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ABSTRACT The remarkable accomplishments of deep neural networks (DNN) have led to their widespread
adoption in various contexts, including safety-critical applications. Many strategies have been implemented
to generate adversarial samples using DNN, raising the question of the security of the model. Adding slight
magnitude noise to the input samples during training or testing canmisguideDNN to produce different results
than the actual one. DNNs are sensitive to indiscernible adversarial samples but readily identifiable by them.
Currently, gradient-based approaches are used to generate adversarial samples. Gradient-based methods
require internal details of the model, such as several parameters, model type, Etc. Usually, these details
are practically unavailable, and calculating the gradient for non-differential models is impossible. In this
work, we propose a novel DESapsDE framework based on evolutionary algorithms to generate adversarial
samples from the probability of labels. We also incorporated the discussion with the various Generative
Adversarial Networks (GANs) models, such as ACGAN, DCGAN, and SAGAN. It has been observed that
GANs differ from adversarial sample generation methods and can be applied as defense mechanisms. The
proposedmethod reducedmodel confidence to 13.09% for the ResNet50model, 30.34% for theWideResNet
model, and 23.1% for the DenseNet model, with an FID score of 16.45. The proposed model varies from the
GAN model. It applies to attack-on-network models as a preventive major to make the model robust.

INDEX TERMS Adversarial examples, attacks, differential evolutionary algorithm, deep neural networks,
generative adversary networks, optimization methods.

I. INTRODUCTION
Integrating deep machine learning with industrial automation
solutions can significantly increase speed in all processes by
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avoiding human errors and reducing human interventions.
The use of deep learning changed human life in many fields.
Computer vision is the field of deep learning that is increas-
ingly used in many applications, from disease prediction [1],
[2], [3] to automated surveillance systems [4]. The advent of
many deep learning technologies has given rise to protecting
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computing systems from digital attacks [5]. Many of these
applications exhibit better performance than humans. Despite
having high performance, recent research demonstrates that
though many of the network models are strong, they are
not robust. The most popular term nowadays being used by
an adversary is adversarial machine learning, which fools
machine learning models with perturbed data. Adversarial
machine learning is becoming one of the significant threats
in machine learning. Adversarial machine learning considers
both the generation and identification of samples. Adversarial
samples are specially crafted to deceive the prediction model
and are exposed in many areas, such as image classification,
disease prediction, to face recognition.

An adversarial mechanism is an approach to producing
adversarial samples. Adversarial samples are inputs to a clas-
sification model designed intentionally to make the model
incorrect, despite resembling a valid input to the human eye.
Researchers for the generation of adversarial samples pro-
pose many approaches. Adversarial mechanisms that assist
in generating adversarial samples may be derivative-based
(gradient-based) optimization techniques. Assuming no prior
knowledge of the model, adversarial attacks are conceivable
during testing and deployment without direct access to the
model.

Szegedy et al. [6] first proposed the term adversarial exam-
ples using gradient-based evasion attacks. Recently, many
researchers attempted adversarial example attacks on deep
neural networks. Kurakin et al. [7] tried adversarial examples
in the physical environment. In the same context, Carlini and
Wagner [8] and Chen et al. [9] verified adversarial standards
in speech recognition models (ASR) and Voice Controller
systems (VCS). The recent work shows effective attacks in
contrast to neural networks that resolve numerous problems.
Initially, adversarial examples generated were not appropri-
ately imperceptible. Most methods use distance metrics of
Lp - norms (L0, L2, L∞). Sharif et al. [10] showed that Lp
norms are not essential for perceptual resembles. Secondly,
several methods were proposed for constructing adversarial
examples and making the network robust against adversarial
examples. Currently, no single defense is available to accu-
rately categorize the adversarial examples.

Many analysts use generative adversarial networks
to generate different types of adversarial samples. The
initial framework, called GAN, was suggested by
Goodfellow et al. [11] for producing fresh instances from the
entire dataset in deep learning. In recent years, GAN has pro-
gressed from making realistic human features to producing
artistic artworks [12], [13]. The effectiveness of these models
comes from the expense of computation and data. GAN
models are data-hungry to produce high-accuracy images of
many categories. GAN models require high-quality training
samples with huge volumes. These massive datasets need
time, significant human work, and expensive annotation costs
to collect and process data. Generative modeling is applicable
to produce real examples that result from a distribution

of existing samples. For instance, producing new similar
but distinct images from a collection of existing images.
GAN works on image data and makes use of convolutional
neural networks. Brock et al. [14] demonstrate how their
BigGAN technique can produce synthetic photographs that
are almost different from actual photographs. Applications
such as Generate Realistic Photographs [11], Cartoon Char-
acters, Text-to-Image Translation [13], Generate NewHuman
Poses, Image-to-Image Translation, Photo Blending, Photo
Inpainting, Clothing Translation, and Photograph Editing are
designed using GAN and many more.

Adversarial attacks may be launched in several ways.
These attacks are made primarily for image recognition
issues and are made to be effective against Neural Network
(NN) models. The training of Generative Adversarial Net-
works (GANs) is infamous. Research has been done from
various perspectives to overcome the difficulty of training
GAN. Discriminators or classifiers are vulnerable to hostile
perturbations. The adversarial robustness of these models
is increased when they are trained on data generated by
GANs. Many defenses have been suggested to lessen the
impact of adversarial attacks. Researchers use generative
adversarial networks to defend against attacks [15], [16].
Many researchers concentrated on defensive mechanisms
using GAN, such as Zhang et al. [17], who proposed a
robust system to defend the gradient-based attack applied
during the attacking and testing stages. The attacking phase
works as a proactive mechanism to intercept the attacker
from generating adversarial samples, and the testing stage
allows them to discover the perturbed examples and avoid
feeding into the classifier while preventing the attacker from
developing malicious samples. The authors utilized a neural
network to design the defense and allow the network to find
the adversarial examples.

Defense mechanisms modify the samples to make the clas-
sifier more robust to the attack. Many defense mechanisms
have limitations that apply to black-box or white-box attacks
but not to both, and most of the defense mechanisms are
specific to the attack and not applicable to the new attack.

This work addresses the associative discussion between
the generation of adversarial examples using evolutionary
algorithms (DESapsDE) [18] and the samples generated
using generative adversarial networks (GAN). The proposed
framework makes use to fool the different neural network
architectures. It generates adversarial samples with a success
rate while maintaining human perception and the speed of
the generation of samples very rapidly. The previous work
concentrates on generating adversarial samples using gradi-
ent optimization methods that need internal design aspects of
the model, such as several parameters for training, training
data, and neural network type [6], [19]. Several adversarial
samples are created without understanding themodel’s essen-
tial details, like the internal organization of the model [9],
[20]. Evolutionary algorithms work only on the probability of
labels from the target model; no internal details are required.
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The data is often fetched from physical devices, includ-
ing mobile phones and cameras. In such scenarios, getting
the gradient details in the real world is challenging. Deep
neural network models are black-box and consist of multiple
layers, and it is not easy to examine the model line by line,
even if internal details are known. It is possible to provide
cost-effective solutions using pretrained models; hence, the
adversary can make the model generate the expected out-
put. Evolutionary algorithms are the most robust, reliable,
and stable solutions introduced by Su et al. to add small
perturbations [21]. A differential evolutionary algorithm is
a global optimizer that requires only three parameters, pop-
ulation, crossover, and scaling parameters, to search for a
solution from a large space [22], [23]. Most of the exist-
ing evolutionary algorithms [21], [22], [23] concentrate on
fixed population size that results in solutions getting stuck in
local search space. Researchers have reported methods using
evolutionary algorithms based on differential evolution and
variants, but their success rate is low [21]. In a natural envi-
ronment, the population size varies due to many parameters.
The proposed solutions concentrate on changing the popu-
lation size to provide more robust solutions. The proposed
solution is more effective for low search space and focuses on
only the probability of labels with flexibility regarding attack
on any deep neural network model.

In 2017 google brain showed that any prediction system
designed usingmachine algorithms could be fooled and allow
the system to yield incorrect results with significantly less
skill. Researchers can get them to provide any effect that
they want. This vulnerability is a significant problem for
the applicability of these safety-critical practices. Most exist-
ing machine-learning classifiers are vulnerable to adversarial
examples [24], [25]. Machine learning algorithms, such as
deep neural networks, have been weak to well-crafted input
samples [6]. This weakness of adversarial mechanisms’ deep
neural networks becomes a significant threat to applying deep
neural networks in safety-critical scenarios.

The creation of adversarial examples is an optimization
issue with some conditions. The adversary aims to get the
optimal solution by adding perturbation as a minimization
or maximization function. Generating adversarial samples
becomes a significant challenge when the gradient calcu-
lation is complex such that perturbation added can hide
adversarial modification.

Deep neural networks have demonstrated unparalleled suc-
cess in solving complex problems previously deemed chal-
lenging for traditional machine-learning approaches. Deep
neural networks handle large amounts of data and model
complex relationships, contributing to their success in diverse
domains. The deep neural network generalizes its capacity to
unseen data and adapts to various tasks, making it the go-to
choice for many machine learning applications. Deep Neural
Network automates the feature extraction process, eliminat-
ing the need for manual feature engineering saving time and
resources for training the model. Deep neural networks offer
remarkable capabilities but are not immune to vulnerabilities.

Deep neural networks are susceptible to adversarial attacks,
where small, carefully crafted input can lead to misclas-
sification. Deep Neural networks raise a significant chal-
lenge to the security and reliability of DNN-based systems.
Szegedy et al. [6] contributed to discovering and exploring
vulnerabilities in neural networks. The critical vulnerability
Szegedy highlights is the sensitivity of neural networks to
small and imperceptible perturbations in input data. The rea-
sons for the vulnerability of neural networks are as follows:
Non-Linearity: A deep Neural Network is a non-linearity

in nature; small changes in input data can lead to dispropor-
tionately large differences in the activation of neurons and,
consequently, in the final output.
High-Dimensional Input Space: Neural networks operate

in high dimensional input space with millions of pixels.
In high-dimensional areas, numerous directions exist, and
small changes can cause significant alterations in the final
output.
Lack of Robust Features: Deep neural networks often rely

on features that might not be robust or stable across different
inputs.
Limited Generalization: Deep neural networks demon-

strate impressive generalization capabilities. They may need
help to generalize effectively in the presence of adversarial
examples.

The models may focus on learning patterns present in the
training data but fail to capture the underlying structure of the
data, making them vulnerable to manipulation.

Understanding and addressing these limitations are crit-
ical for developing and deploying deep neural networks.
Most of the ongoing research focuses on mitigating these
challenges and ensuring that deep neural networks are used
ethically and effectively in various applications. There are
many applications, such as style transfer, transferring one
image’s properties to another, 3-D object generations, gen-
erating faces, etc. Most applications using GAN generate
similar to the original images but significantly differ nearby.
This motivates us to work on how GAN is different from
adversarial samples. Therefore, the attacks and defense strate-
gies for generating adversarial mechanisms pulled great
attention.

We introduce below a few basic terminologies to under-
stand the concept of adversarial samples.

A. ADVERSARIAL SAMPLES
Examples are created by purposely adding minor worst-case
perturbations to regular examples so humans can not recog-
nize them easily. As shown in Figure 1, the original image x,
after adding a small perturbation of ε (>0), makes the
machine learning model change the output class with some
confidence.

B. LOSS FUNCTION FOR ATTACK
The convolutional neural network (CNN) is a dominant
deep learning model that trains network models to catego-
rize pictures based on available patterns. It may then be
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FIGURE 1. Adversarial sample generated using Novel DESapsDE
differential evolutionary method.

FIGURE 2. Deep learning as the optimization process.

taught to recognize things in photos. As shown in Figure 2,
networks are developed by embedding an optimization pro-
cedure that involves a loss function to quantify the model’s
error.

The loss function evaluates the machine learning model’s
performance using various loss functions. As shown in
Figure 3, the network model θ is trained using optimization
algorithms that calculate the error generated.

The loss function is used to upgrade themodel by providing
retraining. The purpose of retraining the model is to minimize
loss, as minimum values represent an improved model than a
larger value. Let us consider a network parameterized by
θ that transfers a sample x to a real label y0. An adversary
intends to use the function to misclassify x0 to yfalse. Here
yfalse is the output label other than the actual class label. Here
y0 is the original label, and ytrue is the predicted label. The
function’s output after training is shown in (1). The input x
never changes during training.

Training:LTrain (θ) = c
(
y0, ytrue

)
, (1)

where c(a, b) is a cost function between a and b.

FIGURE 3. The loss function for adversarial sample attack.

C. NON-TARGETED ATTACK
This attack misguides the model to any one of the classes.
Adversaries make the model give incorrect results. In a non-
targeted attack, θ designates the number of parameters as
constant, and the loss function is minimized optimal solution
is as shown in (2).

L(x ′) = −c
(
y′, ytrue

)
(2)

D. TARGETED ATTACK
Targeted attack misguides the deep neural network to a deter-
mined class. This attack is targeted to receive a specific class
for the given input, making it more difficult to attack. The
output may be any arbitrary class, but not the original one.
In a targeted attack, the loss function is maximized optimal
solution as shown in (3).

L(x ′) = −c(y′, ytrue) + c(y′, yfalse) (3)

E. PERTURBATION MEASUREMENT METRICS
The correlation between the original image and the adversar-
ial sample was assessed using Lp norms. The generally used
p-norm metrics for assessing perturbation magnitude are L0,
L2, and d(x, x ′) is a distance constraint that should be less than
some value ε as represented in (4). The similarity between
the original and adversarial samples was assessed using Lp
norms. The generally used p-norm metrics for quantifying
perturbation magnitude are L0, L2, and L∞. d

(
x, x ′

)
is a

distance restriction that must be smaller than the value while
adding perturbation to the sample, as shown in (4).

Constraint:d(x, x ′) ≤ε (4)

F. L0 -NORM
This norm gives the count of aggregated pixels altered in
the perturbed samples. The maximum possible perturbation
is one pixel, as represented in (5).

d
(
x, x ′

)
=

∣∣∣∣x − x ′
∣∣∣∣
0 (5)

G. L2 -NORM
For each pixel, calculating the variation between the actual
input sample and the perturbed sample and summing it over
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all the pixels is called the L2 norm. Mathematically it is
represented in (6).

d(x, x ′) = ||x − x ′
|| = (1x1)2+(1x2)2 + (1x3)2 (6)

H. L∞ - NORM
The Euclidean distance measure finds the variation between
the perturbed and actual samples. For each pixel, the varia-
tion between the actual sample and the perturbed image is
computed, squared, and summed over all the pixels, as shown
in (7).

d
(
x, x ′

)
=

∣∣∣∣x − x ′
∣∣∣∣∞ = max{1x1,1x2, 1x3} (7)

This work is organized as follows: Section II discusses related
work with adversarial machine learning; section III briefly
introduces generative adversarial networks (GANs) and the
proposed system. The experimental results and their com-
parison associated with generative adversarial examples are
provided in section IV. Finally, section V presents the con-
clusion and future directions.

II. RELATED WORK
The related work concentrates on gradient-based attacks,
evolutionary-based attacks, and work related to generative
adversarial networks. The first adversarial attack (L-BFGS)
[6] for deep neural networks was presented by Szegedy.
By using a visual perturbation, the network can be utilized to
classify an image incorrectly. The author demonstrated how
various models and datasets might use the created adversarial
attack. Iterative attack frequency and perturbation magnitude
were utilized as the validation metrics. 2.1% error rate and
0.058 distortion rate. The L-BFGS method’s reliance on an
expensive linear search technique was time-consuming and
challenging to execute.

Although linear behavior accelerates the training process,
the authors [11] claim that the susceptibility of deep neu-
ral networks to adversarial perturbation arises from their
collinear character. The validation metric was attack fre-
quency multiplied by perturbation magnitude. A. Rozza [26]
created the fast gradient value technique by altering the
gradient’s sign in the fast gradient sign technique using the
raw gradient. The proposed method improved the system’s
dependability and accuracy. A practical saliency adversarial
map, known as the Jacobian-based Saliency Map Attack,
as stated by Papernot et al. [19]. A modest perturbation was
created to track the neural network that could successfully
produce massive output changes. The authors described two
adversarial saliency maps to choose the feature to be created
over each iteration. Only 4.02% of the input characteristics
per sample were changed to attain their 97% adversarial
success rate. Deepfool [27] is the author’s approach for
determining the shortest distance between the genuine input
and adversarial samples’ decision boundary. They used an
iterative technique based on a linear approximation to deal
with the high-dimension nonlinearity. Chen et al. [9] devel-
oped a strategy based on Zeroth Order Optimization (ZOO).

Although this attack does not need gradients, it can be used
immediately in a black box attackwithout delivering any data.
The researchers also modified stochastic coordinate descent
(SCD) techniques by converting the gradient function into a
novel loss function called ZOO-ADAM, which resembles a
hinge. The results demonstrated that the white box assaults
used by ZOO and C&W functioned equally.

Lin et al. [28] presented the Black-box Momentum Iter-
ative Fast Gradient Sign Method to create the adversarial
samples. The major goal is to assure the DNN’s resilience
by considering model features such as input and output
rather than internal details such as weight values, gradi-
ents, or model architectural information. On the ImageNet
dataset, the suggested solution is tested for targeted and
untargeted assaults. The author used differential evolution
to enhance the model’s inaccurate gradient direction and
enabled double-step size and candidate reprocessing. The
suggested system was tested against CIFAR10, MNIST, and
ImageNet. In this study, the ResNet101 architecture is utilized
as a basic model with 100 samples verified for both the
targeted attack, with a success rate of 93.2%, and the non-
targeted attack, with a success rate of 98.6%. The author
claims this method takes less time and produces more trans-
ferrable samples than the Zoo approach. Shu et al. [29]
developed a straightforward method for producing and iden-
tifying adversarial samples. Users may define the number
of pixels affected, the chance of misclassification, and the
targeted erroneous pixels. The disclosed method is a white
box attack that can recognize vulnerable samples, i.e., pixels
using a unique manifold-based F1 measure. According to the
author, this attack is universal, rapid, and gradient-free over
a sample size of 200, 500, and 1000 using particle swarm
optimization methods. The ResNet32 model is used in this
work to train and evaluate samples over the MNIST and
CIFAR10 datasets.

In the study by Luo et al., [30] a random directed attack
over the hill climbing method was to get the gradient
direction for the generation of adversarial samples. The gen-
erated adversarial samples were applied for both the targeted
and non-targeted labels without internal information avail-
able, and experiments were tested using MNIST, SVHN,
CIFAR-10, and ImageNet-10 datasets. The model is trained
for 100 epochs through the Adam optimizer and with dif-
ferent operations on samples like rotation, vertical shift, and
horizontal flip. Experimental results examine the effect on
the success rate of a different selected number of dimen-
sions, the angle of rotation of samples, attack direction,
and the number of iterations. The results given by the
RDA method are aggressive in most of the analyses, which
achieves the highest success rate of 100 % after multiple
iterations.

In a novel attack known as compositional pattern-
producing network-encoded EA (CPPNEA) [31], adversarial
samples are classified with notable accuracy (99%) using a
deep neural network. However, these objects are not identifi-
able to humans.
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TABLE 1. Experiment conducted using GAN with adversarial samples.

Pavate et al. [20] discussed the different adversarial
generations using gradient-based methods and concluded
that calculating the gradient is practically difficult. Evo-
lutionary algorithms (EAs) have been used to generate
hostile examples. It is challenging to avail the informa-
tion about the model and calculate the gradient for the
system designed using non-differential techniques. Evolu-
tionary algorithms require only the probability of labels from
the target model. For Evolutionary algorithms, it has been
shown that 72.29%,72.32% & 61.28 % success rates for
non-targeted attacks and 88.68%,83.63%, and 73.07% con-
fidence with best parameter settings on three different types
of networks [32]. As more effective methods are available,
we can compare them with other categories of evolutionary
algorithms [18], [21], [32], [33]. As varieties of evolution-
ary algorithms are available, implementing samples can be
possible using more advanced algorithms such as Covari-
ance Matrix Adaptation Evolution Strategy, Adaptive DE,
SUNA, etc.

There are many GAN-based methods used for the
attack [34], [35] and model protection [24], [37]. Radford
et al. [38] proposed a DCGAN (deep convolutional GAN)
system that is more secure and fast in most settings. Xiao et
al. [25] proposed AdvGAN design perturbed instances from
the original ones.

The generated adversarial samples were verified in Black
Box and semi-White box settings. The generated model is a
defense method against attack [11], [39]. The authors showed
that the generated samples achieved a high success rate
of 94.7 for the ResNet model and 99.3 for the WideResNet
model in a semi-white box attack setting for the CIFAR-10
dataset.

The discriminator’s loss function in the Least Squares
Generative Adversarial Network (LSGAN) is designed to
utilize the a-b coding technique in the least squares technique
to solve the issue of gradients vanishing during the GAN
training process [40]. The LSGAN helps to generate high-
quality images. A representation learning technique with the
potential to fully framework for the implementation of the
disentangled design was introduced by Information Maxi-
mizing GAN (InfoGAN) [41]. InfoGAN, an unsupervised
framework based on GAN, distinguishes continuous and dis-
crete latent components, scales to huge datasets, and takes no
further training time than GAN.

Xiao et al. [25] proposed AdvGAN for protecting the net-
workmodel from adversarial attacks. The adversarial samples
are generated by establishing perturbation into the real world.

For human perceptual testing, authors engaged humans
to choose more realistic image pairs. The AdvGAN
applies to high-resolution images. The advanced version of
AdvGAN++ addressed the limitations of AdvGAN and
improved the attack success rate concerning time [42].
Table 1 represents a variety of adversarial networks with

performances. The metrics mentioned, such as accuracy,
attack success rate, and FID score, provide insights into the
robustness and effectiveness of these models under various
attack scenarios and datasets. Many of the GANmodels were
used as defense mechanisms, whereas few of the models used
adversarial examples to retrain the model.

According to the study, the primary source of attacks
on machine learning models is that it remembers far too
much. Because the model is nonlinear, parameters may be
adjusted to match the training dataset. The opponent can
use this advantage to reveal confidential information or alter
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the model’s output. There is no guarantee that an adversar-
ial picture will be labeled wrongly using these approaches;
sometimes, the attacker wins, and sometimes the machine
learning model prevails.

III. METHODOLOGY
A. DATASET & ARCHITECURES
The experiments were conducted on various deep neural
network models such as LeNet, ResNet50, Network-In-
Network, DenseNet, and WideResNet [18] as target image
classifiers on the CIFAR-10 dataset [51]. The dataset contains
60000 images of sample size 32 × 32 in 10 classes. Each
class has 1000 images. The simplified specification of all
the models used for experimentation is shown in Table 2.
The DenseNet architecture is flexible and can be adapted for
different datasets. In this experiment has considered depth =

16, batch size=128 epochs=200, iterations=391 and weight
decay = 0.0005 and other parametric setting is mentioned in
Table 2 These models are used to attack adversarial samples
generated using the DESapsDE Algorithm.

TABLE 2. Specifications of models used for experimentation.

B. METHOD
A summary of the systems methods is shown in Figure 4
and represents the associated discussion among two different
models, GAN and novel DESapsDE.:

Figure 4A represents the overview of GAN’s general
architecture for generating samples. We use the proposed
DESapsDE [18] system to generate adversarial samples,
as Figure 4B highlighted with a blue dotted line. Group
B generates the adversarial samples by training some other
model. The first group, Figure 4A, consists of original images
mixed with some noise images to generate the new samples

FIGURE 4. Associated discussion between the (A): Adversarial samples
generation using generative adversarial network and (B): Adversarial
sample generation using novel DESaps-DE algorithm.

using GAN. The working of each model is discussed below
in sections.

C. SAMPLES GENERATIONS WITH GAN
This section concentrates on training the GAN model using
CIFAR 10 dataset and comparing the functional performance
of the GAN in synchronization with the proposed system.
Figure 4 A shows the generation of adversarial samples using
the general generative adversarial network. GAN comprises
two models: generative(adversarial) and discriminator mod-
els. The model takes sample images with three color channels
(R, G, B) and the 32 × 32 image from dataset CIFAR10 as
input and outputs a binary class prediction of whether the
sample is real (or fake). The image pixel values in the range
(0,255) are scaled down to the range (−1,1).

The adversarial model generates the pixels using the tanh
action function (1, −1). The adversary model creates new
adversarial samples by adding random noise, and the discrim-
inator model verifies whether the samples are fake or real.
The discriminator model determines the samples taken from
the dataset or adversarial samples. Mathematically the model
is represented as shown in (8):

min (G)max (D)VDC (D,G)

= EX∼Pdata (x)
[
logD (x)

]
+ EZ∼PZ (Z )[log(1−D(G(z))] (8)

Here G is the adversary, x is actual samples from the dataset,
D is discriminator. z is generated samples, D (x) is the dis-
criminator network model, and G(z) is a generator network
model. The GAN is an unsupervised model based on the deep
neural network architecture. The discriminative model acts
as a supervised model. GAN models are trained like other
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network architecture models such as ResNet, DenseNet Etc.
However, these models are complex to train. This model uses
random noise with input samples to create new perturbed
samples. Extending the number of output labels while train-
ing the model can improve the model’s performance, but
getting the number of output labels is practically challenging.
The GAN models help to make the model more robust to
attack [15]. In this work, GAN models incorporated for con-
versation are DCGAN, ACGAN, and SAGAN. The working
of each model and experimental settings is discussed below.

1) SAMPLES GENERATION USING DCGAN
The generator model produces an image using up-sampling
by adding random noise, as shown in Figure 5. The dis-
criminator consists of stride, batch norms, and LeakyReLU
activation function. The samples the generator produces
are transferred to the discriminator along with images. The
training model setting for Deep convolutional generative
adversarial network (DCGAN) is as follows: Generator
model settings include sride2, eliminated FC layer, and used
inverse convolution for upscaling. Discriminator model set-
ting: CNN, LeakyReLU, kernel size=5, b1 = 0:5, batch
size = 64, epochs=100. Here it takes a 3 × 32 × 32 input
image, and the output is 3 × 32 × 32.

FIGURE 5. Architecture of deep convolutional generative adversarial
network.

The samples produced by the generator are transferred
to the discriminator and the actual images. The DCGAN
causes the problem of mode collapse, where the generator
over-optimizes, and the discriminator can never detect fake
images; as a result, the generator generates many similar
images [38]. The preprocessing images are scaled to a spe-
cific range of tanh activation functions.

2) SAMPLES GENERATION USING SAGAN
Self-Attention for Generative Adversarial Networks
(SAGANs) [52] is a redraft of the original GANs, as shown in
(Fig 6). Here, the idea is to generate global detailing samples.
The discriminator and the generator layer contain convolution
layer output followed by the attention layer. To deal with
the problem of DCGAN, self-attention GAN introduces two
time-scale updates in GAN training by providing different
learning rates for the generator and discriminator [36]. This
helps in solving the issue of slow learning and imbalanced

FIGURE 6. Architecture of self-attention for generative adversarial
networks.

updates. Self-Attention for GANs uses spectral normalization
to avoid increased parameters and unwanted gradients. The
f(x), g(x), and h(x) are the feature vectors. The feature vectors
f(x) and g(x) have different dimensions than h(x), and both
feature vectors are aggregated using matrix multiplication to
calculate the attention. The aggregated results are passed to
the SoftMax layer, which generates the attention map.

3) SAMPLES GENERATION USING ACGAN
Conventional GAN was designed for unsupervised learning
with an output of the discriminator of dimension 1 with
some real probability value. The auxiliary classifier GAN
(ACGAN) [40] helps to create class-specific samples using
the auxiliary classifier in the discriminator. The discriminator
comprises two output layers, the first is used for determining
whether the output is real or fake, and the second decides
which input belongs to which class, as shown in Figure 7.

FIGURE 7. Architecture of auxiliary classifier GAN.

D. SAMPLES GENERATION USING NOVEL DESapsDE
The adversarial Mechanism for designing the model starts
with collecting the input samples from a similar domain.
In this work, the classifier attacked using images from the
CIFAR-10 dataset [51]. As shown in figure 4B, the generation
of adversarial mechanisms has two different models one is on
the victim side, and the other is on the adversary side.

Adversarial mechanisms are the methods used to generate
adversarial samples. An adversarial sample is an input to the
neural network model designed by adding a small pertur-
bation that causes a model to predict different class output
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than the actual one resembling an original input to a human.
The adversary knows victim model labels. Adversary trains
the model with domain samples and obtains similar results.
Optimization is the math. Targeted attacks are maximiza-
tion problems, whereas non-targeted attacks areminimization
problems.

The algorithm shows the steps for generating adversarial
samples, as discussed in [18]. This method is based on a
differential evolutionary algorithm with changing population
size. Previous work [21] concentrated on fixed-size popula-
tions, but naturally, this is not true as the population changes
randomly.

This work concentrates on changing the population and
increasing convergence speed. In this algorithm, input is
the n-dimensional input as original image X=(x1,. . . . . . .xn).
P is ((x1,y1,r1,g1,b1),(x2,y2,r2,g2,b2),. . . ,(x100,y100,r100,
g100,b100)) the population size, xm1,xm2,xm3 are the arbi-
trary indices of the range [1, P]. The differential evolutionary
algorithm based on DE/Base/Num/Cross scheme. The base
represents how the mutant vector is constructed, Num rep-
resents the number of differential vectors, and the cross
represents the crossover scheme. θ decides on one of the
mutation schemes θ ∈ [1, 0.1], e(p) is the additive perturba-
tion w.r.t. natural image X, e(p)∗ is the fitness function, for
the targeted attack, it is considered a maximization function,
and for non-targeted, it is aminimization function. The fitness
value of each input sample is the probability value of the
actual class for each input sample. L is the minimum constant
value. Here, L is 1 for one-pixel perturbation, qi is the trial
vector, x is the original, and g is the number of generations,
initially set to g=0.

Algorithm - Adversarial Sample Generation (Novel
DESapsDE)
Input: Images of size 32 × 32(CIFAR10 Dataset)
Set the initial population P= (X1,X2,. . . . . .Xn) i.e., n is equivalent
to 100; Mutation set to 0.5F; Crossover set to 0.1;

For all g = 1 to 75, do :
Assess fitness e(p)∗ = maximize ftadv(p+e(p))

e(p) ∗ subject to ∥e(p)∥ ≤ L
For i=1 to 100, do:
Select any 3 vectors (xm1, xm2, xm3) randomly with different
indices, where X1=xm1 = (x1, y1, r1, g1,b1) flat vector
Assess n new_mutant using Xi=xm1 + F(xm2 - xm3)
Generate trial vector qi through crossover_operation

if f(qi)>= f(Xi)
New_offspring = trial vector(qi)

Else
New_offspring = Xi

P= (new_offspring, i=1,2,. . . .,n) //Selection one of the scheme
to speed up the process
a. Remove 5% of individuals from the total population or
b. Randomly selection of best individuals or
c. Randomly select of best individuals and remove 5% from
the total population
Output: Perturbed samples

The algorithm starts with selecting the initial random pop-
ulation. At the start, it considers the whole search space. The

second step obtains the mutation strategy. Crossover merges
with individuals to make new offspring. Three population
schemes are included to get the population according to the
desired population distribution either 5% of the individuals
from the whole population, randomly selects the best indi-
vidual, or randomly selects the best and removes 5% of the
individuals. The algorithm helps to include the perturbation
in the input sample so that it is not easily detectable by human
eyes. These samples are applied on different neural network
models during the testing or deployment phase, and observed
the results. The work concentrates on black-box attacks for
both targeted and nontargeted attacks during the testing of
the model.

IV. RESULTS AND DISCUSSION
The comparison and performance evaluation of images gener-
ated by evolutionary algorithms and GAN is challenging. The
parameter setting for experimental purposes is mentioned in
Table 3. The GAN uses different activation functions at the
generator and discriminator as DCGAN uses the G>ReLu,
Tanh and D->leaky ReLUs, SAGAN uses G>ReLu, Tanh D-
> ReLUs, ACGAN uses at G>ReLu, Tanh and D-> Leaky
ReLU, Sigmoid, Softmax whereas DESapsDE applies only
one activation function. Generative adversarial Networks and
Adversarial examples are distinct concepts with different
purposes and applications. GAN is designed to generate new,
realistic data samples. They consist of a generator and a
discriminator, and both networks are engaged in a competitive
process. The purpose of DESapsDE is to test the robustness
and vulnerability of the model to small perturbations in the
input data.

The parameters of DESapsDE involve the magnitude and
direction of noise applied to the input data to cause mis-
classifications. DESapsDE calculates the fitness value for
targeted labels and nontargeted labels. For targeted attacks,
it is a maximization function; for nontargeted attacks, it is a
minimization function to add minimal noise into the sample.

The novels DESapsDE and GAN have executed in Google
Collab with GPU configuration.

In this work, we have used the FID score to check the
model’s performance and accuracy, as shown in Table 4. The
previous works concentrate on different norms L0 to L∞ to
identify the amount of perturbation added into the samples,
making the state-of-the-art complicated to perceive [6], [54].
FID provides a comprehensive evaluation that goes beyond
single-image metrics. It considers the entire generated image
distribution, offering a more holistic view of the model’s
performance. FID scores have been shown to correlate with
human judgment of image quality.

Models that achieve lower FID scores tend to produce
visually closer images to real images according to human per-
ception. Frechet Inception Distance is an assessment metric
that calculates the Wsserstein-2 distance between the actual
and the constructed samples, where a lower FID score indi-
cates optimal results for the models.
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TABLE 3. Comparative parameter settings for experimentation.

However, evaluating the model’s performance is difficult
based on the cost function and many other parameters. Many
time cost functions address the vanishing gradient or gradient
stuck in local optima. Becoming trapped in local optima
is overcome using innovative DESapsDE evolutionary algo-
rithms by considering dynamic population. However, it is
dependent on the cost function. The performance of the GAN

TABLE 4. Performance of the proposed system with GAN models (200
epoch for Accuracy) on the CIFAR 10 dataset.

and DESapsDE is mentioned in Table 4. The training time
required GAN to get the images is more. GANs can be
notoriously difficult to train and may suffer from issues like
mode collapse.

The GAN model’s loss for the discriminator and the gen-
erator is observed after every batch. After training, the model
over many epochs displays images with some loss remains
stable. The discriminator loss on the real and the generated
samples is over 1.5. The loss for the adversary model trained
using a discriminator over around 2.5 for much of the training
process. The model’s training starts at epoch 100, and the
model starts getting the acceptable images at 3120 epochs
as shown in figure 8 whereas for DESapsDE generates the
acceptable images.

FIGURE 8. Evaluating model performance using generative adversarial
network.

The model is adversarial, meaning the generator model
changes after every batch until good-quality images can
be produced. The quality of the images may vary, some-
times improve or even degrade with subsequent updates. The
GAN models require more training time to get better-quality
samples. The Figure 9 represents the model confidence
(left) and sample generated after 100 epochs using the pro-
posed system. As per observation, the GAN requires more
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FIGURE 9. Evaluating model performance of Novel DESapsDE.

epochs to generate good-quality images as compare to Novel
DESapsDE. The model predicts the image as a cat instead of
an airplane with the effect of adding noise.

GANmodels experimented usingweights and biases on the
MLOps platformwith TESLA T4 configurations. Most of the
previous work concentrated on gradient-based methods [6],
[9], [18], [27] for generating adversarial samples, but prac-
tically getting gradient information is challenging, so many
of the researchers concentrated on evolutionary algorithms.
Much of the previous work was completed using GAN to
visually evaluate images and it is difficult to assess the visual
quality. The Frechet Inception distance (FID) [36] and Incep-
tion score (IS) [53] measures are most typically employed to
assess image quality.

In DCGAN confidence, the label cannot infer the latent
variable from input samples, and it requires low performance
and produces many samples belonging to the same class.
The images generated using SAGAN are more quality than
DCGAN, but again it depends on the depth of the network.
High-level feature maps gave better-quality images. The
ACGAN produces the samples based on the class labels and
does not require the probability to generate the images. The
produced samples mostly show one of the classes. As shown
in Figure 10, in the first row, most images are cars represent-
ing the latent space class conditional and partial.

FIGURE 10. Adversarial images were generated using ACGAN.

Creating the complex structure is difficult because com-
plex geometrical patterns require long-range information,
which traditional convolution may not recognize. Specific
categories of classes GAN can work well but often fail where
non-local dependencies frequently appear in some classes of
images.

Once the GAN model has been trained, the generative
attack is quick and effective compared to the conventional
optimization-based methods. The GAN black box attacks
method does not work well and lacks transferability. In this
experiment, DESapsDE is superior to adversarial attacks
relating to accuracy. Compared to the results of GANmodels,
the quality of the images generated using novel DESapsDE
is superior, as shown in Figure 11. The scenario is limited
as samples contain only a few pixels of noise. Considering
the attack rate, theWideResNet model has stronger resilience
against noise attacks.

DESapsDE shows varying success rates across different
models, with LeNet achieving the highest success rates in
targeted and nontargeted attacks. Standard DE [21] and its
variants demonstrate competitive performance, particularly
in nontargeted attacks. JADE(Adaptive Differential Evolu-
tion) [54] also shows noteworthy success rates, with ResNet
achieving high success rates in nontargeted attacks. Table 5
provides a clear comparison of the success rates of different
models under targeted and non-targeted one-pixel attacks,
offering insights into the robustness of these models against
adversarial manipulations.

TABLE 5. Performance of the proposed system with other models on the
CIFAR 10 dataset.

A deer or possibly a deer-horse-looking animal is the out-
put of the classifier from the DCGAN model, and humans
and other images can easily detect it, as shown in Figure 12.
Most of the images generated do not belong to any of the
classes. The images are familiar and similar to CIFAR-10
dataset images, but most images are not specified to one of
the 10 classes. A human operator evaluates the quality of the
images, knowing when to stop training the model is difficult
in the GAN model. The training stops by observing the
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FIGURE 11. Adversarial samples were generated using DESapsDE
(Differential evolution self-adaptive population resizing scheme) and
verified using various CNN network models.

FIGURE 12. Images produced using the GAN model on CIFAR 10 dataset.

FIGURE 13. Generated sample using DESapsDE applied over ResNet
model and LeNet model.

generated images only. However, it is much more challenging
to create geometrically complex structures.

Figure 13 shows the output generated using the Novel
DESapsDE method. The real image corresponds to the horse
class but is projected by the model as a dog, bird, or cat
class. The goal is to undermine the confidence of models in
the target class. These samples train the model and improve
the system’s resilience. The innovative DESapsDE method is
effective for low-dimensional space.

V. CONCLUSION AND FUTURE WORK
Generative adversarial network models are more success-
ful techniques and applicable in high dimensions. Many
times, acquiring data may be costly. GAN works on both
unsupervised and supervised learning data with handling
multimodal capacity. The proposed work concentrates on
low dimensional space and tries to solve the problem of
the gradient being stuck in local space by including a
population resizing scheme to increase convergence speed.
GAN models frequently reject convergence due to switching
between the generator and discriminator. This problem is

solved by embedding the noise to the discriminator input or
penalizing weights at the discriminator. Though researchers
are working on convergence, the problem of stabilizing
the network is still unresolved. GAN could be applicable
to protect or defend against adversarial mechanisms. The
discriminatormodel inGANcan be trained to resist the adver-
sarial samples, and the system becomes more robust to such
examples. The proposed model differs from the GAN and
applies to attack-on-network models as a preventive major to
make the model robust.

There are growing concerns about the security of deep neu-
ral networks (DNN) due to the susceptibility to adversarial
samples.

The work introduces a novel DESapsDE framework based
on evolutionary algorithms to generate adversarial samples,
addressing the challenges associated with gradient-based
methods. The approach is discussed in the context of various
GAN models, emphasizing its potential as both an attack
prevention measure and a way to enhance the robustness of
deep neural networks against adversarial threats. The results
demonstrate promising outcomes in reducing model confi-
dence, providing valuable insights into improving the security
of DNNs. The reported results show a reduction in model
confidence for specific DNN models, such as ResNet50,
WideResNet, and DenseNet, with an associated FID score
of 16.45.

The future work concentrates on considering high dimen-
sional space and more advanced differential evolutionary
algorithms. The experiments can be conducted using chang-
ing population size, various strategies, constant of differen-
tiation, number of steps included in the traversal phase, and
constant of crossover.
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