engender overfitting while larger K
values render the model more susceptible to noise. Determin-
ing the optimal K value involved the experimentation with
a range of 20 values (ranging from 1 to 20). A precedent
study has effectively harnessed KNN for identifying honey
adulteration via Hyperspectral Imaging data [44].

The application of SVM, a supervised ML method,
assumes delineating decision boundaries or hyperplanes in
high-dimensional space to partition data into distinct classes
before classification [47]. SVM employs pivotal data points
or vectors to delineate these decision bounds, transform-
ing nonlinear decision boundaries into linear equivalents by
incorporating kernel functions. Within this investigation, lin-
ear and Radial Basis Function (RBF) kernels were employed,
with the latter being substantiated in prior research as out-
performing other kernels [48]. The RBF kernel encompasses
two pivotal tuning parameters, namely cost, and gamma, with
their manipulation potentially affecting classification perfor-
mance [49]. The exploration of cost and gamma encompassed
values of 0.001, 0.01, 0.1, 1, 10, 100, and 1000. SVM has
demonstrated commendable proficiency in identifying adul-
teration in honey through non-imaging Vis-NIR data [24] and
imaging Vis-NIR data [44].

DT, a classification approach, organizes instances predi-
cated on arranging their feature values [46]. Each node within
a decision tree represents a feature characterizing a classifi-
able instance, while branches indicate potential values for the
node. The root node initiates the categorization process by
espousing the feature that optimally divides the training data.
A diverse array of techniques, encompassing information
gain and the Gini index, may be employed to discern the
most productive feature for data division. Their simplicity of
interpretation and implementation characterizes DTs.

The NB approach entails the deployment of basic Bayesian
networks constructed from directed acyclic graphs with one
parent (unobserved node) and numerous children (observed
nodes) [46]. Central to NB classifiers is the strong assumption
of independence among child nodes concerning their parent.
Notably, the computational training time of the NB classifier
is expedited by its model structure, which may be translated
from a product form into a sum through logarithmic transfor-
mation, engendering computational efficiency.

It is important to highlight that all computational pro-
cesses encompassing preprocessing, feature selection, fea-
ture extraction, and classification were conducted through
the Anaconda data science platform, employing Python
version 3.8.8.
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F. PERFORMANCE EVALUATION

The comprehensive evaluation of the ML classifiers’ efficacy
in detecting honey adulteration and predicting the extent
of adulteration was accomplished by using the LOOCV
technique. This assessment strategy entails partitioning the
dataset into individual samples, iteratively employing one
sample for testing and the remaining samples for training. The
overall classification accuracy, indicative of the proportion of
accurately classified instances, was adopted as the primary
performance metric. Notably, the LOOCV method mirrors
traditional cross-validation with the number of folds equaling
the total sample count, ensuring an accurate and robust testing
procedure.

Furthermore, confusion matrices were employed to scru-
tinize the ML models’ performance in discerning each level
of adulteration. These matrices concisely depict the model’s
classification outcomes, facilitating a nuanced analysis of
true positive, true negative, false positive, and false negative
instances. This evaluation endeavor affords insights into the
discriminative capacity of the models across varying degrees
of adulteration.

In addition to evaluating the above methodologies, the
paired t-test statistic was harnessed to gauge the extent of
significant differences among the classification outcomes of
the four classifiers [50]. This statistical technique allows for
a robust determination of whether the discrepancies in classi-
fication results among the classifiers are statistically signifi-
cant, shedding light on the divergence in their performance.

The assessment of the ML models was conducted across
multiple datasets, encompassing raw data, preprocessed data,
features reduced through feature selection methods, features
reduced via feature extraction methods, and features reduced
through feature selection followed by feature extraction. This
comprehensive analysis provides a holistic understanding of
the impact of different data manipulation strategies on the
models’ classification performance.

IIl. RESULTS

This section presents the results of the experiments on dis-
criminating between pure and fake honey and predicting
adulteration levels.

A. Vis-NIR REFLECTANCE SPECTRA

The Vis-NIR reflectance spectra, obtained using a spectro-
radiometer, serve as a foundational basis for deciphering the
complex spectral patterns linked to a range of adulteration
levels. Fig. 4 (a) presents the averaged reflectance spectra for
honey samples, categorized according to varying degrees of
impurity, covering a broad wavelength spectrum from 350 nm
to 2500 nm. Notably, spectral variations become apparent
within the wavelength range below 1500 nm.

Fig. 4 (b) provides a detailed representation of spec-
tral complexities within the Vis-NIR range (350 nm to
1000 nm). Notably, clear and distinct spectral patterns
emerge for sugar samples, making them easily distinguish-
able from honey samples. A discernible trend becomes appar-
ent, wherein increasing degrees of adulteration correspond to
higher reflectance levels, while unadulterated honey exhibits
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the lowest reflectance. Remarkably, the wavelength around
850 nm stands out as the peak reflectance point for the honey
samples.

Exploration of the Short-Wave Infrared (SWIR) spectral
domain, ranging from 1001 nm to 1800 nm, is presented
in Fig. 4 (c), revealing two prominent peaks at 1100 nm
and 1300 nm. This spectral range is a critical discriminator,
highlighting the divergent reflective behaviors of sugar and
honey samples, with sugar demonstrating lower reflectance.
Reflection spectra show little reflection in the 1400-1800 nm
area because honey’s molecular components absorb light
strongly. Absorption bands linked with overtone and com-
bination vibrations of chemical bonds make it sensitive to
honey’s chemical makeup in this wavelength range. Water,
a significant component of honey, has strong near-infrared
absorption bands, which may explain the low reflectivity.
Natural sugars like glucose and fructose in honey have
NIR absorption properties. Therefore, their quantities and
compositions might affect reflectance in this range. Honey
contains proteins, amino acids, and minerals, which may
affect its spectral behavior. To fully interpret these spectrum
features and comprehend the molecular qualities that cause
this phenomenon, in-depth spectroscopic investigations and
chemical component identification are needed, frequently
using chemometric approaches and reference standards.

Further examination within the SWIR 2 spectral region,
from 1801 nm to 2500 nm and illustrated in Fig. 4 (d),
emphasizes a significant peak centered at 1850 nm. Sugar
samples consistently exhibit lower reflectivity than honey
samples across this specific spectral range.

In Fig. 4 (e), we present the mean spectra and standard
deviations of pure honey and sugar syrup samples. These
spectra offer insight into the inherent variations present
within these sample categories. Notably, the variations in the
spectra of pure honey are indicative of the diverse honey
botanical sources, highlighting the influence of these sources
on the spectral signatures. Similarly, the spectra of sugar
syrup exhibit variations, underscoring the distinct spectral
profiles associated with different sugar types used in the
adulteration process.

Despite the variations observed within each class, whether
in pure honey or sugar syrup, the discernible disparities
between the spectral characteristics of pure honey and sugar
syrup remain evident. These distinctions validate the efficacy
of the Vis-NIR spectroscopy method in effectively distin-
guishing between these two fundamental categories.

A recurring pattern becomes evident, where increased
reflectance profiles are inversely correlated with diminish-
ing levels of adulteration, except in the case of pure honey
samples. This reflectivity pattern underscores the potential
importance of spectral signatures as distinguishing markers
in detecting honey adulteration.

B. DISCRIMINATION BETWEEN PURE AND ADULTERATED
HONEY
1) OVERALL ML MODEL PERFORMANCE

This section assesses the effectiveness of various ML models
in distinguishing between unadulterated honey, adulterated
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FIGURE 4. The reflectance spectral data of the honey samples averaged according to the adulteration level: (a) Full spectra, (b) Spectra in the Vis-NIR
region (350nm-1000nm), (c) Spectra in the SWIR 1 region (1001nm-1800nm), (d) Spectra in the SWIR 2 region ((1801nm-2500nm), and (e) Mean spectra

+ standard deviation of pure honey and sugar syrup.

honey, and sugar syrup samples. The classification perfor-
mances of these models are detailed in Table 1, which
presents their accuracy in detecting honey adulteration across
various scenarios, including using the full wavelength spec-
trum and different feature selection and extraction techniques
without data preprocessing. Notably, the SVM model stands
out with the highest accuracy of 77.33% when utilizing the
complete wavelength spectrum and 80% when utilizing a
reduced feature set obtained through PCA. In contrast, the DT
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model achieves its highest accuracy of 86% through feature
reduction facilitated by LDA.

The eighth row of Table 1 holds particular significance,
highlighting the effectiveness of the proposed feature selec-
tion method when coupled with feature extraction based on
LDA. This hybrid approach produces the most promising
results, with the SVM achieving the highest classification
accuracy of 89.33%. Furthermore, an accuracy rate of 85.33%
is observed when combining WR for feature selection, LDA
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TABLE 1. Classification accuracy of the ML models for discriminating between
(39 features), and feature extraction methods.

genuine and fake honey using full wavelengths, feature selection methods

Feature Feature Extraction Method
PP*  Selection - PCA LDA
Method KNN SVM DT NB KNN SVM DT NB KNN SVM DT NB
- 7067 7733 7133 61.33 69.33 80.00 69.33 7733 82.67 84.67 86.00 8133
» Chi-Square 69.33 80.00 76.00 63.33 69.33 80.00 72.00 72.67 70.00 7867 66.67 72.00
SFM-RF 6733 80.00 7133 64.67 70.00 80.00 74.00 67.33 73.33 76.00 7133 74.67
% SFM-SVM 68.00 80.00 74.00 65.33 69.33 80.00 7133 6733 68.00 80.00 74.00 7133
%~ RFE-RF 7133 80.00 70.00 64.00 67.33 80.00 7467 7733 84.00 84.00 83.33 8533
é RFE-SVM 7133 80.00 7267 67.33 7267 80.00 68.67 70.67 78.00 82.67 7867 78.67
= WR 70.00 80.00 68.00 62.67 68.67 80.00 70.00 78.00 82.67 85.33 82.00 8533
OSWR 46.67 60.00 4733 4533 46.67 60.00 4133 58.00 86.67 8933 84.00 8533
_ 7133 9333 76.00 66.00 74.00 80.00 76.00 7133 83.33 83.33 82.67 86.67
Chi-Square 70.67 80.00 72.00 68.00 71.33 80.00 7267 7133 79.33 80.00 74.00 7333
SFM-RF 7067 80.00 7067 68.67 67.33 80.00 74.00 67.33 76.00 79.33 7867 8133
SFM-SVM 66.67 80.00 7267 68.67 66.00 80.00 72.00 6733 73.33 80.00 76.67 74.00
% RFE-RF 73.33 79.33 72.00 69.33 82.00 80.00 78.00 65.33 82.00 81.33 7867 8133
RFE-SVM 80.67 76.00 76.00 68.67 75.33 80.00 7467 70.00 82.00 87.33 76.67 8533
WR 7267 79.33 76.00 66.67 68.00 80.00 7467 72.00 88.00 87.33 80.67 84.00
OSWR 7533 79.33 80.00 68.00 7133 80.00 72.00 76.00 96.67 95.33 95.33 92.00

* PP = Preprocessing Method

TABLE 2. Classification accuracy of the ML models for predicting honey adulteration level using full wavelengths, feature selection methods

(39 features), and feature extraction methods.

Feature Selection Feature Extraction Method
PP? Method - PCA LDA
KNN SVM DT NB KNN SVM DT NB KNN SVM DT NB
- 44.67 54.67 4933 4533 48.00 42.00 50.00 40.67 64.67 68.00 6733 66.67
o Chi-Square 46.67 56.67 46.00 56.00 46.00 56.00 4733 56.00 4867 50.00 46.00 54.67
2 SEM-RF 50.67 58.67 5267 5533 48.00 5733 4533 54.00 5733 61.33 48.67 5733
% SFM-SVM 53.33 5733 4533 56.00 52.00 5733 52.00 5333 4933 5267 4733 50.00
g RFE-RF 5267 48.00 5267 5333 5133 54.67 52.00 5333 61.33 65.33 63.33 63.33
é RFE-SVM 5467 48.00 54.67 58.00 58.67 4933 56.00 50.67 64.67 68.67 63.33 69.33
= WR 44.00 38.00 4267 4533 4867 39.33 51.33 38.67 6733 68.00 66.67 68.67
OSWR 28.00 18.00 3267 24.67 22.00 1533 2267 16.00 80.00 76.67 7533 80.67
- 5533 7133 5733 3733 5533 50.00 58.00 3533 70.67 70.67 66.67 73.33
Chi-Square 50.67 59.33 4933 58.67 4933 58.00 50.00 56.67 46.67 50.67 44.67 5133
SEM-RF 4933 5733 50.00 58.00 50.00 59.33 48.67 52.00 54.67 56.67 59.33 5733
SEM-SVM 53.33 60.67 50.67 5533 54.00 60.67 54.00 52.00 52.00 5533 56.00 55.33
% RFE-RF 56.67 5333 58.67 56.00 60.67 58.00 60.67 5267 58.67 62.67 60.00 62.00
RFE-SVM 60.00 52.00 62.67 54.00 5533 5333 60.67 48.67 69.33 74.67 64.00 7333
WR 5533 5333 5333 3733 54.00 4933 51.33 36.00 7133 7133 69.33 7533
OSWR 53.33 4533 52,67 36.67 4333 40.00 48.00 34.00 92,67 88.67 86.67 90.67

# PP = Preprocessing Method

for feature extraction, and employing both SVM and NB for
classification.

After applying SNV preprocessing to the data, as out-
lined in Table 1, notable enhancements in classification
accuracies become evident across a range of ML models.
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Of particular note is the substantial improvement in the
performance of the SVM, which increases from 77.33%
to 93.33% when utilizing the entire wavelength spectrum.
A particularly noteworthy achievement is observed with the
comprehensive approach incorporating SNV preprocessing,
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the proposed feature selection method (OSWR), LDA-based
feature extraction, and KNN classification, resulting in an
impressive classification accuracy of 96.67%.

To assess the variation in classification performance
among the ML models, we conducted statistical paired t-tests.
The findings indicate a significant difference in performance
between KNN, SVM, DT, and NB. No statistically significant
distinction is observed among SVM, DT, and NB in classifi-
cation accuracies.

Table 3 presents an overview of the classification accu-
racies achieved by KNN, SVM, DT, and NB under various
selections of wavelengths. These selections are characterized
using RFE-SVM, WR, and the proposed feature selection
techniques, all integrated with LDA-based feature extraction.
Optimal feature counts, determined through a power-of-2-
based WRR (WRR = 2* + 2, x = 0...7), reveal that
KNN achieves its highest accuracy of 96.67% when utilizing
39 optimal wavelengths. Notably, KNN consistently out-
performs other classifiers across different configurations of
selected wavelengths. As the table highlights, NB effectively
identifies adulteration in up to 80% of honey samples using a
minimal set of 11 carefully selected wavelengths through the
proposed method.

Table 4 outlines the 39 most pivotal wavelengths selected
through diverse feature selection methodologies. The distinct
selection of wavelengths by different methods is noteworthy,
reflecting their varying strategies for optimal wavelength
identification. Visible spectral region wavelengths dominate
the selections made by the initial three methods, while subse-
quent approaches predominantly gravitate toward the Visible
to Near-Infrared region.

The nuanced classification accuracy of ML models is visu-
alized through the confusion matrices depicted in Fig. 5. Each
matrix offers detailed insight into the accuracy of the ML
model’s classifications for each class. As an illustrative exam-
ple, Fig. 5 (b) illustrates SVM’s classification proficiency
in distinguishing pure honey, adulterated honey, and sugar
syrup. SVM accurately identifies 26 samples as pure honey
while misclassifying four samples as adulterated honey. The
second matrix row indicates SVM’s accurate identification
of 87 adulterated honey samples while misclassifying three
samples as pure honey. The third row underscores SVM’s
accurate classification of all 30 sugar syrup samples.

2) DETECTION OF ADULTERATION BY ADULTERANT TYPE

The evaluation of ML model performance in detecting differ-
ent types of artificial sugars in honey is presented in Table 5.
Across all models, a notable trend emerges wherein adul-
terated honey is consistently identified, with classification
accuracies exceeding 90%. However, the efficiency of the
models varies depending on the specific type of artificial
sugar. Across all three types of sugar adulterants, the KNN
algorithm achieves high accuracy, ranging from 96% to 98%,
indicating that KNN effectively captures the patterns and rela-
tionships in the data to make accurate predictions. Both SVM
and DT also show relatively strong performance across the
different types of sugar adulterants, with accuracies ranging
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from 94% to 98%, suggesting that these algorithms can han-
dle this classification task effectively. While still achieving
respectable accuracies, NB lags slightly behind the other
algorithms. It achieves accuracies ranging from 90% to 94%,
indicating that the assumption of independence between fea-
tures in the NB model is not fully met by the data, leading to
slightly lower accuracy than other algorithms. It is interesting
to note that the performance of the algorithms is relatively
consistent across the different types of sugar adulterants,
suggesting that the features used for classification might have
similar discriminative power for each adulterant type.

3) DETECTION OF ADULTERATION BY HONEY BOTANICAL
SOURCE

The ability of classification algorithms to detect adulter-
ation across various botanical sources of honey is examined
in Table 6. The results reveal that the models consistently
achieve notably high accuracy levels, often reaching 100%,
indicating that the selected features hold significant discrim-
inatory power regarding the botanical origin of the honey.
While most honey classes attain high accuracy rates, certain
classes exhibit slightly lower accuracy values. For instance,
the ““Rose” category consistently maintains an 86.67% accu-
racy across all algorithms, implying that distinguishing this
particular class may present a more significant challenge.
It is noteworthy that, due to the naive feature independence
assumption, the NB algorithm occasionally records lower
accuracy than other algorithms. It is important to acknowl-
edge the limited number of samples per botanical source in
this study, with 12 samples per floral source, three of which
are pure honey samples.

Consequently, the results in Table 6 provide initial insights
into the performance variations of ML models across distinct
botanical sources. In cases where accuracy falls short of
100%, it indicates the models’ limitations in discriminating
pure samples. For example, Table 6 reveals that the KNN
algorithm misclassified five out of 30 pure honey samples.
These misclassified pure honey samples originated from var-
ious botanical sources such as Acacia (one sample), Eucalyp-
tus (one sample), Rose (two samples), and Sulai (one sample),
confirming the results presented in Fig. 6 (a), where KNN
accurately classified 25 out of 30 pure honey samples and
misclassified the remaining five as 10%-Adulterated honey.

4) TRAINING TIME ANALYSIS

Table 7 sheds light on the training times associated with
ML models employing full and selected wavelength sets.
Intriguingly, it becomes evident that using selected wave-
lengths accelerates the training process compared to utilizing
the complete wavelength spectrum. Notably swift in both
scenarios, KNN emerges as the fastest algorithm for detect-
ing honey adulteration. In stark contrast, DT exhibits the
slowest performance in this context. SVM registers slower
training times than KNN but surpasses the prolonged training
times associated with DT, whether employing full or selected
wavelengths.
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TABLE 3. Classification accuracy of ML models using SFM-SVM, WR, and OSWR-LDA feature selection-extraction methods with different numbers of

wavelengths.

Feature Selection Method
Aim N2 RFE-SVM-LDA WR-LDA OSWR-LDA
KNN SVM DT NB KNN SVM DT NB KNN SVM DT NB
2 6667 8000 6733 6800 | 6467 8000 6667 7867 | 7267 8000 7600 7933
3 7200 8000 6733 6800 | 6733 8000 7000 7667 | 7733 8000 7200 7733
Discrimination 6 7133 8000 7733 7133 | 7667 8000 7267 8000 | 7667 7867 7133 7867
between Pure 11 7667 8000 7667 6800 | 7467 7800 7333 7800 | 7733 8133 7400  80.00
and Fake 20 7333 7667 7200 6933 | 7867 8133 7933 8000 | 9133 9200 9000 9200
Honey 39 8200 8733 7667 8533 8800 8733 8067 8400 | 9667 9533 9533 9200
68 8800 8667 8133 8533 8333 8533 8600 8733 | 9200 9133 9133 8733
114 8533 8600 8733 8533 8400 8467 8000 7867 | 8933 8867 8733 7533
2 5200 5533 5000 5200 | 3933 3333 4000 3533 | 4667 3933 4200 3667
3 6000 5600 5800 5400 | 3867 3800 4800 4267 | 5133 4000 4933 4733
Prediction of 6 5267 5400 5400 5333 | 5533 4267 4467 4867 | 5667 5467 6067 6000
Honey 11 6000 5400 6133 5133 | 5333 5733 5067 5800 | 5733 6467 5733 6200
Adulteration 20 5467 5933 5400 5533 | 5533 5800 5800 5733 | 7933 8000 7133 7667
Level 39 6933 7467 6400 7333 | 7133 7733 6933 7533 | 9267 867 8667 9067
68 7133 7467 7000 7400 | 7400 7467 6467 7267 | 8533 8133 7533 8467
114 6600 6800 6600 6800 | 6733 6800 5667 6600 | 7733 7467 6133 7467
* N = Number of Wavelengths
TABLE 4. Optimal wavelengths selected by various feature selection methods.
Method Selected Wavelengths
391 390 396 395 392 393 389 394 399 398 397 388 400
(thi‘ 387 385 386 401 402 384 403 404 383 405 382 406 407
408 409 381 410 379 380 411 378 412 413 377 414 415
446 408 442 391 388 420 390 438 418 395 409 413 407
SFM-RF 357 374 457 447 424 369 364 416 421 426 397 1406 444
402 417 382 392 429 399 406 398 449 387 430 378 400
419 420 422 421 423 418 424 417 426 425 416 427 415
2% 428 414 429 413 430 431 412 411 432 433 410 434 435
409 436 437 408 438 407 439 406 440 405 441 442 404
403 400 439 394 405 1406 402 2465 395 2486 409 399 387
RFE-RF 985 1400 1404 407 2442 398 393 2480 2483 1409 611 416 1958
406 397 2453 2464 425 2482 401 1401 1035 449 1121 386 1677
422 421 425 424 420 419 423 418 417 416 415 414 426
IS{f/E/-l 413 541 427 412 411 428 410 409 408 429 430 539 1385
407 406 431 1386 1384 1000 1387 432 1388 540 1383 999 433
350 406 462 518 574 630 686 742 798 854 910 966 1022
WR 1078 1134 1190 1246 1302 1358 1414 1470 1526 1582 1638 1694 1750
1806 1862 1918 1974 2030 2086 2142 2198 2254 2310 2366 2422 2478
Pro 750 768 786 804 822 840 858 876 894 912 930 948 966
OSWR 984 1002 1020 1038 1056 1074 1092 1110 1128 1146 1164 1182 1200
Method 1218 1236 1254 1272 1290 1308 1326 1344 1362 1380 1398 1416 1434

C. PREDICTION OF HONEY ADULTERATION LEVEL

1) OVERALL ML MODEL PERFORMANCE

This section delves into the performance evaluation of ML
models in predicting the levels of honey adulteration. Table 2
offers an insight into the classification accuracies achieved
by the ML models in predicting adulteration levels. Both full
wavelength data and variations involving feature selection
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and extraction methods were assessed on the raw data with-
out preprocessing. SVM exhibited the highest classification
accuracy of 54.67% and 68%, utilizing the full spectral range
and LDA-reduced features. In contrast, DT achieved the high-
est accuracy with PCA-reduced, yielding an accuracy of 50%.
The concluding row of Table 2 emphasizes that improved
performance was obtained by employing the proposed feature
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FIGURE 5. Confusion matrices of ML models for discriminating between genuine and fake honey using
the proposed method. (a) K-Nearest Neighbors, (b) Support Vector Machine, (c) Decision Tree, (d) Naive
Bayes. PH = Pure Honey, AH = Adulterated Honey, SS = Sugar Syrup.

TABLE 5. Adulterant-based classification accuracies of ML models for discriminating between pure and fake honey and predicting honey adulteration
level using the proposed method.

Sugar Adulterant Discrimination between Pure and Fake Honey Prediction of Honey Adulteration Level
KNN SVM DT NB KNN SVM DT NB
Glucose Syrup 96.00 94.00 96.00 90.00 90.00 88.00 88.00 90.00
Invert Syrup 96.00 96.00 96.00 94.00 94.00 90.00 84.00 90.00
Sucrose Syrup 98.00 96.00 94.00 92.00 94.00 88.00 88.00 92.00

TABLE 6. Classification accuracies of the ML models for discriminating between pure and fake honey and predicting the adulteration level in honey from
various botanical origins using the proposed method.

. . Discrimination between Pure and Fake Honey Prediction of Honey Adulteration Level
Honey Botanical Origin
KNN SVM DT NB KNN SVM DT NB

Acacia 9333 86.67 9333 9333 86.67 80.00 86.67 9333
Ajwain 100.00 100.00 100.00 100.00 9333 80.00 86.67 9333
Apple 100.00 100.00 100.00 9333 9333 86.67 9333 9333
Fucalyptus 9333 9333 9333 9333 86.67 86.67 80.00 86.67
Jamun 100.00 100.00 9333 86.67 9333 100.00 86.67 9333
Litchi 100.00 100.00 100.00 100.00 100.00 100.00 9333 9333
Multiflora 100.00 100.00 100.00 86.67 100.00 100.00 100.00 100.00
Rose 86.67 86.67 86.67 86.67 80.00 7333 7333 80.00
Sidr 100.00 9333 9333 9333 100.00 9333 80.00 86.67
Sulai 9333 9333 9333 86.67 9333 86.67 86.67 86.67

selection method (OSWR) followed by LDA-based feature the highest classification accuracies of 80% and 80.67%,
extraction. This approach led to KNN and NB achieving respectively.
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FIGURE 6. Confusion matrices of ML models for predicting the adulteration level using the proposed method.
(a) K-Nearest Neighbors, (b) Support Vector Machine, (c) Decision Tree, (d) Naive Bayes.

TABLE 7. Training time (in milliseconds) of ML models for discriminating between pur
selected wavelengths.

e and fake honey and detecting honey adulteration using full and

Discrimination between pure and fake honey

Prediction of Honey Adulteration Level

Features KNN SVM DT NB KNN SVM DT NB
Full Wavelengths 072 1402 96.60 474 0.79 4195 14846 412
Selected Wavelengths 023 110 190 052 02 227 275 063

The complexities within the dataset, encompassing a com-
bination of artificial sugar samples, pure honey samples, and
various fake honey samples, contributed to the challenges
faced in predicting honey adulteration levels. The diverse
composition rendered the accurate grouping of spectral data
according to adulteration levels difficult for the ML models.

Table 3 further illuminates the classification accuracies in
predicting adulteration levels using data preprocessed with
the SNV method. Overall, SNV preprocessing yielded perfor-
mance improvements in predicting honey adulteration levels.
Notably, the fusion of SNV, the proposed feature selection
method (OSWR), LDA-based feature extraction, and KNN
classification yielded the highest accuracy of 92.67%, sur-
passing other combinations. Statistical paired t-tests high-
lighted that the classification accuracy of the KNN model
exhibited significant differences compared to SVM, DT, and
NB. However, no significant distinctions emerged among
SVM, DT, and NB classification accuracies.

The classification accuracies of varying numbers of wave-
lengths using different methods are presented in Table 3.

30 sa
classi

TYPE

Table
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Results reveal that KNN achieves a peak accuracy of 92.67%
utilizing 39 optimal wavelengths selected by the proposed
feature selection method.

lustrative confusion matrices, as depicted in Fig. 6, offer
a deeper understanding of the ML models’ effectiveness
in predicting honey adulteration levels. The matrices repre-
sent five adulteration levels, ranging from pure honey (0%
adulteration) to pure sugar syrup (100% adulteration). For
instance, the confusion matrix of SVM in Fig. 6 (b) displays
a satisfactory classification of pure honey (26 samples from

mples). Sugar syrup samples were more consistently
fied correctly.

2) PREDICTION OF ADULTERATION LEVEL BY ADULTERANT

The performances of ML models in predicting honey adul-
teration levels based on the adulterant type are shown in

5. The accuracy values for different sugar adulter-

ants and algorithms vary, suggesting that the performance
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of the classifiers is influenced by both the characteristics
of the adulterant type and the choice of the classification
algorithm.

Invert Syrup has varying accuracy across different
algorithms, ranging from 84.00% (DT) to 94.00% (KNN),
indicating that some algorithms better capture the features
distinguishing Invert Syrup from others. For Glucose Syrup,
KNN, SVM, and NB achieve similar accuracy (90.00% or
88.00%), suggesting that these algorithms might effectively
capture the distinguishing features of Glucose Syrup. At the
same time, the DT might struggle with this classification
task.

In several cases, NB achieves competitive accuracy, indi-
cating that the naive feature independence assumption does
not significantly impact the classification performance.

Sucrose Syrup achieves consistent accuracy across KNN,
SVM, and DT (88.00%). NB achieves slightly higher accu-
racy (92.00%), suggesting that the features of Sucrose Syrup
might have clear patterns that multiple algorithms can capture
effectively.

3) PREDICTION OF ADULTERATION LEVEL BY HONEY
BOTANICAL SOURCE

Table 6 offers a comprehensive perspective by presenting the
classification performance of models in predicting adulter-
ation levels across different honey types using the proposed
methodology. As observed in previous scenarios, the accu-
racy values exhibit variation depending on the botanical
origins and algorithms employed. Certain botanical origins
consistently yield high accuracy, while others display vari-
ability in performance. For instance, Multiflora consistently
achieves a perfect accuracy rate of 100% across most algo-
rithms, indicating that it possesses highly distinctive features
effectively captured by these models. Litchi also consistently
attains high accuracy, suggesting well-separated features
from other classes.

Conversely, ‘Eucalyptus’ exhibits slightly lower accu-
racy consistently, indicating a potentially more challenging
classification task for this class. On the other hand, Rose
demonstrates relatively lower accuracy across all algorithms,
implying that distinguishing it based on the available features
may pose challenges.

4) TRAINING TIME ANALYSIS

Lastly, Table 7 offers insights into the training times of the
ML models for predicting honey adulteration levels, compar-
ing full and selected wavelengths. The results underscore that
utilizing selected wavelengths led to quicker model training
times. KNN emerged as the fastest algorithm, demonstrating
superior efficiency in full and optimal wavelength scenarios.
Conversely, DT exhibited the longest training times, while
SVM exhibited intermediate performance in terms of training
time.

In summary, the investigation into predicting honey adul-
teration levels revealed the complexity of the dataset’s com-
position and its challenges. Despite these complexities, the
presented ML models displayed promising capabilities in
achieving accurate predictions. The experimental results,
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derived from various configurations and preprocessing
techniques, offer valuable insights into refining techniques to
predict honey adulteration levels accurately.

IV. DISCUSSION

The presented results illuminate several noteworthy aspects
in the context of honey adulteration detection and prediction
of adulteration levels. The analyses encompassed a compre-
hensive evaluation of ML models, employing diverse feature
selection, extraction methods, and preprocessing techniques.
The following observations emerge from the discussion of the
results:

A. DISCRIMINATION AND DETECTION OF ADULTERATION
The study underscores the effectiveness of ML models in dis-
tinguishing between pure honey, adulterated honey, and sugar
syrup. The observed classification accuracies demonstrate the
feasibility of employing spectral data to discern these distinct
categories. KNN emerges as a robust classifier, consistently
achieving notable accuracy and proving its potential for the
classification task. The utilization of diverse feature selection
and extraction methodologies further enhances the discrimi-
nation capability of the models.

B. IMPACT OF PREPROCESSING WITH SNV

The impact of preprocessing using SNV on detecting honey
adulteration is notably positive in this study. SNV prepro-
cessing is a crucial step in enhancing the performance of ML
models when applied to Vis-NIR spectroscopy data.

SNV is primarily employed to correct baseline shifts and
reduce the multiplicative effects of light scattering and path-
length variations. In the context of honey adulteration detec-
tion, SNV plays a pivotal role in enhancing the quality of
spectral data by mitigating background noise and variability,
thereby improving classification accuracy.

Our work shows that preprocessing Vis-NIR spectral data
using SNV enhances ML model performance in honey adul-
teration detection and prediction. Specifically, SVM achieved
a classification accuracy of 93.33% using full wavelengths
with SNV preprocessing, compared to 77.33% without pre-
processing. This substantial increase in accuracy indicates
SNV’s effectiveness in reducing data noise and enhanc-
ing the discrimination between genuine and fake honey
samples.

Furthermore, SNV preprocessing with the proposed
feature selection algorithm, OSWR, LDA-based feature
extraction, and KNN classification achieved the highest clas-
sification accuracy of 96.67% in detecting honey adulter-
ation, outperforming other combinations, highlighting the
crucial role of SNV in facilitating the success of advanced
data processing techniques, such as feature selection and
extraction, ultimately leading to improved detection of honey
adulteration. In summary, preprocessing with SNV signifi-
cantly enhances the accuracy and reliability of ML models for
honey adulteration detection by effectively addressing data
noise and variability, thus improving the overall quality of
spectral data.
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C. FEATURE SELECTION AND EXTRACTION

The proposed feature selection method, OSWR, outperforms
other feature selection and feature extraction methods in
this study for several compelling reasons. OSWR stands
out by efficiently tackling the dimensional challenge posed
by the large dataset, reducing it from 2151 wavelengths
to a mere 39 while retaining crucial information. It excels
in selecting high-relevance wavelengths and distinguishing
between pure and fake honey. This adaptability is crucial
as OSWR’s data-driven approach tailors feature selection to
the specific dataset, enhancing classification performance by
capturing spectral attributes indicative of adulteration. When
coupled with LDA for feature extraction, OSWR amplifies
class separability, vital for differentiating various honey types
effectively.

Furthermore, its sequential nature ensures consistent and
stable feature selection, mitigating the risk of overfitting
and promoting model generalization. This adaptability, con-
sistency, and ability to deliver a compact yet informative
feature set enhance classification accuracy and make OSWR
a practical choice for real-world applications, facilitating the
design of cost-effective spectrometers optimized for these
specific wavelengths. In summary, OSWR’s addictiveness,
complementarity with LDA, and stability make it the ideal
choice for addressing dataset complexities and achieving
exceptional performance in discriminating between genuine
and fake honey samples.

D. SUPERIORITY OF KNN OVER OTHER ML MODELS
KNN emerges as this study’s top-performing ML model for
several compelling reasons. First, KNN excels at capturing
local patterns and relationships within the spectral data, mak-
ing it especially adept at detecting subtle variations that signal
honey adulteration. Its non-parametric nature allows it to
handle the complex and nonlinear relationships that often
characterize spectral datasets. Furthermore, KNN’s simplic-
ity and robustness are advantageous when dealing with
high-dimensional data, like spectral readings, as it requires
minimal parameter tuning and makes no assumptions about
data distribution. Applying feature selection techniques in
this study further enhances KNN’s performance, allowing it
to focus on the most informative aspects of the data.

Additionally, KNN’s principle of assigning a data point to
the majority class among its nearest neighbors aligns well
with the homogeneity expected in honey adulteration clas-
sification. It thrives in situations where adulteration levels
form clusters or localized patterns. Lastly, KNN’s flexibility,
adapting to different datasets and characteristics, adds to
its appeal. However, the choice of distance metric and the
selection of the number of neighbors (K) demand careful
consideration, highlighting the importance of optimization
and validation for realizing KNN’s full potential.

The limited capacity of ML models to achieve perfect
accuracy in this study can be attributed to several factors and
inherent challenges. Firstly, the dataset’s complexity plays a
significant role, encompassing various types of honey, dif-
fering adulteration levels, and diverse artificial sugars. Such
diversity introduces considerable variability that ML models
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may struggle to address comprehensively. Secondly, the over-
lapping spectral signatures of pure honey and adulterated
samples, particularly at lower adulteration levels, can con-
found the models, resulting in misclassifications. Thirdly,
spectral data’s sensitivity to noise, variations in data col-
lection conditions, or instrument limitations can introduce
unpredictability that impacts accuracy.

Moreover, some spectral regions or wavelengths may lack
the discriminative power necessary for precise classification.
Each ML model has limitations, such as KNN’s preference
for local patterns over global relationships. Imbalanced class
distribution, data preprocessing, feature engineering, and the
selection of optimal hyperparameters all contribute to the
challenge of achieving perfect accuracy. In essence, while
ML models excel at identifying patterns, real-world datasets
are inherently complex and often contain nuances and uncer-
tainties that prevent the attainment of 100% accuracy. The
goal is to develop models that offer practical utility and
insights, even if perfection remains elusive.

E. PREDICTION OF ADULTERATION LEVELS

Predicting honey adulteration levels remains a complex task
due to the intricate nature of the dataset. Despite the inherent
challenges posed by varying honey types and varying types
and concentrations of artificial sugar, ML models showcase
commendable predictive capabilities. The notable influence
of preprocessing, feature selection, and extraction on pre-
diction accuracies underscores the importance of employ-
ing comprehensive methodologies to address this complex
problem.

F. COMPARISON WITH PREVIOUS WORK

Our study’s results align with previous research in several
aspects, demonstrating the reliability of our findings. Specif-
ically, our work substantiates prior studies that employed
spectral data for honey quality assessment, showcasing that
Vis-NIR spectroscopy is an effective tool for detecting honey
adulteration.

Table 8 provides a comparative analysis of our approach
with methods proposed in prior research. Most previous
works, such as those referenced in [7], [23], [24], [25], [26],
[28], and [29], primarily focused on evaluating the perfor-
mance of ML models for detecting adulteration in a single
type of honey. In contrast, our study broadens the scope
by assessing the effectiveness of the models in detecting
adulteration across various botanical sources.

Two distinctive features set our work apart from previous
endeavors. First, introducing the OSWR feature selection
method offers two notable advantages: A) Enhanced per-
formance of ML models regarding prediction accuracy and
reduced time complexity (as fewer wavelengths lead to sim-
pler models and faster training times). B) The potential to
utilize cost-effective, portable spectrometers designed for
measuring spectral data at a reduced set of wavelengths.
Secondly, our study rigorously evaluated the performance of
ML models for detecting honey adulteration across ten dis-
tinct honey types. While some prior models achieved higher
classification accuracies, they were predominantly tailored to
detect adulteration in a single honey type.
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TABLE 8. Comparative analysis of our study and previous research.

Technology/  Operation  Honey AD*® . Feature Feature ML
Author Range (nm) Mode Types Adulterant Levels Preprocessing Selection  Extraction Models Performance
Aliafio-Gonzalez Vis-NIR Abs 1 IS, RS, 2 ) LDA ) LDA Accuracy = 100%
etal. [7] 400-2500 ’ BS, FS 8 PLSR  R?=0.96
Raypah et al. [23] Vis-NIR DW, Moving
Abs. 1 ACV, 10 Average - PCA PLSR  R?=0.96, RMSE =5.88
400-1100 >
HFS Smoothing
Azmi et al. [24] Vis-NIR LDA Accuracy = 99.33%
450-969 Trans. 1 SS 5 - - PCA QDA Accuracy =99.33%
SVM Accuracy = 99.33%
Ferreiro-Gonzalez . Moving .
Vis-NIR Stepwise LDA Accuracy = 100%
et al. [25] 400-2500 Abs. 1 HFCS 11 Average LDA PCA PLSR  R%=0.9855
Smoothing
Calle et al. [26] . RS,
4\(/)15__2?&) Abs. 1 HFCS, 8 - - - SVM  Accuracy = 93.98%
FS, IS, BS
. 2 First SVM  Accuracy = 100%
Calle et al. [27] 2(/)15:;\151(}){0 Abs. 2 Lizvr;ZOSt 2 Derivative, - - RF Accuracy = 100%
y 10 SGF SVR  R?>=0.99, RMSE =1.89
NIR SGF, Cut, KNN Accuracy = 87%
Woeng ct al. [28] 900-1700 Refl. ! GS 1 Smoothing } PCA RF  Accuracy = 90.2%
NIR Cut, EMSC,
Tan et al. [29] Refl. 1 HFCS 11 Smoothing, - PCA LR Accuracy = 98.2%
900-1700 L
Normalization
Proposed Vis-NIR GS, IS, 3 Accuracy = 96.67%
Method 350-2500 Refl. 10 SS 5 SNV OSWR LDA KNN Accuracy = 92.67%

2 AD = Adulteration, Abs. = Absorbance, Trans. = Transmittance, Refl. = Reflectance, IS = Invert Sugar, RS = Rice Syrup, BS = Brown Cane Sugar, FS = Fructose
Syrup, PLSR = Partial Least Squares Regression, R = Coefficient of Determination, DW = Distilled Water, ACV = Apple Cider Vinegar, HFS = High Fructose
Syrup, RMSE = Root Mean Squared Error, SS = Sucrose Syrup, QDA = Quadratic Discriminant Analysis, HFCS = High Fructose Corn Syrup, SVR = Support

Vector Regression, GS = Glucose Syrup, SGF = Savitzky-Golay filter, EMSC = Extended Multiplicative Signal Correction, LR = Logistic Regression.

Nevertheless, it is worth noting that while our study
provides compelling evidence of the efficacy of the pro-
posed feature selection method, OSWR, other research may
favor different feature selection or extraction approaches.
Variations in honey botanical sources, sugar adulterants,
adulteration levels, preprocessing methods, and classification
algorithms can lead to divergent findings in different studies.
Therefore, while our results are consistent with the broader
theme of using Vis-NIR spectroscopy for honey quality eval-
uation, some variations might exist when making detailed
comparisons with specific methodologies or datasets from
other research.

In summary, our study’s findings generally agree with
prior research that highlights the potential of spectral anal-
ysis in honey quality assessment while also showcasing the
effectiveness of our proposed feature selection and extraction
method for consistently detecting fake honey samples across
various botanical sources and sugar adulterants.

G. IMPLICATIONS OF THE STUDY

This research holds significant implications for various stake-
holders. First, it helps the honey business verify product
authenticity and quality. This may help honey producers
and suppliers fight fraud, protect their brands, and preserve
consumer confidence. The discoveries may also enhance
regulatory and food safety, improving counterfeit honey mon-
itoring and enforcement. Furthermore, the study suggests the
potential for cost-effective spectrometry techniques to trans-
form on-site honey quality assessment through the utilization

VOLUME 11, 2023

of portable spectrometers. Ultimately, consumers stand to
benefit the most, as they can make more informed choices and
have increased confidence in the authenticity and purity of the
honey products they purchase. In summary, this research can
make a substantial positive impact on the honey industry by
promoting transparency, integrity, and consumer trust.

H. LIMITATIONS OF THE STUDY

While offering valuable insights into honey adulteration
detection, this study has certain limitations that warrant con-
sideration in future research. Future studies should prioritize
the inclusion of more diverse datasets, encompassing varia-
tions in geographic regions, floral sources, and processing
methods to enhance the reliability and real-world appli-
cability of detection models. Cross-spectrometer validation
can ensure broader hardware compatibility while address-
ing the impact of environmental factors such as temperature
and humidity on spectral data should be explored. Large-
scale experiments with extensive sample sizes can improve
the representation of honey types and adulteration levels.
Additionally, future research should investigate alternative
ML algorithms, including deep learning approaches, for
more accurate and interpretable models. Developing cost-
effective spectrometry solutions and exploring emerging sen-
sor technologies, such as portable and smartphone-based
spectroscopy, can democratize honey quality assessment.
Collaborative efforts with experts from various fields,
including chemistry and food science, can further deepen our
understanding of honey composition and variations. Address-
ing these recommendations will contribute to more reliable

144241



IEEE Access

M. Al-Awadhi, R. Deshmukh: Enhancing Honey Adulteration Detection

and accessible honey adulteration detection methods, bene-
fiting the food industry and consumer protection.

V. CONCLUSION

In conclusion, integrating reflectance Vis-NIR spectroscopy
with advanced techniques such as feature selection, fea-
ture extraction, and classification methods has demon-
strated substantial efficacy in discriminating pure and fake
honey samples and in precisely determining adulteration lev-
els. A compelling solution emerged through systematically
exploring various combinations of these techniques: the pro-
posed feature selection algorithm coupled with LDA and
KNN classification. This amalgamation yielded impressive
outcomes, achieving a remarkable classification accuracy of
96.67% for honey adulteration detection and 92.67% accu-
racy in discerning the level of adulteration.

Importantly, the developed model showcases its prowess
in detecting adulteration across a spectrum of ten distinct
honey types. By leveraging the proposed feature selection
methodology, a significant reduction in data dimensional-
ity was realized, downsizing the original 2151 wavelengths
to a mere 39 wavelengths. This reduction offers substan-
tial benefits for practical implementation, including the
potential for designing and deploying cost-effective spec-
trometers, enabling rapid and precise detection of honey
adulteration.

The research underscores the promising prospect of lever-
aging cutting-edge techniques to safeguard the integrity and
quality of honey products. As this study primarily focused
on detection, there is the potential for further exploration
into quantifying the extent of adulteration and extending the
methodology to accommodate variations in honey sources
and adulterant types. The findings herein contribute to
enhancing food authenticity and quality assessment through
the innovative fusion of spectroscopic technologies and
advanced data analysis methods.

ACKNOWLEDGMENT

The authors express their gratitude to DST-FIST for the
generous support extended to the Department of Computer
Science and Information Technology, Dr. Babasaheb Ambed-
kar Marathwada University, under grant no. SR/FST/ETI-
340/2013.

REFERENCES

[1] L. Castro-Vazquez, M. C. Diaz-Maroto, C. de Torres, and
M. S. Pérez-Coello, “Effect of geographical origin on the chemical
and sensory characteristics of chestnut honeys,” Food Res. Int., vol. 43,
no. 10, pp. 2335-2340, Dec. 2010.

[2] P. M. Kus, L Jerkovié, Z. Marijanovié, M. Kranjac, and C. I. G. Tuberoso,
“Unlocking phacelia tanacetifolia Benth. Honey characterization through
melissopalynological analysis, color determination and volatiles chemical
profiling,” Food Res. Int., vol. 106, pp. 243-253, Apr. 2018.

[3] E. Alissandrakis, P. A. Tarantilis, C. Pappas, P. C. Harizanis, and
M. Polissiou, “Investigation of organic extractives from unifloral chestnut
(Castanea sativa L.) and eucalyptus (Eucalyptus globulus Labill.) honeys
and flowers to identification of botanical marker compounds,” LWT-Food
Sci. Technol., vol. 44, no. 4, pp. 1042-1051, May 2011.

[4] P. M. da Silva, C. Gauche, L. V. Gonzaga, A. C. O. Costa, and R. Fett,
“Honey: Chemical composition, stability and authenticity,” Food Chem.,
vol. 196, pp. 309-323, Apr. 2016.

144242

[5]

[6

—

[71

[8]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

(19]

(20]

(21]

A. J. Siddiqui, S. G. Musharraf, and M. I. Choudhary, “Application of
analytical methods in authentication and adulteration of honey,” Food
Chem., vol. 217, pp. 687-698, Feb. 2017.

European Commission, “Council directive 2001/110/EC of 20 December
2001 relating to honey,” Off. J. Eur. Communities L, vol. 10, pp. 47-52,
Dec. 2002.

M. J. Aliafio-Gonzdlez, M. Ferreiro-Gonzédlez, E. Espada-Bellido,
M. Palma, and G. F. Barbero, “A screening method based on visible-NIR
spectroscopy for the identification and quantification of different adulter-
ants in high-quality honey,” Talanta, vol. 203, pp. 235-241, Oct. 2019, doi:
10.1016/j.talanta.2019.05.067.

A. Devi, J. Jangir, and K. A. Anu-Appaiah, “Chemical characterization
complemented with chemometrics for the botanical origin identification
of unifloral and multifloral honeys from India,” Food Res. Int., vol. 107,
pp. 216-226, May 2018, doi: 10.1016/j.foodres.2018.02.017.

M. J. Aliafio-Gonzdlez, M. Ferreiro-Gonzélez, E. Espada-Bellido,
G. F. Barbero, and M. Palma, “Novel method based on ion
mobility spectroscopy for the quantification of adulterants in
honeys,” Food Control, vol. 114, Aug. 2020, Art.no. 107236, doi:
10.1016/j.foodcont.2020.107236.

F. Huang, H. Song, L. Guo, P. Guang, X. Yang, L. Li, H. Zhao,
and M. Yang, “Detection of adulteration in Chinese honey using NIR
and ATR-FTIR spectral data fusion,” Spectrochimica Acta A, Mol.
Biomolecular Spectrosc., vol. 235, Jul. 2020, Art.no. 118297, doi:
10.1016/j.saa.2020.118297.

N. Arroyo-Manzanares, M. Garcia-Nicolds, A. Castell, N. Campillo,
P. Vifias, I. Lépez-Garcia, and M. Hernandez-Cérdoba, “Untargeted
headspace gas chromatography—Ion mobility spectrometry analysis
for detection of adulterated honey,” Talanta, vol. 205, Dec. 2019,
Art. no. 120123, doi: 10.1016/j.talanta.2019.120123.

M. Esteki, J. Simal-Gandara, Z. Shahsavari, S. Zandbaaf, E. Dashtaki, and
Y. Vander Heyden, ‘A review on the application of chromatographic meth-
ods, coupled to chemometrics, for food authentication,” Food Control,
vol. 93, pp. 165-182, Nov. 2018, doi: 10.1016/j.foodcont.2018.06.015.
M. Al-Mahasneh, M. Al-U’datt, T. Rababah, M. Al-Widyan, A. A. Kaeed,
A. J. Al-Mahasneh, and N. Abu-Khalaf, “Classification and prediction
of bee honey indirect adulteration using physiochemical properties cou-
pled with K-Means clustering and simulated annealing-artificial neural
networks (SA-ANNs),” J. Food Qual., vol. 2021, pp. 1-9, Apr. 2021, doi:
10.1155/2021/6634598.

M. E. Criciun, O. C. Parvulescu, A. C. Donise, T. Dobre, and D. R. Stanciu,
“Characterization and classification of Romanian acacia honey based on
its physicochemical parameters and chemometrics,” Sci. Rep., vol. 10,
no. 1, pp. 1-9, Nov. 2020, doi: 10.1038/s41598-020-77685-9.

S. Amiry, M. Esmaiili, and M. Alizadeh, “Classification of adulterated
honeys by multivariate analysis,” Food Chem., vol. 224, pp. 390-397,
Jun. 2017, doi: 10.1016/j.foodchem.2016.12.025.

N. S. Sotiropoulou, M. Xagoraris, P. K. Revelou, E. Kaparakou,
C. Kanakis, C. Pappas, and P. Tarantilis, “The use of SPME-GC-MS
IR and Raman techniques for botanical and geographical authentication
and detection of adulteration of honey,” Foods, vol. 10, no. 7, p. 1671,
Jul. 2021, doi: 10.3390/foods10071671.

M. K. Islam, T. Sostaric, L. Y. Lim, K. Hammer, and C. Locher, *“‘Sugar
profiling of honeys for authentication and detection of adulterants using
high-performance thin layer chromatography,” Molecules, vol. 25, no. 22,
p- 5289, Nov. 2020, doi: 10.3390/molecules25225289.

M. J. Aliafio-Gonzilez, M. Ferreiro-Gonzdlez, E. Espada-Bellido,
M. Palma, and G. F. Barbero, “A screening method based on headspace-
ion mobility spectrometry to identify adulterated honey,” Sensors, vol. 19,
no. 7, p. 1621, Apr. 2019, doi: 10.3390/s19071621.

N. Irawati, N. M. Isa, A. F. Mohamed, H. A. Rahman, S. W. Harun,
and H. Ahmad, “Optical microfiber sensing of adulterated honey,”
IEEE Sensors J., vol. 17, no. 17, pp.5510-5514, Sep. 2017, doi:
10.1109/JSEN.2017.2725910.

Z. Gan, Y. Yang, J. Li, X. Wen, M. Zhu, Y. Jiang, and Y. Ni, “Using
sensor and spectral analysis to classify botanical origin and determine
adulteration of raw honey,” J. Food Eng., vol. 178, pp. 151-158, Jun. 2016,
doi: 10.1016/j.jfoodeng.2016.01.016.

A. Zakaria, A. Y. M. Shakaff, M. J. Masnan, M. N. Ahmad,
A. H. Adom, M. N. Jaafar, S. A. Ghani, A. H. Abdullah, A. H. A. Aziz,
L. M. Kamarudin, N. Subari, and N. A. Fikri, ‘A biomimetic sensor for the
classification of honeys of different floral origin and the detection of adul-
teration,” Sensors, vol. 11, no. 8, pp. 7799-7822, Aug. 2011, doi: 10.3390/
s110807799.

VOLUME 11, 2023


http://dx.doi.org/10.1016/j.talanta.2019.05.067
http://dx.doi.org/10.1016/j.foodres.2018.02.017
http://dx.doi.org/10.1016/j.foodcont.2020.107236
http://dx.doi.org/10.1016/j.saa.2020.118297
http://dx.doi.org/10.1016/j.talanta.2019.120123
http://dx.doi.org/10.1016/j.foodcont.2018.06.015
http://dx.doi.org/10.1155/2021/6634598
http://dx.doi.org/10.1038/s41598-020-77685-9
http://dx.doi.org/10.1016/j.foodchem.2016.12.025
http://dx.doi.org/10.3390/foods10071671
http://dx.doi.org/10.3390/molecules25225289
http://dx.doi.org/10.3390/s19071621
http://dx.doi.org/10.1109/JSEN.2017.2725910
http://dx.doi.org/10.1016/j.jfoodeng.2016.01.016
http://dx.doi.org/10.3390/s110807799
http://dx.doi.org/10.3390/s110807799

M. Al-Awadhi, R. Deshmukh: Enhancing Honey Adulteration Detection

IEEE Access

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

M. A. Al-Awadhi and R. R. Deshmukh, “A review on modern analytical
methods for detecting and quantifying adulteration in honey,” in Proc.
Int. Conf. Mod. Trends Inf. Commun. Technol. Ind. (MTICTI), Dec. 2021,
pp. 1-6, doi: 10.1109/MTICTI53925.2021.9664767.

M. E. Raypah, A. F. Omar, J. Muncan, M. Zulkurnain, and A. R. Abdul
Najib, “Identification of stingless bee honey adulteration using visible-
near infrared spectroscopy combined with aquaphotomics,” Molecules,
vol. 27, no. 7, p. 2324, Apr. 2022, doi: 10.3390/molecules27072324.

M. F. 1. Azmi, D. Jamaludin, S. A. Aziz, Y. A. Yusof, and A. M. Mustafah,
“Adulterated stingless bee honey identification using VIS-NIR spec-
troscopy technique,” Food Res., vol. 5, pp.85-93, Jan. 2021, doi:
10.26656/1r.2017.5(S1).035.

M. Ferreiro-Gonzilez, E. Espada-Bellido, L. Guillén-Cueto, M. Palma,
C. G. Barroso, and G. F. Barbero, “Rapid quantification of honey
adulteration by visible-near infrared spectroscopy combined with
chemometrics,” Talanta, vol. 188, pp.288-292, Oct. 2018, doi:
10.1016/j.talanta.2018.05.095.

J. L. P. Calle, M. PFerreiro-Gonzédlez, M. J. Aliafio-Gonzilez,
E. Espada-Bellido, M. Palma, and G. F. Barbero, “Quality control
of honey by visible and near infrared spectroscopy (Vis-NIRS) and
headspace-ion mobility spectrometry (HS-IMS),” in Proc. 3rd Int.
Electron. Conf. Environ. Res. Public Health. Basel, Switzerland: MDPI,
Jan. 2021, doi: 10.3390/ECERPH-3-09079.

J. L. P. Calle, I. Punta-Sanchez, A. V. Gonzilez-de-Peredo,
A. Ruiz-Rodriguez, M. Ferreiro-Gonzilez, and M. Palma, “Rapid
and automated method for detecting and quantifying adulterations in high-
quality honey using vis-NIRs in combination with machine learning,”
Foods, vol. 12, no. 13, p. 2491, Jun. 2023, doi: 10.3390/foods12132491.
V. Woeng, L. Y. Lim, L. A. K. Saleena, M. 1. Solihin, and L. P. Pui,
“Physicochemical properties and detection of glucose syrup adulterated
Kelulut (Heterotrigona itama) honey using near-infrared spectroscopy,”
J. Food Process. Preservation, vol. 46, no. 7, p. €16686, Jul. 2022, doi:
10.1111/jfpp.16686.

S. H. Tan, L. P. Pui, M. I. Solihin, K. S. Keat, W. H. Lim, and
C. K. Ang, “Physicochemical analysis and adulteration detection in
Malaysia stingless bee honey using a handheld near-infrared spectrome-
ter,” J. Food Process. Preservation, vol. 45, no. 7, p. e15576, Jul. 2021,
doi: 10.1111/jfpp.15576.

ASD  FieldSpec 4 Hi-Res: High Resolution Spectroradiometer.
Accessed: May 20, 2023. [Online]. Available: https://www.
malvernpanalytical.com/en/products/product-range/asd-range/fieldspec-
range/fieldspec4-hi-res-high-resolution-spectroradiometer

A. Taggart, “Python ASD parser,” Univ. Sheffield, Jun. 2017, doi:
10.15131/shef.data.5164816.v1.

R.J. Barnes, M. S. Dhanoa, and S. J. Lister, “Correction to the description
of standard normal variate (SNV) and de-trend (DT) transformations in
practical spectroscopy with applications in food and beverage analysis—
2nd edition,” J. Near Infr. Spectrosc., vol. 1, no. 3, pp. 185-186, Jun. 1993,
doi: 10.1255/jnirs.21.

W. Sun and Q. Du, “Hyperspectral band selection: A review,” IEEE
Geosci. Remote Sens. Mag., vol. 7, no. 2, pp. 118-139, Jun. 2019, doi:
10.1109/MGRS.2019.2911100.

A. K. Verma and S. Pal, “Prediction of skin disease with three differ-
ent feature selection techniques using stacking ensemble method,” Appl.
Biochemistry Biotechnol., vol. 191, no. 2, pp. 637-656, Jun. 2020, doi:
10.1007/s12010-019-03222-8.

X. Wei, M. A. Johnson, D. B. Langston, H. L. Mehl, and S. Li, “Identifying
optimal wavelengths as disease signatures using hyperspectral sensor and
machine learning,” Remote Sens., vol. 13, no. 14, p. 2833, Jul. 2021, doi:
10.3390/rs13142833.

N. Zhang, M. Chen, F. Yang, C. Yang, P. Yang, Y. Gao, Y. Shang, and
D. Peng, “Forest height mapping using feature selection and machine
learning by integrating multi-source satellite data in Baoding City,
North China,” Remote Sens., vol. 14, no. 18, p. 4434, Sep. 2022, doi:
10.3390/rs14184434.

D. Tsankova and S. Lekova, “Botanical origin-based honey discrimina-
tion using Vis-Nir spectroscopy and statistical cluster analysis,” J. Chem.
Technol. Metall., vol. 50, no. 5, pp. 638-642, 2015.

Y. Li and H. Yang, ““Honey discrimination using visible and near-infrared
spectroscopy,” ISRN Spectrosc., vol. 2012, pp. 1-4, Nov. 2012, doi:
10.5402/2012/487040.

1. Jolliffe, “‘Principal component analysis,” in Wiley StatsRef: Statistics
Reference Online. Hoboken, NJ, USA: Wiley, 2014.

VOLUME 11, 2023

(40]

[41]

[42]

(43]

[44]

(45]

(46]

[47]

(48]

[49]

[50]

I. Guyon and A. Elisseeff, ““An introduction to variable and feature selec-
tion,” J. Mach. Learn. Res., vol. 3, pp. 1157-1182, Jan. 2003.

1. Guyon, J. Weston, S. Barnhill, and V. Vapnik, “Gene selection for cancer
classification using support vector machines,”” Mach. Learn., vol. 46, no. 1,
pp. 389422, 2002, doi: 10.1023/A:1012487302797.

S. Mika, G. Ratsch, J. Weston, B. Scholkopf, and K.-R. Mullers, “Fisher
discriminant analysis with kernels,” in Proc. IEEE Signal Process. Soc.
Workshop, Aug. 1999, pp. 41-48.

R. O. Duda and P. E. Hart, Pattern Classification. Hoboken, NJ, USA:
Wiley, 2006.

M. A. Al-Awadhi and R. R. Deshmukh, “Honey adulteration detec-
tion using hyperspectral imaging and machine learning,” in Proc. 2nd
Int. Conf. Artif. Intell. Signal Process. (AISP), Feb. 2022, pp. 1-5, doi:
10.1109/A1SP53593.2022.9760585.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas,
A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay,
“Scikit-learn: Machine learning in Python,” J. Mach. Learn. Res., vol. 12,
pp. 2825-2830, 2011.

S. B. Kotsiantis, I. Zaharakis, and P. Pintelas, “Supervised machine learn-
ing: A review of classification techniques,” Emerg. Artif. Intell. Appl.
Comput. Eng., vol. 160, pp. 3-24, Oct. 2007.

V. N. Vapnik and A. Y. Chervonenkis, “On the uniform convergence of
relative frequencies of events to their probabilities,” in Measures of Com-
plexity: Festschrift for Alexey Chervonenkis. Cham, Switzerland: Springer,
2015, pp. 11-30.

M. A. Al-Awadhi and R. R. Deshmukh, “Detection of adulteration in
coconut milk using infrared spectroscopy and machine learning,” in
Proc. Int. Conf. Modern Trends Inf. Commun. Technol. Ind. (MTICTI),
Dec. 2021, pp. 14, doi: 10.1109/MTICTI53925.2021.9664764.

C.J. C. Burges, “A tutorial on support vector machines for pattern recog-
nition,” Data Mining Knowl. Discovery, vol. 2, no. 2, pp. 121-167, 1998,
doi: 10.1023/A:1009715923555.

T. G. Dietterich, “Approximate statistical tests for comparing super-
vised classification learning algorithms,” Neural Comput., vol. 10, no. 7,
pp. 1895-1923, Oct. 1998, doi: 10.1162/089976698300017197.

MOKHTAR AL-AWADHI received the B.Sc.
degree in information technology from Cairo Uni-
versity, Cairo, Egypt, and the M.Sc. degree in com-
puter science and communications engineering
from the University of Duisburg-Essen, Duisburg,
Germany. He is currently pursuing the Ph.D.
degree in computer science and information tech-
v/ nology with Dr. Babasaheb Ambedkar Marath-
wada University, Aurangabad, Maharashtra, India.
He is a Lecturer with the Department of Informa-

tion Technology, Faculty of Engineering and Information Technology, Taiz
University, Taiz, Yemen. His research interests include machine learning,
computer vision, pattern recognition, image processing, hyperspectral imag-
ing and non-imaging, data analytics, and natural language processing.

RATNADEEP DESHMUKH received the M.Sc.,
M.E., and Ph.D. degrees in computer science
and engineering from Dr. Babasaheb Ambedkar
Marathwada University, Aurangabad, India. He is
currently a Professor and the former Head of the
Department of Computer Science and Information
Technology, Dr. Babasaheb Ambedkar Marath-
wada University. Previously, he was an Associate
Professor with the Department of Computer Sci-
ence and Information Technology and held roles as

the Director with VIASMSC, Aurangabad. He has an extensive professional
track record, including coordinating the DST-FIST Program and the GIAN
Program at Dr. Babasaheb Ambedkar Marathwada University. His research
interests include human—computer interaction, data mining, image process-
ing, and artificial intelligence. He is the Chairperson of the IETE Aurangabad
Center and was elected as the Sectional President of the ICT Section of the
Indian Science Congress Association (ISCA), in 2019.

144243


http://dx.doi.org/10.1109/MTICTI53925.2021.9664767
http://dx.doi.org/10.3390/molecules27072324
http://dx.doi.org/10.26656/fr.2017.5(S1).035
http://dx.doi.org/10.1016/j.talanta.2018.05.095
http://dx.doi.org/10.3390/ECERPH-3-09079
http://dx.doi.org/10.3390/foods12132491
http://dx.doi.org/10.1111/jfpp.16686
http://dx.doi.org/10.1111/jfpp.15576
http://dx.doi.org/10.15131/shef.data.5164816.v1
http://dx.doi.org/10.1255/jnirs.21
http://dx.doi.org/10.1109/MGRS.2019.2911100
http://dx.doi.org/10.1007/s12010-019-03222-8
http://dx.doi.org/10.3390/rs13142833
http://dx.doi.org/10.3390/rs14184434
http://dx.doi.org/10.5402/2012/487040
http://dx.doi.org/10.1023/A:1012487302797
http://dx.doi.org/10.1109/AISP53593.2022.9760585
http://dx.doi.org/10.1109/MTICTI53925.2021.9664764
http://dx.doi.org/10.1023/A:1009715923555
http://dx.doi.org/10.1162/089976698300017197

