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ABSTRACT According to the Global Cancer Observatory, 2020, breast cancer is the most prevalent
cancer type in both genders (11.7%), while prostate cancer is the second most common cancer type in
men (14.1%). In digital pathology, Content-Based Medical Image Retrieval (CBMIR) is a powerful tool
for improving cancer diagnosis by searching for similar histopathological Whole Slide Images (WSIs).
CBMIR empowers pathologists to explore similar patches to their query, enhancing diagnostic reliability and
accuracy. In this paper, a customized unsupervised Convolutional Auto Encoder (CAE) was developed in the
proposed Unsupervised CBMIR (UCBMIR) to replicate the traditional cancer diagnosis workflow, offering
the potential to enhance diagnostic accuracy and efficiency by reducing pathologists’ workload. Furthermore,
it provides a more transparent supporting tool for pathologists in cancer diagnosis. UCBMIR was evaluated
using two widely used numerical techniques in CBMIR, visual techniques, and compared with a classifier.
Validation encompassed three data sets, including an external evaluation to demonstrate its effectiveness.
UCBMIR achieved 99% and 80% top 5 recalls on BreaKHis and SICAPv2 with the first evaluation
technique while using the second technique, it reached 91% and 70% precision for BreaKHis and SICAPv2,
respectively. Moreover, UCBMIR displayed a strong capability to identify diverse patterns, yielding 81%
accuracy in the top 5 predictions on an external image from Arvaniti. The proposed unsupervised CBMIR
tool delivered 83% accuracy in retrieving images with the same cancer type.

INDEX TERMS Histopathological images, content-based medical image retrieval (CBMIR), convolutional
auto encoder, unsupervised learning, whole slide images (WSIs), digital pathology.

I. INTRODUCTION
Cancer is a leading cause of death worldwide, with nearly
10 million deaths reported in 2020, as per the World Health
Organization (WHO) [1]. In 2020, breast and prostate cancer
affected 2.26 million and 1.41 million cases, respectively.
Accurate cancer diagnosis is critical for effective treatment
because each cancer type requires a specific treatment
regimen. However, diagnostic errors are prevalent, affecting
approximately 5.08% of cases, which translates to around
12 million adults in the United States [2]. This significant
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percentage of human error in a large number of cancer cases
poses significant drawbacks for society and the quality of
human lives.

Moreover, there is a significant disparity in treatment
availability between countries with varying income levels.
In high-income countries, comprehensive treatment is avail-
able in over 90% of cases, but this figure drops to less than
15% in low-income countries [3]. In this context, there is an
urgent need to develop reliable and accurate diagnostic tools
that can assist medical professionals in making accurate and
timely diagnoses, regardless of their location or income level.

Computer-Aided Diagnosis (CAD)models play a vital role
in reducing the incidence of human errors and providing an

VOLUME 11, 2023

 2023 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ 143387

https://orcid.org/0009-0006-7536-3772
https://orcid.org/0000-0002-7616-6029
https://orcid.org/0000-0002-0181-3412
https://orcid.org/0000-0003-2249-9538


Z. Tabatabaei et al.: Toward More Transparent and Accurate Cancer Diagnosis

inclusive worldwide platform for individuals with varying
incomes. CAD offers multiple approaches under the umbrella
of ‘‘digital pathology’’ to enhance conventional cancer diag-
nosis. Digital pathology has garnered significant attention
due to its ability to provide a definitive diagnosis at the
pathology level, taking into account factors such as size,
complexity, and color [4]. The challenges and opportunities
presented in digital pathology are explained in [5]. Despite
the challenges, digital pathology can serve as a bridge toward
the discovery of histopathological imaging and enable more
accurate prognostic predictions for disease aggressiveness
and patient outcomes.

The following subsections cover a brief literature review of
digital pathology on WSIs.

A. SEGMENTATION
Automatic detection of irrelevant regions of tissue may
bring a more reliable prediction. In [6], they proposed a
multi-scale model to detect invasive cancerous area patterns
in WSIs of bladder cancer. Similarly, [7] focuses on
detecting blood and damaged tissue as problematic artifacts in
bladder tumors. In [8], the authors apply the DenseRes-Unet
model to multi-organ histopathological images to segment
overlapped/clustered nuclei. A binary threshold is set to
detect the contour of the extracted nuclei in the images,
as the morphological characteristics of the cells are critical
to grading the cancers. Moreover, the two-stage nuclei
segmentation strategy proposed in [9] based on watershed
segmentation is used to distinguish between carcinoma and
non-carcinoma recognition in the Bio-imaging 2015 data
set. Additionally, [10] introduced a novel approach to detect
nuclei in breast cancer histopathological images using a
stacked sparse Auto Encoder (AE).

Segmentation techniques have been studied extensively
to quantify cell nucleus form and dispersion, which may
improve accuracy in classification and grading [11]. How-
ever, these methods do not offer direct benefits to pathol-
ogists. Though Deep Learning (DL) has shown promise in
improving segmentation, it relies heavily on large annotated
data sets [12], limiting its impact [13]. Innovative approaches
are needed to develop new techniques that can benefit
pathologists and improve disease diagnosis.

B. CLASSIFICATION
Classification of input images is a critical task in medical
image analysis, where an optimal classifier is expected
to provide accurate labels for each input [14]. This can
significantly aid pathologists in their daily analysis of tissue
grading. For instance, in the realm of cancer diagnosis,
saliency maps computation has improved the diagnostic
process, both in radiological [15] and histopathological [16]
images.

Reference [17] validated an end-to-end pixel-level pre-
diction of Gleason grades and scored the entire biopsy.
Similarly, [18] proposed an AE using Siamese network

aimed at learning image features by minimizing the distance
between input and output. Another approach was proposed
by [19], who aimed to decrease the rate of diagnostic
errors by performing patch-based transfer learning. However,
patch-level data sets extracted from Whole Slide Images
(WSIs) often contain mislabeled patches, which may lead
the classifiers to miss important information. To address
this problem, [20] proposed DenseNet121-AnoGAN, which
employs unsupervised anomaly detection with genera-
tive adversarial networks (AnoGAN) to prevent missing
mislabeled patches. This approach has been successfully
applied to classify the BreaKHis data set into benign and
malignant.

The author in [21] fed an Inception Recurrent Residual
Convolutional Neural Network (IRRCNN) model with two
breast cancer data sets to have binary and multi-class
classifiers. The authors in [22] conducted their experiments
on DenseNet with SENet IDSNet and BreaKHis data
set. They fine-tuned DenseNet-121 to propose an accurate
classifier. A deep Feature Extractor (FE) from a pre-trained
network and a classifier are used in [23] to classify BreaKHis.
16 pre-trained networks and 7 classifiers were tested in this
paper.

In brief, classifier architectures have been proposed for
use in diagnostic pathology to aid pathologists in making
more accurate cancer diagnoses. Many studies have reported
high classification accuracy, which has been validated in
engineering laboratories. However, despite their potential
importance, these measurements have not yet led to a
significant change in diagnostic imaging.

While classification and segmentation have proven to
be valuable tools, they have not drastically transformed
the diagnostic process. This may be attributed to their
inability to reduce ambiguity and boost the confidence of
pathologists in their diagnoses. In essence, these methods do
not provide any additional information to aid pathologists
in their report writing during the diagnostic process. For
instance, CAMs and saliency maps provide clinicians with
information exclusively about the case under study. These
are visual information from the input image that CNNs are
paying attention to perform classification. While CBMIR
goes deeper in providing transparency and reliability to
pathologists. It is retrieving similar cases from the previously
diagnosed cases. This approach is similar to the pipeline
followed by pathologists who consult with reference books
in pathology, such as Atlas. So, CBHIR is a digital intelligent
Atlas book that can speed up the search process and be more
accurate.

In regards to developing methods for specific applications,
it is possible to achieve higher results for the intended objec-
tive. However, creating and implementing uniquemethods for
each potential task of interest is impractical. As an alternative
approach, CBMIR has established a reliable framework for
quality control. While it may have poorer accuracy than
an application-specific instrument, having a multipurpose
general-purpose tool like CBMIR can still be useful.
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C. CONTENT-BASED MEDICAL IMAGE RETRIEVAL (CBMIR)
Automated medical imaging has been growing dramatically
to improve clinical treatment and intervention in medical
diagnosis. This yields an exigent demand for developing
highly effective CAD systems. CBMIR is an active area
of research with significant applications in routine clinical
diagnostic aid, medical education, and research. In CBMIR,
the end user targets retrieving the most relevant images. So,
pathologists will trust this outcome easier because not only
will they have a second opinion on their tissue (label), but
they can also look for the same patterns in the previous
tissues. In the classification task, they can get a label for their
new tissue without knowing the reason. But in CBMIR, they
can see the similarity between their tissues and the retrieved
ones. Moreover, the explainable nature of CBMIR allows
clinicians to understand how the system arrived at a particular
diagnosis or recommendation, promoting transparency and
trust in AI-assisted medical decision-making. Most notably,
CBMIR is pathologist-centric; in contrast to classification,
it is essentially an attempt to make decisions on behalf of the
pathologists.

In DL, similar patterns mean similar features and represen-
tations. Humans can properly describe and interpret image
contents, while digital machines can provide fewer semantic
words for the same image. Machines provide a numerical
description of the images with a wide gap compared to the
human interpretation of the same image. This gap is named
‘‘semantic gap,’’ and this broadly limits the performance of
retrieval tasks [24]. The semantic gap is the main reason
CBMIR has not made it into the daily laboratories workflow,
yet. Indeed, this is arguably the paramount challenge in
adopting CBMIR into the laboratories’ workflow. Pathol-
ogists face numerous challenges in the current diagnostic
paradigm, with time being a common factor. However, the
impact of these challenges extends beyond just medical
professionals and patients; it can also affect society as a
whole. This can lead to emotional distress and other adverse
effects on the well-being of patients and their families.
Digital pathology, through the use of CBMIR, can mitigate
the impact of these changes and enhance the accuracy of
diagnoses.

CBMIR in virtual telepathology offers a reliable frame-
work for achieving quality control through computational
consensus-building, ensuring that diagnoses are accurate
and consistent across different pathologists and healthcare
institutions. By utilizing a vast database of reference images
and advanced algorithms, CBMIR enhances the accuracy
of diagnoses, potentially decreasing the need for additional
studies and speeding up the diagnostic process. This can lead
to better patient outcomes and a more efficient healthcare
system. In recent years, CBMIR has gone through a
renaissance with the promise of revolution. In a previous
study [25], a CNN-based AE was applied to the BreaKHis
data set with the aim of minimizing misinformation and
evaluating the performance of CBMIR in a binary scenario.
However, the reconstructed images produced by this method

were found to be blurry, indicating that the extracted features
by the AE were not robust enough to reconstruct the
original image. In addition, the scope of this study was
limited to detecting breast cancer using a two-class data
set, without considering other diseases. These limitations
highlight the need for further research to improve the
quality of feature extraction in CBMIR systems. In [26],
the CBMIR performance was improved in a supervised
manner using a Hybrid feature-based ICNN model. The
model was trained by adding three Fully Connected (FC)
layers to accommodate the classification of cancer subtypes
from TCGA. The researchers in [27] aimed to replicate
the process of detecting morphological features used by
pathologists in cancer diagnosis by incorporating different
magnification levels into their CBMIR system. Specifically,
they trained their system using a subset of TCGA data set
in three magnification levels: 20×, 10×, and 5×. To address
the differences in features that might exist at these different
magnification levels, the last DenseNet-121 block [28] was
re-trained using 10× and 5× magnification patches. This
supervised approach improved the adaptability of the FE and
resulted in better overall performance of the CBMIR system.
KimiaNet reported two types of image search: horizontal
search and vertical search. In the horizontal search, the query
is applied to the entire data set to find similar whole slide
images (WSI) with a self-supervised model [29], while in
the study by Fashi et al. [30], the vertical search approach
is designed to identify similar types of malignancies in
a specific organ. This is achieved by utilizing pre-trained
models with openly provided weights from the Keras library.
The problem with supervised CBMIR is that it requires a
large amount of labeled data, which can be time-consuming
and costly to obtain. On the other hand, the problem with
self-supervised CBMIR is that it may not perform as well as
supervised methods and may require more complex models.
Indeed, many researches [31], [32], [33], [34], [35], [36],
[37], [38], [39], [40] have been dedicated to CBMIR, but
the overall performance of the existing systems is not high
enough due to the growing medical images and digital
pathology.

The main contributions of this paper in proposing an
Unsupervised CBMIR (UCBMIR) are:

• Proposing a new unsupervised approach for prostate
and breast cancer gradation problem using CBMIR that
achieves performance comparable to fully supervised
methods.

• Extensively validating the proposed UCBMIR approach
on three databases, including BreaKHis for a binary
scenario and SICAPv2, which is the largest pixel-wise
annotated prostate data set, and Arvaniti for multi-class
grading problem, which is more challenging.

• Conducting an external evaluation to demonstrate the
performance and generalization of UCBMIR, by train-
ing the model on SICAPv2 and testing it on the Arvaniti
data set.
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• A comprehensive evaluation of UCBMIR is presented,
encompassing various numerical and visual perfor-
mance metrics.

In addition, the paper addresses two major problems
in traditional cancer diagnosis: inexperienced pathologists
requiring more ancillary studies for diagnosis and the
time-consuming process of differentiating between cancer
grades. The UCBMIR model proposed in the paper provides
a vast database of images that pathologists can use as a
reference for diagnosis, allowing them to makemore accurate
diagnoses even if they are inexperienced. Additionally, the
proposed tool enables pathologists to access annotated image
databases instantly, leading to a faster diagnosis and skipping
time-consuming reading and searching processes in ‘‘Expert-
Path’’ and ‘‘PathologyOutlines’’ or an Atlas book. In order
to reach the primary objective of this study we introduce an
unsupervised image search tool for pathologists to facilitate
the efficient retrieval of similar images from previous cases.
The initial stage involves training a customized CAE that
includes a skip layer between the encoder and the decoder,
as well as an attention block in the bottleneck. This CAE
is trained to reconstruct images and learn effective data
representations while simultaneously ignoring the noise. The
encoder with the bottleneck of the trained CAE serves as our
FE in the search stage. We represent the complete training set
of the data set as in previous cases and carry out patch-by-
patch retrieval to obtain diagnosis-relevant patches for each
query in the test set. Our ranking algorithm, which utilizes
Euclidean distance, identifies the retrieved patches, which
are then presented to the pathologists as the output of the
proposed UCBMIR. Our study showcases the practicality of
our approach in enhancing the efficiency and accuracy of
image retrieval for pathologists and engineers. As a result,
our method can accelerate cancer diagnosis for pathologists,
and the deep layers in the custom-built CAE can learn image
features in an unsupervised manner, circumventing the issue
of insufficient training images.

II. MATERIAL
The study evaluates the performance of the UCBMIR
on two of the largest labeled histopathological images in
breast and prostate cancer, namely BreaKHis and SICAPv2,
respectively. The Arvaniti data set is utilized as the third
and an external data set in order to validate the model
performance. These two cancers, prostate and breast cancer,
are selected as they are prevalent in society.

BreaKHis: breast tissue biopsy slides were stained with
Hematoxylin and Eosin (H & E) and labeled by pathologists
at the P&D medical laboratory in Brazil [41]. This data set
is composed of 7909 microscopic images of breast tumor
tissues collected from patients using magnifying factors of
40×, 100×, 200×, and 400× in the size of 224 × 224 × 3.
This binary data set contains 588 benign and 1232 malignant
images in 400×.

SICAPv2: prostate samples were sliced, stained in H &E,
and digitized at 40×magnification. Images were divided into

512×512×3 and down-sampled to 10×, which is commonly
used for evaluating images. This multi-class data set contains
155 WSIs in total: 4417 non-cancerous patches, of which
1635 are labeled as Grade 3 (G3), 3622 as Grade 4 (G4),
and 665 as Grade 5 (G5), Table 1. Images labeled by a
group of expert urogenital pathologists at Hospital Clínico
of Valencia. SICAPv2 is the largest publicly available data
set that includes pixel-level annotations of Gleason grading,
providing detailed information on the presence of cribriform
patterns [17].

TABLE 1. SICAPv2 data set description.

In order to validate the generalization capability of the
UCBMIR to find similar images, Arvaniti, an external data set
containing pixel-level annotations of Gleason grades, is used.

Arvaniti: the data set was shared by Arvaniti et al. [42],
which contains 625 patches of prostate histology images
at 40× magnification. Regarding a fair comparison with
SICAPv2, in [17], some configurations were applied to
re-sample images to 512 × 512 at 10× magnification.
To normalize the color distribution of Arvaniti, the author
in [17] applied a histogram match to the re-sampled images
and set the images in SICAP and Panda [43] as the
reference images. These re-sampled images are used as the
third data set and the external evaluations in this paper.
Arvaniti is employed for performance evaluation alongside
normalization by both Panda and SICAP, in addition to
the external evaluation. This is discussed in detail in the
following sections of this journal paper.

III. METHODOLOGY
A CBMIR contains four subsections: 1. training, 2. indexing
and saving, 3. searching, and 4. evaluating. The search tool
in CBMIR uses the contents within each pixel of the images
instead of using annotations or metadata. Consequently,
similar images are retrieved from a large data set that matches
the contents of the queried image. Also, it is often impractical
to manually annotate images in a large data set, thus an
unsupervised FE is developed in this study to address this
issue.

The four phases of the proposed UCBMIR are described
in-depth in the following subsections with Figure 2 and
Figure 1, in accordance with SICAPv2, as it is a complex
multi-class data set.

A. TRAINING
The only training part of the proposed UCBMIR is training
the proposed CAE. CAE aims to reconstruct the output
as equal to the input. CAE could learn effective features
with unlabeled data in an unsupervised manner. Using a
CAE approach offers several benefits, such as its ability
to capture spatial information through convolutional layers,
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FIGURE 1. An overview of the UCBMIR for retrieving similar cases to a given query. The preprocessing stage involves extracting tissue from the
patient’s body and dividing the whole slide images (WSIs) into patches of a specific size [17]. In the training stage, these patches are used to train
the proposed unsupervised CAE to extract feature representations. The trained encoder and bottleneck layers are then used to extract feature
embeddings FEs that are used in the CBMIR section. In the CBMIR stage, the search engine computes the embedding features of the training set
and stores them in a dictionary. When a query image is selected from the test set, the FE computes the embedding of that query and compares it
with those in the dictionary. The model then returns the K most similar patches based on the pathologists’ needs.

which are well-suited for processing image data. Moreover,
CAE employs multiple layers to extract advanced image
representations, resulting in higher-level feature recognition.
These multi-layered models have fewer free parameters,
making them simpler and faster to train, reducing the cost
and resources required for training. Figure 2 exhibits an
illustration of the proposed CAE architecture. It contains
three main parts:

• Encoder: it captures the structural attributes of the
input images across a feature vector per image with
200 elements. The sizes of the convolutional filters in the
encoder are [16, 32, 64, 128, 256]. Histopathological
images are highly detailed; using operations such
as pooling layers will cause them to lose lots of
information. Because of that, in the proposed CAE,
the size of the images decreases by passing through
convolutional layers without any pooling layer.

• Bottleneck: it contains 200 extracted features per
image. As can be seen in Figure 2, a residual block
in the bottleneck contains four filters in the size of
[64, 32, 1, 256].

• Decoder: it reconstructs the input from its 200 inter-
mediate feature vectors. Consequently, to the encoder,

FIGURE 2. Proposed CAE architecture with kernel size of 3 throughout
the model, the stride of 2 in the encoder and decoder, and 1 in the
bottleneck layer.

the filters in the decoder part are in the size of
[128, 64, 32, 16, 3].

The main objective of the proposed CAE is to find the most
discriminative feature vectors to describe the images without
supervision. Briefly, it compresses input image patches (of
dimensions width × height × channels) into a fixed-length
vector. The performance of the FE is directly related to the
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depth of the learning model, as deeper and more complex
models might result in overfitting. To address this issue, the
proposed CAE employs a residual block in the bottleneck
to increase the network depth and improve end-to-end
mapping.

To get better performance gain, inspired by highway
networks [44] and deep residual networks [45], we add
a skip connection between two corresponding convolu-
tional and deconvolutional layers. When the network goes
deeper, image details can be lost, making deconvolution
weaker at recovering the input. Skip connections benefit by
back-propagating the gradient to the bottom layers, making
training a deeper network much more accessible. In other
words, skip connections pass gradients backward, which
helps find a better local minimum.

Mean Square Error (MSE) is the loss function that updates
the network weights during the training phase. The minimum
amount of MSEmeans more similarity between the input and
the output. The greater the similarity between the input and
the reconstructed images, the more meaningful features are
in the bottleneck. In practice, we find that using Adam with a
learning rate 5 × 10(−5) can train the model in 10 epochs.
Then, the decoder part of the trained CAE is discarded,
and the remaining sections, including the encoder and the
bottleneck, play a role as an FE.

B. INDEXING AND SAVING
The indexing and saving stage is a crucial step in
CBMIR as it enables efficient storage and organization of
extracted features. This, in turn, enables fast and accurate
retrieval of relevant medical images during the search stage,
thus improving the diagnosis and treatment of medical
conditions. In our study, we used n images from both
the validation and train sets of each data set as input
to the FE, resulting in n feature vectors that represent
each image in a 200−dimensional latent space. These n
feature vectors were then stored in a dictionary, Di =

[F1,F2, . . . ,Fn], where each Fi contains the features for a
single image.

During the retrieval stage, we utilized this dictionary
as a reference for comparison with the query image. For
the SICAPv2 data set, there were 2122 query images.
By organizing and storing the extracted features in this
manner, we aimed to improve the efficiency and accuracy
of our CBMIR system. This approach enabled us to
retrieve medical images that were relevant to a given query,
thereby aiding in faster and more accurate diagnosis and
treatment of medical conditions. Figure 1 illustrates the
process of organizing and storing the extracted features
for efficient retrieval of medical images during the search
stage.

The extracted feature vectors of the database and the
index of the related image were stored in a pickle file with
the columns of (‘‘indexes′′ : indexes, ‘‘features′′ : features by
importing the pickle library in Python. Since extracting,
indexing, and storing need high computational power,

we implemented the work on GPU with the NVIDIA GeForce
RTX 3090.

C. SEARCHING
The searching process in CBMIR involves three key steps:
similarity calculation, ranking and retrieval, and visualization
and presentation. During similarity calculation, the search
engine uses similarity measures such as Euclidean distance,
cosine, Manhattan, and Haversine to calculate the similarity
between the query image and other images in the database.
The images in the database are then ranked based on their
similarity to the query image, and the top-ranked images are
retrieved and presented to the user for further analysis.

In this paper, we experimented with both Cosine and
Euclidean distances, and based on our results, we concluded
that the Euclidean distance was the more suitable choice.
We use Euclidean Distance to measure the similarity of
two feature vectors. Specifically, we calculate the distance
by each query feature FQ with all the feature vectors in
Di, and the smaller Euclidean value corresponds to more
similar images. Our experimental findings suggest that
Euclidean Distance is an effective metric for measuring
similarity in CBMIR systems. By accurately measuring the
similarity between images, the search engine can more
effectively retrieve relevant medical images, leading to
improved diagnosis and treatment outcomes.

D. EVALUATION
It is worth considering what ‘‘accuracy’’ means in the context
of a CBMIR. The accuracy of CBMIR depends on what we
are looking for and what is displayed by the search engine.
The use case determines whether the search is looking for
images with the same stain, comparable stain intensity, same
histologic feature, or similar grade; hence, this objective is
ambiguous. To address this lack of awareness of the intent
of the search engine, top K score at retrieving images of
the same histologic features and Gleason grades engaged
in the prior research to determine the performance of their
experiments. To the best of the author’s knowledge, there
are two most-used strategies for calculating the top K score
described in the recent articles:
1) If there is only one correct retrieved image, this has been

shown as a correct answer [46]. In this paper, we set
K = 3, 5, 7, which evaluates the performance of our
model to correctly present at least one correct result in
the top K retrieved images. In this paper, we name this
method as ‘‘EV 1’’ regarding the report of the results in
the following tables.

ACC@K =
1
N

N∑
i

ε(αi,TOP(ans[: K ])) (1)

In this equation,N denotes the number of query patches,
and αi represents the label of the i-th query patch. The
function TOP(ansi[: K ]) retrieves the top k most similar
results for the query and outputs 1 if any of these results
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match with the query and 0 otherwise. In other words,
if TOP(ansi[: K ]) belongs to the set of labels of the i-th
query, denoted by αi, the function ε() returns 1.

2) Precision (2) and recall (3) are the two selected
indicators to evaluate the results. In this study, this is
termed ‘‘EV 2’’.

Precision =
Rv
n

(2)

Recall =
Rv
M

(3)

The relevancy of the query and retrieved images has to be
measured by considering the provided labels for each patch
in the ground truth. Herein, Rv denotes the set of retrieved
images that are considered relevant, while n signifies the
total number of captured images. Moreover, the number of
relevant images present in the data set is explicitly annotated
as M . The proposed UCBMIR is evaluated based on both
top-ranking image retrieval strategies to mimic the standard
search process.

It is worth noting that this is the only place where
the grand truth provided by expert pathologists was used.
In other words, the labels were exclusively used to assess
how effectively the model could retrieve images with similar
histopathological patterns.

IV. DISCUSSION AND RESULTS
Matching pairs to the image is the core of any search engine,
in which an image is compared to a database to determine
similarities. Numerous studies have been conducted on
CBMIR in a binary manner, as it is more challenging with
multi-class data sets.

Breast cancer is a prevalent malignancy affecting women
globally. In the domain of CAD, the BreaKHis data set is a
popular choice for evaluating the performance of algorithms
in CBMIR. In this study, we employed the BreaKHis to
assess the efficacy of our UCBMIR approach. Our method
demonstrated superior performance in matching image pairs,
as evidenced by the results presented in Table 2. Specifically,
our approach outperformed two previously reported methods,
namely [25] and [47], with precision scores of 92% and 91%,
respectively, for both evaluation criteria (EV1 and EV2).
These results suggest that our approach is highly effective
in accurately identifying patterns in breast cancer images.
Besides, according to the obtained results in Table 2, EV 1
works better in assessing the performance of a CBMIR
tool since it succeeds in reporting the recall while EV 2
suffers from a notable decrease in measuring the recall. So,
in the following experiments, EV 1 evaluates the CBMIR
performance for prostate cancer as the multi-class data
set.

In order to evaluate the effectiveness of our CBMIR
method on a multi-class data set, we utilized SICAPv2 and
Arvaniti data sets, both containing four classes. Given the
global prevalence of prostate cancer, we selected this type of
cancer for our experiments and used SICAPv2 as the largest

TABLE 2. Comparative results on BreaKHis 400× at k = 5. We measure
the precision and recall with both EV 1 and EV 2.

TABLE 3. Model quality results on SICAPv2 with top 5 retrieved images.
The reported results are obtained by EV 1. The metrics are precision,
recall, and accuracy. All other studies reported their results at the top 5
images.

pixel-wise annotated data set. The Arvaniti data set was
re-sampled by referencing Panda and SICAP, as stated in [17],
and was used in two experiments of this paper to demonstrate
the robustness of our methodology. Table 3 presents the
results obtained using our approach with K = 5 and EV1
as the evaluation criteria. To demonstrate the efficacy of
our methodology, we conducted two experiments using the
Arvaniti data set. In the first experiment, to ensure a fair
comparison, we trained the model using Arvaniti normalized
based on both SICAP and Panda. The results of these two
trained models, obtained by conducting the entire training
and searching steps, are reported in Table 3. These findings
demonstrate the superior performance of our approach in
accurately identifying and classifying prostate cancer images
in multi-class data sets, thereby potentially contributing to
the development of improved diagnostic tools and clinical
decision-making processes.

In a study by Hegde [48], Scale-Invariant Feature Trans-
form (SIFT) [49] was used as a traditional FE, along with
SMILY, to report the accuracy of retrieving images with the
correct Gleason patterns from prostate specimens in TCGA.
Our UCBMIR, as shown in Table 3, achieved an accuracy
of 80%, surpassing SMILY’s accuracy of 73%.

To provide an interpretive perspective for the quantitative
results, we incorporated a pre-trained VGG16 [50] (Ima-
geNet) as a backbone to extract histological features from
the images. We added a GlobalMaxPooling2D (GMP) and
two dense layers [200, 4] to train the model as a classifier
in a fully-supervised manner. After training the model,
we removed the last layer (Dense (4)) and used the remaining
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FIGURE 3. The structure of training VGG as a multi-class classification on SICAPv2 and delivering
200 features per image to the following CBMIR steps. The Conv2D layers are shown in ‘‘orange’’,
MaxPooling2D in ‘‘red’’, Dense layers in ‘‘green’’, and flatten in ‘‘teal’’. By discarding the last dense
layer of the well-trained VGG16, the FE can be moved to the next sessions to extract the features of
the images. This is just used as a fully supervised baseline method to compare the performance of
the proposed unsupervised FE in extracting features with respect to the one extracted from the
classification-task VGG training.

layers as an FE to extract 200 features per image, which
were then fed into the search engine component of UCBMIR.
Figure 3 illustrates how we integrated the pre-trained VGG16
into our CBMIR. So, as can be seen in Figure 3, first, the
VGG16 trained as a classifier by adding two dense layer
with 200 and 4 nodes. Subsequently, the well-trainedVGG16,
in conjunction with the dense layer with 200 features, was

moved to the offline and online sessions of the proposed
CBMIR platform to extract the features of the data set and the
query. Following the retrieval of the topK images, it is time to
display and evaluate the performance of the CBMIR platform
with a supervised FE (VGG16). Comparing the results shown
in Table 3, UCBMIR achieved a comparable performance as
the supervised method with EV1.
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FIGURE 4. Evaluation of the UCBMIR at k = 5 on BreaKHis 4a and SICAPv2 4b. From 2122 query images in SICAPv2,
for 447 cases, the model could not find at least one correct similar image according to their labels, while it
retrieved two similar images at 5 top for 641 cases.

We conducted experiments using SICAPv2 and Arvaniti
data sets to evaluate and compare the effectiveness of our
UCBMIR with respect to the fully-supervised VGG16 in
identifying and classifying prostate cancer images. As shown
in Tables 3 our unsupervised method achieved similar results
to the supervised VGG16, with a slightly lower precision
score in both EV 1 (by 0.01). This suggests that our
unsupervised method is a promising approach for CBMIR in
the context of prostate cancer, potentially reducing the need
for manual annotation and supervision.

In this study, Figure 4a and Figure 4b were used to present
the results of the experiments. The bar charts were used to
depict the number of similar images out of K = 5 retrieved
images for BreaKHis and SICAPv2, respectively. For the
BreaKHis data set, 545 images in the test set were used
as query images. Based on Figure 4a, the model failed to
find at least one similar image for 29 queries, while it could
find three and four similar images for 114 and 170 queries,
respectively. In the case of SICAPv2 data set, the model could
retrieve one similar image among the top K for 628 image
queries, according to the results shown in Figure 4b. The
model was able to retrieve two images out of 5 in the same
class label as the query in 101 cases of BreaKHis. In the case
of SICAPv2, the model could retrieve two images with the
same class label for 628 queries out of the top 5 retrieved
images. So, the proposed UCBMIR approach can correctly
retrieve at least one sample belonging to the same category as
the query in 78.9% of cases for the SICAPv2 data set. In the
BreaKHis data set, this retrieval success rate is even higher
at 94.7%. To the best of the authors’ knowledge, these results
are very promising in the field of automatic atlases.

Due to the well-known variability between pathologists in
Gleason grading and variations in histology sample prepara-
tion, it is a difficult challenge to distinguish between different
grades of prostate cancer. These factors may contribute to
the differences in results. Differentiating between G3 and G4
in prostate cancer requires highly experienced pathologists,
takes time, and has limited inter-pathologist repeatability.

However, Figure 5 demonstrates the impressive ability of
our UCBMIR to identify similar patterns between G3 and
G4. Each row and column in Figure 5 corresponds to three
different values of K in Arvaniti (Panda), SICAPv2, and
Arvaniti (SICAP), respectively.

These results highlight the potential of our approach to
aid in the accurate identification and CBMIR of prostate
cancer images, thereby facilitating diagnosis and improving
patient outcomes. Further research is needed to validate these
findings on larger and more diverse data sets. Due to this, our
model is also verified on an external data set with the intention
of evaluating the trained model’s capacity for generalization.

A. VALIDATION ON AN EXTERNAL DATA SET
In order to validate the performance of our trained model
on an external data set, we utilized the SICAPv2-trained
model to make predictions on the re-sampled Arvaniti data
set (normalized by SICAP). The results of this evaluation
are reported in Table 4. The obtained accuracy and precision
results are slightly better than those obtained from the test set
on SICAPv2, while the recall is slightly lower by 0.07. It is
important to mention that this validation process is crucial
in demonstrating the generalization ability of our UCBMIR
beyond the original training data set. These results further
confirm the robustness of our approach and its capability to
provide accurate retrieval results across multiple data sets.

TABLE 4. Results of Arvaniti (normalized by SICAP) as data set for the
external experiments with top K = 3, 5, and 7, EV 1.

B. VISUAL EVALUATION
We have included three figures, Figure 6, Figure 7, and
Figure 8, which showcase the results of our experiments.
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FIGURE 5. Confusion matrix of UCBMIR on the different test cohorts at K = 3, 5, 7. a. ARVANITI (Panda), b.
SICAPv2, c. ARAVNITI (SICAP).

FIGURE 6. The top 5 images retrieved from the BreakHis data set for five randomly selected
query images, with the true and false retrieval results depicted in green and red boxes,
respectively.

These three figures illustrate the interpretability of the
proposed UCBMIR.

The purpose of these figures is to enhance comprehension
of the comparison by utilizing visual aids. Each of these
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FIGURE 7. The top 5 retrieved images from the SICAPv2 data set for five query images
selected at random, where true and false retrieval results are respectively indicated with
green and red boxes.

figures comprises rows that correspond to a random query
from the test set of BreaKHis×400, SICAPv2, and Arvaniti,
respectively. The subsequent images in each row exhibit the
top 5 retrieved images from the training set of the relevant
data set. We have implemented a color-coding scheme to
facilitate the interpretation of the results. In particular, a green
border surrounds the correct retrieved image, which possesses
the same label as the query, whereas a red border highlights
the mis-retrieved images that have different labels than the
query.

Figure 7 demonstrates that one of the challenges we
encountered in our experiments with SICAPv2 was the
presence of a white background in the images. To determine
whether the patches in SICAPv2 contained meaningful
patterns for pathologists to analyze, we enlisted the help
of an expert pathologist to review them. Our pathologist
confirmed that despite the presence of a white background
in the images, there was still enough tissue for pathologists
to evaluate and compare the patterns in the query tissue
with the retrieved patches. There are some bad cases as
shown in line 2 of Figure 7 which most of the retrieved
images are not highlighted with the red border. This means
that the tool had challenges in retrieving similar patches for
this query. The reason is mainly due to the high similarity
of histopathological features of G3 and G4 of prostate
cancer.

In addition to validating the approach of UCBMIR using
an external data set and demonstrating the generalization
capability of our method, we selected the Arvaniti data set for
another reason: it does not have a white background. Figure 8
shows the top 5 retrieved images resulting from our external

validation experiment, where a well-trained model with
SICAPv2 was used to retrieve images for five random queries
from the Arvaniti data set. Our external validation experiment
not only validates our proposed UCBMIR for use with
external data sets but also demonstrates the generalization
capability of our method.

Through our visual evaluation, we aim to present a
clearer understanding of the effectiveness of our approach.
Observing the retrieved images alongside their labels can
be useful to evaluate the performance of our method and
assess its strengths and limitations. These figures are an
essential component of our evaluation and will contribute
significantly to understanding our methodology. Overall, this
evaluation can provide valuable insights into the performance
of our approach and make informed judgments regarding its
effectiveness.

C. COMPARING UCBMIR WITH A CLASSIFIER
CBMIR and classification are two different approaches in
medical image analysis. CBMIR aims to retrieve similar
images from a database based on the content features of a
query image, while classification aims to categorize images
into pre-defined classes or labels. The only mutual output
of the classification tool and CBMIR is the output labels
corresponding to the output patches. In the above sections,
it is mentioned that UCBMIR achieved comparable results
with supervised CBMIR techniques, proven by the reported
accuracies in Table 3. Regarding comparing the predicted
labels in terms of retrieving similar images belonging to the
same cancer type, we provide Table 5. This table compares
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FIGURE 8. The top 5 images retrieved from the Arvaniti data set, which have
been normalized by SICAP, for five query images that were randomly selected.
The figure visually demonstrates the results of the external validation, utilizing a
well-trained model with the SICAPv2 data set and applying it in the search stage
of Arvaniti. The green and red boxes, respectively, indicate the true and false
retrieval results.

FIGURE 9. The confusion matrix presented in [17] is displayed in Figure 9a, while the matrix for the retrieved labels
is shown in Figure 9b. It can be observed that the UCBMIR model results in less conflict between the challenging
grades (G3 and G4) compared to the classifier.

the accuracy of UCBMIR with a classifier in [17] in both the
validation and the test set of SICAPv2.

The proposed unsupervised CBMIR model was found to
be highly effective in distinguishing between different cancer
grades, especially between the challenging Gleason grades
G3 and G4. This observation was evident from the confusion
matrix shown in Figure 9. The proposed method’s success
can be attributed to its ability to identify and utilize subtle
features and patterns in the images that may be missed by
human observers or conventional supervised models.

D. LIMITATIONS
The limitation of the pre-processing step and the medical
session can directly affect the final results of the DL-
based UCBMIR. For instance, noisy images and low-quality
scanners can diminish the accuracy of the retrieval task.
However, CAE was chosen to tackle the noisy images while
training; the low quality of images might still affect the
final results. Color variation as a result of different staining
processes, different scanners, and laboratory conditions
might fool the DL-based models. In this paper, adding a
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TABLE 5. Shows a comparison between the performance of UCBMIR with
EV 1 and the classification introduced in [17]. SICAPv2 is the data set
under study.

histogram equalization technique during the image loading
process, could tackle this issue, and as can be seen in
Figure 9b and Figure 6, the proposed framework is robust
against this issue. Due to the computational limitation, large-
scale retrieval is a limitation that hinders the performance
of the CBHIR tools in searching through a vast database of
biopsies. The proposed tool can retrieve the images at high
speed. In the SICAPv2 experience, it can retrieve the top
5 images in almost 0.28 seconds.

Although some challenges have been solved by the
proposed tool, some challenges still remain such as semantic
gap, scalability, cross-domain retrieval, privacy and security,
etc. For instance, medical images need high data protection
due to the personal information. This affects extending
the CBMIR domain as a worldwide tool across different
hospitals. Another important limitation is the semantic gap
between the extracted features of the low-level histopatho-
logical features and high-level semantic concepts. To address
this issue, FEs have to train effectively to extract the most
representative features of the patches, fast and accurately.
However, limitation or inconsistent annotations makes the
well-training of the DL-based FEs difficult. Despite all
these limitations, the CBHIR tool provides a promising
improvement in cancer diagnosis, research, and treatment.
Several pieces of research aim to address many of these issues
and further enhance the capability of the CBHIR tool and
provide more transparency, robustness, and trustworthiness.

V. CONCLUSION
In summary, this paper introduces a highly qualified Unsu-
pervised CBMIR (UCBMIR) model that can be used for both
binary and multi-class data sets. The model was evaluated on
three different data sets, as well as an external validation set.
Using the two most-used evaluation techniques, the proposed
method achieved 79% precision in EV 1 on SICAPv2 as a
multi-class data set. Notably, the unsupervised method was
able to differentiate between challenging Gleason grades of
prostate cancer. In addition to numerical evaluation, visual
assessments were conducted to demonstrate the effectiveness
of the UCBMIR. The results show that UCBMIR has good
generalizability and can be effectively applied to other types
of cancer. UCBMIR has the potential to improve laboratory
productivity, increase pathologists’ diagnostic confidence,
and contribute to the advancement of cancer diagnosis and
treatment.

The UCBMIR model not only addresses the needs and
challenges of pathologists but also addresses the problem of

engineers who face a lack of sufficient images for training
models. Future research in this field could build on these
findings and further enhance the performance of CBMIR
models for cancer diagnosis.

VI. FUTURE WORK
In the world of CBMIR, there is a vast range of possibilities
for enhancing and optimizing laboratory productivity. With
a large archive of diagnosed patients and corresponding
data, including images and treatment and monitoring reports,
it should be possible to identify and retrieve images that
are either anatomically or pathologically similar to the
biopsy sample of the patient being examined, as well as the
annotated data for each case. CBMIR has the potential to be
applicable to many types of cancer, which would increase its
utility.

Furthermore, pathologists’ reports contain the medical
knowledge of many other pathologists for similar cases,
making them a treasure trove of high-quality diagnostic
information. In the future of CBMIR, it may be possible to
make the raw information directly available to the pathologist
or to merge the important information in retrieved reports.
This would make the diagnosis process more efficient,
accurate, and informative for both the pathologist and the
patient. Additionally, expanding the use of CBMIR to other
types of medical imaging and diagnostic data could provide
valuable insights for a range of medical specialties.

In order to integrate CAD tools into daily clinician
routines, reliability, trustworthiness, and transparency are the
most critical needs. By incorporating eXplainable AI (XAI)
methodologies like filter activations, the decision of the
DL-based tools can be demystified. In regard to integrating
these tools with the clinical workflows, it is necessary to
harmonize DL-based tools alignment with the diagnostic
precision and the quality of patient care.
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