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ABSTRACT In recent years, most of the research on speech enhancement (SE) has applied different
strategies to improve performance through deep neural network models. However, as the performance
improves, the memory resources and computational requirements of the model also increase, making it
difficult to directly apply them to edge computing. Therefore, various model compression and acceleration
techniques are desired. This paper proposes a learning method that dynamically uses Knowledge Distillation
(KD) to teach a small student model from a large teacher model by considering the learning ratio from the
teacher’s output and the real target based on reinforcement learning (RL). During the KD learning process,
RL is adopted to estimate the learning ratio by considering the reward favoring the hard target (clean speech)
or the soft target (the output of the teacher model) during the training of KD. The proposed method results
in a more stable training process for the resulting smaller SE model and yields improved performance. In the
experiment, we used the TIMIT and CSTR VCTK datasets and evaluated two representative SE models that
employ different loss functions. On the TIMIT dataset, when we reduced the number of parameters in the
Wave-U-Net student model from 10.3 million to 2.6 million, our method performed better than non-KD
models with improvements of 0.05 in PESQ, 0.1 in STOI, and 0.47 in the scale-invariant signal-to-distortion
ratio. Moreover, by utilizing prior knowledge from the pre-trained teacher model, our method effectively
guided the learning process of the student model, achieving excellent performance even under low SNR
conditions. Furthermore, we use Conv-Tasnet to further validate our proposed method. Finally, for ease of
comparison, we conducted a comparison on the VCTK dataset as well.

INDEX TERMS Deep learning, speech enhancement, knowledge distillation, reinforcement learning.

I. INTRODUCTION
Digital speech signals can be seen everywhere in our daily
lives. With the accelerated pace of modern life, the mode of
human-computer interaction is gradually shifting from the
traditional keyboard to the touch panel. It is believed that
in the near future, speech control will emerge as the pri-
marymethod of human-computer interaction. However, noise
permeates real-life environments, which not only hampers
interpersonal communication but also significantly affects the
accuracy of electronic products that rely on speech as an input
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modality. Fortunately, speech enhancement (SE) algorithms
can enhance these speech signals, improving recognition
rates and clarity. As a result, the significance of SE and noise
reduction in speech-based applications has been increasingly
recognized in recent years.

In terms of SE, many deep learning models have been
proposed with various architectures. These models can be
roughly divided into two categories: mask-based [1], [2], [3],
[43], [44] and direct mapping [4], [5], [6], [45], [46]. The for-
mer employs a mask-based approach, typically transforming
the time-domain signal into a frequency-domain signal using
STFT (Short Time Fourier Transform). After element-wise
product with the estimated mask, the signal is restored to
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the time-domain through iSTFT (Inverse Short Time Fourier
Transform) or enhanced in an end-to-end manner, like Conv-
TasNet [1]. The latter utilizes a direct mapping technique
to estimate the spectrum or time-domain signal. To further
enhance the SE performance, various loss functions have
been proposed, ranging from common mean square error
(MSE) and scale-invariant signal-to-distortion ratio (SISDR)
[7] to loss calculation through acoustic models [2], [8], [9],
[10], and evenmulti-task training incorporatingmultiple deep
features [11], [12]. However, with the progress of the pre-
viously proposed methods, the amount of calculations and
memory size required is getting larger and larger, and how
to effectively use the trained model becomes an important
issue. Knowledge Distillation (KD) is a method for com-
pressing deep learning models, commonly applied in image
classification, which sets it apart from other compression
techniques like quantization [13], [14], [15] and network
pruning [16], [17], [18]. KD leverages large and complex
pre-trained models to facilitate the training of smaller and
lighter models. The goal is to achieve better performance with
the small model compared to non-KD methods or to match
and potentially surpass the performance of the large model,
while maintaining the same model size. Hinton et al. [19]
introduced the concept of using a large model as a teacher
model to guide the learning process of a student model. The
output of the teacher model serves as one of the learning
objectives for the student, referred to as a soft goal. This soft
goal is combined with the original hard goal and incorporated
into the student’s loss function. As a result, the knowledge
from the teacher model can be refined and transferred to the
student model, improving the overall learning direction. This
approach is known as the teacher-student (T-S) structure.

However, experiments conducted in [20] revealed that the
teacher model can only provide assistance once the knowl-
edge has been refined, regardless of whether the teacher
model has more or fewer parameters than the student model.
In recent years, there have been studies exploring the appli-
cation of KD in the field of SE [21], [22], [23], [24], [25],
[26], [27], [28]. While KD has shown great success in
image classification tasks, several variants, such as feature
mimic [23], [24] and self-KD [25], [26], have been derived
and proven effective. However, when it comes to the SE task,
the improvements have not been as significant. In our initial
experiments, we attempted to apply KD-based SE methods
inspired by feature mimic and self-KD. Unfortunately, these
methods did not yield satisfactory results for speech signals
with low signal-to-noise ratios (SNR) or certain types of
noise. This led us to realize that distilling the SE task layer by
layer, as done in self-KD and feature mimic for image classi-
fication, poses significant challenges. Previous studies [20],
[29], [30] have indicated that KD should not learn from well-
trained teachers, and contrarily teachers which do not fully
converge could achieve a better performance. This problem
is called the Teacher Identity Problem (TIP). However, most
of the studies using KD in SE tasks mentioned above are

quite difficult to reproduce the results due to TIP, or to
compare them directly. So we put forward a new hypothe-
sis: the learning process of the student model is the same
as the human learning process, and both require step-by-
step teaching materials. We apply this concept to KD and
attempt to make incremental changes to the student’s training
objective to address the above difficulties. Accordingly, this
study directly learns the teacher’s output with reference to
the T-S architecture except that we use the teacher’s output as
the student’s target. Considering that saving too many check-
points in the process of training a teacher is resource-intensive
and difficult to fit other large pre-trained models, we use
a dynamic learning ratio on the trained teacher output to
simulate the underperforming teacher.

Finally, we have decided to adopt the T-S architecture to
directly learn the time domain enhanced output from the
teacher. Unlike most of the previously mentioned KD meth-
ods, where the learning ratio between soft and hard targets
remains fixed, our approach incorporates a sample-based
dynamic learning ratio. This dynamic learning ratio takes
into account the SNR and noise type of each input speech
sample, implicitly contributing to the enhancement of SE
performance. In this study, we propose a dynamic knowledge
distillation method based on reinforcement learning (RL) [9],
[31], [32], [33]. By considering the output of both the teacher
and student models in each sample-by-sample training step as
a state, the RL model selects the corresponding action, which
determines the learning ratio for that specific training sample.
Through the designed reward function, the KD process can
dynamically determine the learning ratio between soft and
hard targets for each data sample during the training of the
SE model. This dynamic approach ensures that the SE model
achieves the most appropriate learning target for the data,
considering different SNRs and noise types.

The two main contributions of this article are as follows:

• We propose a KD method that can be applied to a
wide range of models. The first contribution is aimed at
avoiding constraints on the SE architecture and reducing
model size without the need for additional training data
or large pre-trained model conditions.

• We provide dynamic teaching materials for KD training
to address the issue of TIP.

The method we propose is versatile and can be applied to
most existing SE methods. The experiments in this paper
demonstrate its effectiveness in significantly reducing model
size with minimal performance degradation or even improve-
ments in some cases.

II. RELATED WORK
In recent research on the SE task, several methods have
been proposed with impressive results using large models
for noise reduction. These methods often utilize features
that involve converting speech into images and employ
complex training approaches. Examples of such methods
include DCUNet [34], DB-AIAT [35], and CMGAN [36].
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The Unet, Transformer, and Conformer architectures are
widely recognized as effective methods or models, but
they require considerable computational resources. Other
studies have focused on adjusting the objective functions
commonly used in current models, such as PFPL [2], PFPL-
AE [11], and MetricGAN+ [10]. In PFPL and PFPL-AE,
high-dimensional features generated by wav2vec 2.0 [37]
are used as training indicators to improve the quality of
noise reduction. PFPL-AE is a variant that incorporates
an ensemble method by adding more pre-trained models
(including acoustic, emotion, speaker, etc.) to calculate the
loss and further enhance SE performance. MetricGAN+ uti-
lizes Quality-Net [38] to directly estimate the PESQ score,
replacing the role of the discriminator in Generative Adver-
sarial Networks (GAN). From the aforementioned methods,
it is evident that in addition to directly improving model
performance, many studies leverage pre-trained models as
additional knowledge extraction tools to further enhance per-
formance. Although there are numerous pre-trained acoustic
and SE models available for noise reduction assistance, it is
known that out-of-training noise can still significantly impact
model performance. Therefore, to effectively utilize existing
knowledge extraction tools and SE models that cover differ-
ent types of noise, end-to-end KD techniques adapted from
image classification have started to gain attention.

In terms of model compression, studies [24], [25] have
shown a common practice in KD, where multiple teachers
are trained using sub-band and SNR information, enabling
students to select the appropriate learning targets based on
the input during the training process. Additionally, a low-
latency SE method [26], [27] has been derived to achieve
faster processing speed. The online version of this method
utilizes a shorter input time scale, often employing recurrent
modules to address the input time scale issue. Reference [26]
employs the onlinemodel as a student to learn from the offline
teacher through KD training, while [27] combines two model
compression techniques: first purifying and fine-tuning the
weight matrix of the SE model, followed by quantization of
the weight matrix to further accelerate operations. However,
it should be noted that many KD methods in the TIP field are
challenging to reproduce or exhibit instability during training,
leading to significant variations in results depending on the
selected learning targets.

III. PROPOSED METHOD
To address the issues raised above, we propose a method
called Knowledge Distillation via Reinforcement Learning
(KDRL), which is a KD-based learning structure for SE
tasks. The training process of KDRL is divided into two
parts. First, the noisy speech is fed to the student model
after KD learning, which is carried out based on the learning
ratio obtained from the policy network. Since there is no
specified adjustment method for the learning ratio of the
policy network, we introduce two ‘‘reference models’’ with
the same student architecture and use the parameters before
KD learning as their initial weights. During KD training, both

the reference models and the student model perform the same
tasks. The difference is that the reference models are updated
with extreme values (0 and 1) of the KD learning ratio,
respectively. The speech quality of the student and reference
models is compared to serve as the basis for adjustment.
Second, the mixture is re-passed to the student and reference
models after their respective updates, and the policy network
adjusts the learning ratio based on the new results from
each model. A designed reward function is used to evaluate
the quality difference before and after the update, which is
directly used as the loss for adjusting the learning ratio. This
enables schedule adjustment of the KD learning objective
based on the speech samples under different noise conditions.
In the following subsections, we elaborate on the three main
modules of KDRL: speech enhancement, KD learning ratio
estimation, and reinforcement learning-based KD.

A. SPEECH ENHANCEMENT MODEL
Let us denote the time-domain monaural noisy speech as
X , the clean speech as Y , and the noise signal as N . The
mixture of clean speech and noise can be expressed by (1).
The goal of the SE model is to predict the clean speech Y
based on the input noisy speech X . In this study, we eval-
uate two end-to-end architectures for speech enhancement:
Wave-U-Net [6] and Conv-TasNet. The loss function used
in Wave-U-Net is the mean squared error (MSE), while
Conv-TasNet uses the scale-invariant signal-to-distortion
ratio (SI-SDR). To enhance the speech enhancement capabil-
ities of the student model, we utilize a well-trained teacher
model to guide the learning process. The student architec-
ture is designed to reduce computational requirements by
reducing the number of layers, blocks, or kernels compared
to the teacher model. During the training phase, the teacher
model is used for KD learning. In the testing phase, only the
student model is used to reduce the noise in the input speech.
By leveraging the knowledge and expertise of the teacher
model, the student model can benefit from improved speech
enhancement performance. The use of KD allows the student
model to learn from the teacher model’s outputs and optimize
its own performance.

X = Y + N (1)

B. KD LEARNING RATIO ESTIMATION MODEL
The outputs of the teacher and student models are denoted by
YS and YT , respectively, and the clean speech source is YC .
For KD learning ratio estimation, a policy network Pnet is
constructed. The input state Z of the Pnet is the combination
of the difference between the student and the target and the
difference between the teacher and the target, as shown in (2)

Z = (YC − YS) ⊕ (YT − YS) (2)

where ⊕ means concatenation. The architecture of Pnet is
shown in Figure 1. The input first goes through two convolu-
tional layers. After the result is flattened, four fully connected
layers are connected. Finally, we use the sigmoid function
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TABLE 1. Layer parameters for the applied policy network.

FIGURE 1. Structure of the policy network.

FIGURE 2. Conceptual framework of the proposed SE method.

to limit the output range from 0 to 1 and get the learning
ratio α for the SE model training as shown in (3), and the
layer parameters for policy network application as shown in
Table 1.

α = σ (Pnet (Z)) (3)

C. REINFORCEMENT LEARNING-BASED KD FOR SE
The training process of KDRL is divided into two steps: SE
model training and policy network training, as depicted in
Figure 2. The system comprises a teacher model, a student
model, and two reference models. The teacher model is pre-
trained, and the studentmodel is the onewe aim to train. In the
first step, which is the SE model training, we employ the
policy network to estimate the KD learning ratio. This ratio is
then used to weight the model loss, resulting in the SE loss for
student training, as illustrated in Figure 3. Simultaneously, the

FIGURE 3. The block diagram for backward propagation of the SE loss.

FIGURE 4. The block diagram for backward propagation of the loss by the
policy network.

mixture is also passed to the two reference models. Similar to
the student training process, the reference models are trained
using either soft or hard targets as their training objectives,
respectively, rather than a proportional mixture of both.

The second step involves training the policy model. The
reward for a given learning ratio α is determined based on the
performances of the student and reference models. The policy
network is then adjusted based on the reward. As a result,
the reinforcement learning model can determine whether α

should approach 1 or 0 based on the improvement in speech
quality, as shown in Figure 4. The overall block diagram of
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FIGURE 5. The block diagram for system training.

the system is presented in Figure 5. Detailed training proce-
dures for each component will be discussed in the subsequent
subsections.

1) SE MODEL TRAINING
First, the SE model training process involves copying the
parameters of the student model at the beginning of each
iteration and passing them to two reference models with the
same architecture. This action ensures that the two models
start from the same initial point. The learning process then
proceeds with different proportions of goals. Finally, this
method compares the results with the student model output
based on the current updated results, as depicted in the left
half of Figure 5.

Next, we utilize the training set to train the model. In order
to verify that the proposed method can be applied to different
loss functions, two SE models with representative losses are
selected and expressed as (4). Subsequently, we employ the
noisy input to obtain the enhanced result from each model:
the teacher model output YT , the student model output YS , and
the reference model output YR. At this point, we have the soft
target YT and the hard target YC . The two reference models
can then calculate their respective losses. One of the reference
models is trained entirely using the soft target, with its loss
function denoted as LR1 in (5), while the other reference
model is trained entirely using the hard target, with the loss
function denoted as LR2 in (6).

D =

{
MSE, for Wave− U − Net
−SISDR, for Conv− TasNet

(4)

LR1i =
1
B

B∑
i=1

[
γhard · D

(
YCi ,YR1i

)]
+ γsoft · D

(
YTi ,YR1i

)
,

(5)

LR2i =
1
B

B∑
i=1

[
γhard · D

(
YCi ,YR2i

)]
+ γsoft · D

(
YTi ,YR2i

)
,

(6)

where γhard and γsoft respectively represent the ratios of two
terms in the loss function. For LR1i , γhard is set to 0 and γsoft
is set to 1. For LR2i , γhard is set to 1 and γsoft is set to 0. B is
the batch size.

Because the most suitable proportional relationship
between these two terms in the loss function for each data
sample is unknown, the third step involves using the policy
network as a tutor to obtain the KD (Knowledge Distillation)
learning ratio. After α is estimated, the SE loss for the student
model is defined as (7).

LSi =
1
B

∑B

i=1
[γhard · D(YCi ,YSi )] + γsoft · D(YTi ,YSi ),

Method A : γhard = 1 − αi, γsoft = αi,

Method B : γhard = αi, γsoft = 1,
Method C : γhard = 1, γsoft = αi

(7)

Then, based on the value of α, three weighting methods
for KD learning are defined: Methods A, B, and C. Method
A corresponds to the traditional KD method known as the
quantitative transfermethod. This approach involves a quanti-
tative loss calculation, where the sum of the weights assigned
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to the soft target γsoft and the hard target γhard is equal to
1. Methods B and C represent directional approaches that
focus on specific learning directions. For instance, Method
B primarily relies on the soft target, while Method C is
biased towards the hard target. By leveraging the respective
directions, KD is employed to adjust the training direc-
tion and facilitate the transfer of dark knowledge from the
targets. These methods offer an advantage over the tra-
ditional approach. Among the three methods, Method A
exhibits significant fluctuations in the learning curve through-
out the training process, making it challenging to achieve
convergence on the SE task. Conversely, Methods B and
C demonstrate smoother learning curves in their respective
training directions, resulting in a more stable overall training
process.

2) POLICY NETWORK TRAINING
In the SE training process, the success of the entire KD
learning relies heavily on the appropriateness of the estimated
α from the policy network. To train the policy network,
we calculate the reward for α by assessing the performance
of both the student and reference models. It is important to
note that the objective of the policy network is to maximize
the reward or penalize by taking the value of α as the KD
learning ratio in this training process.

The reward is computed by evaluating the quality of the
output from the student and reference models using the dis-
tance function D in equation (4). The increase or decrease
in the evaluation score directly corresponds to an increase or
decrease in the value of α. Hence, the reward R is defined as
shown in equation (8).

Ri =


DR1i − DSi , if DR1i < DR2iand DSi ,
DSi − DR2i , if DR2i < DR1iand DSi ,
0, if DSi < DR1iand DR2i .

(8)

As the reward R may exhibit significant fluctuations in the
later stages of training, we introduce a constraint value δ.
This value is defined as the amount of progress, representing
the percentage of the original loss value Ri, as depicted in
equation (9). To ensure that the value remains within the
range of 0 to 1, we impose a limit on δi, as shown in
equation (10). The loss of the policy model is then expressed
as equation (11), where ∥•∥sg denotes the stop gradient
operation.

δi =
Ri

D
(
YC i,YSi

) · ε,where ε =
1

number of epochs
,

(9)

δci = min
(
max

(
∥αi∥sg + δi, 1

)
, 0

)
(10)

Lossi = (αi − δci)
2 . (11)

IV. EXPERIMENTS
A. DATASETS
This study utilized two datasets for model training and eval-
uation, with audio files uniformly sampled at 16 kHz in all

experiments. The first dataset is a combination of DARPA-
TIMIT [39] and NoiseX-92 [40]. The clean speech source is
derived from the TIMIT dataset, which includes 630 speak-
ers, each speaking ten sentences. The NoiseX-92 dataset was
used as the source for noise, consisting of 15 audio files,
each containing a different type of noise. In this study, the
training data comprised the first 250 sentences from the
DARPA-TIMIT training data subset. Five noise types from
NoiseX-92 were selected, namely babble, destroyerops, f16,
pink, and volvo. Five SNR levels were used: −10dB, −5dB,
0dB, 5dB, and 10dB. For the test data, the first 25 sentences
from the TIMIT test subset were combined with nine noises,
including leopard, white, machinegun, hfchannel, destroy-
erengine, factory1, factory2, buccaneer1, and buccaneer2,
at four SNR levels (−7.5dB, −2.5dB, 2.5dB, and 7.5dB).
A total of 250 audio test data samples were obtained. It is
important to note that the SNR, noise type, and voice settings
of the test set and training set are entirely different.

For further evaluation, another dataset, the Voice Bank
Corpus (CSTR VCTK), was utilized. This dataset consists
of a training set and a test set, both pre-mixed with the
DEMAND noise dataset. The noisy training set comprises
56 speakers, with clean speech mixed with 10 types of noise
(including 2 types of artificial noise and 8 types of noise from
the Demand database [41]) at 4 SNR conditions (15, 10, 5,
and 0 dB). Each person contributed 10 different sentences per
condition. The test set consists of 2 speakers, with 5 types of
noise and 4 SNR conditions (17.5, 12.5, 7.5, and 2.5 dB). For
each condition, 20 different sentences from each person were
used.

B. EXPERIMENTAL RESULTS
1) ANALYSIS ON THE SIZE OF THE WAVE-U-NET
Since the mixed TIMIT dataset exhibits a wide range of
signal-to-noise ratios (SNR), we chose to utilize it for
our analysis. Initially, we examined the impact of model
parameters on speech quality. To compress the model size,
we reduced the number of kernels in each convolutional layer.
Our model architecture consisted of 12-layer downsampling
blocks as the encoder and 12-layer upsampling blocks as the
decoder. The number of layers remained the same before and
after the reduction.

During training, we employed the Adam optimizer with
a learning rate of 0.001 and decay rates of β1= 0.9 and
β2= 0.999. The batch size was set to 16. In the 100% size
model frame we completely follow the settings in the original
Wave-U-Net article. The encoder consists of conv1d layers
and downsampling blocks, which is responsible for com-
pressing and resampling the feature size. The decoder, on the
other hand, includes corresponding upsampling blocks and
deconv1d layers. To determine the compression rate of the
student model, we gradually reduce the original model size
from 100% to 75%, 50%, 25%, and 12%, as shown in Table 2.
For comparison, we reduce the hidden size of the encoder and
decoder. The layer number settings are presented in Table 3.
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TABLE 2. The score of different model sizes for the Wave-U-Net.

TABLE 3. The layer setting and the number of initial filters for each
model size.

TABLE 4. The score of different KD learning ratios.

The left side of the table is stacked in order according to the
layer order of the model, which contains Downsample (DS)
and Upsample (US) blocks, convolution and deconvolution
layers. The number of filters in different model sizes doubles
layer by layer in encoding stage. The kernel size is set to 5 in
all layers.

It was observed that when the model size was further
reduced from 25% to 12%, the performance significantly
declined. This can be attributed to the fact that with a reduc-
tion from 100% to 25% of the model size, the parameters
were still sufficient to handle the task. However, when the
number of model parameters becomes insufficient, the per-
formance experiences a significant degradation. Based on this
observation, for subsequent experiments, we utilized 100% of
the model parameters for the teacher model and 25% for the
student model.

2) FIXED KD LEARNING RATIO ANALYSIS
Next, we conducted experiments to evaluate the effects of dif-
ferent KD learning ratios. The KD learning ratio α remained
fixed throughout the training process, and different values
of α emphasized different points in the training. Typically,
in KD learning, α is set to 0.5, indicating an equal con-
tribution from the soft target and the hard target. In this
experiment, both the teacher and student models used the
same loss function, and we set α values to 1, 0.75, 0.5, and
0.25, respectively. A value of 1 meant that the soft target
(teacher output) was fully utilized, while a decrease in α

TABLE 5. Comparison of PESQ score in different SNRs.

FIGURE 6. The scores for method C with different model sizes.

indicated a shift in the training direction towards the clean
target. The results are presented in Table 4.

Based on the experimental results, it can be observed
that under the same number of parameters, the gap between
the maximum and minimum PESQ scores was 0.06, while
SISDR reached 0.7. This demonstrates that the KD learning
ratio has a significant impact on model training. Furthermore,
the model performed best when α was set to 0.75. Therefore,
in subsequent experiments, we used the fixed ratio KDmodel
with α set to 0.75 for comparison.

3) SE WITH RL-BASED KD ANALYSIS
To evaluate the performance of SE, we trained three student
models using Methods A, B, and C as proposed in (6) and
compared themwith the teachermodel, non-KD students, and
the best model with a fixed KD learning ratio (α = 0.75).
The results are presented in Table 5. It can be observed that
under a 25% reduction in the teacher model size, Method C
exhibited the best and most stable performance. We further
tested the SE systems trained using non-KD, fixed ratio KD,
and Method C, and the results are illustrated in Figure 6.
From the experimental results, it was found that the teacher

model had an average Perceptual Evaluation of Speech Qual-
ity (PESQ) score of 2.18, and when the size was reduced to
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TABLE 6. Comparison of the PESQ scores for the speech data in different noise types.

TABLE 7. Comparison of the SISDR scores for the speech data in different noise types.

TABLE 8. Comparison of the scores for the speech data in different SNRs.

TABLE 9. Comparison of PESQ scores for speech data with different noise types similar to the training set.

25%, the performance declined by 0.05, which corresponds
to a 9.43% decrease in performance. Through knowledge
distillation, both the fixed ratio KD and the proposedmethods

proved beneficial in improving performance under a 25%
model size. Method C, in particular, showed no performance
degradation. To further analyze the differences between the
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TABLE 10. Comparison of PESQ scores for speech data with different noise types similar to the training set.

TABLE 11. Comparison of mixture noise reduction similar to the training set under different SNRs.

FIGURE 7. α value as a function of epoch for (a) 10 samples with Method A (b) average α value for all samples with Method
A (c) 10 samples with Method B (d) average α value for all samples with Method B, and (e) 10 samples with Method C
(f) average α value for all samples with Method C.

proposed KD learning method, the fixed ratio KD, and the
student model, we provided scores for each SNR and noise
type in Table 6, Table 7, and Table 8. It can be observed that
the fixed KD learning ratio resulted in a decline in SISDR
performance, whereas Methods A, B, and C all exhibited
improvements to some extent. Among them, Method C was
the most stable and effective.

Method C demonstrated outstanding performance, partic-
ularly at low SNR levels. From Table 8, it can be seen that
at an SNR of −2.5 dB, Method C achieved improvements of
1.81% and 4.41% in PESQ and SISDR scores, respectively,
compared to the teacher model. Similarly, at an SNR of

−7.5 dB, Method C showed enhancements of 9.75% and
6.83% in PESQ and SISDR scores, respectively. However,
in high SNR conditions, the PESQ score slightly decreased.
This can be attributed to the training stability decay method
employed in the reward, which was relatively rough and
caused the training objective for speech with low-level noise
to deviate slightly.

4) ANALYSIS OF DIFFERENT POLICY NETWORKS
In this section, we will provide a more detailed explanation
of Methods A, B, and C, as well as the α value estimated by
the policy network, to elucidate the performance differences
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FIGURE 8. Spectrum of: (a) clean (b) speech mixed with leopard noise (c) speech enhanced by teacher model (d) speech
enhanced by non-KD method, and (e) speech enhanced by Method C.

FIGURE 9. Spectrum of: (a) clean (b) speech mixed with leopard noise (c) teacher model (d) non-KD method, and
(e) Method C.

TABLE 12. Comparison of score mean and standard deviation for different methods in CSTR VCTK dataset.

among the three methods. We examined how the α values of
10 individual samples changed during training and calculated
the average α value across all samples. First, the results for
Method A are presented in Figure 7 (a) and (b). The red line

in (a) signifies the average α value for 10 samples, whereas
(b) illustrates the average α value for all samples. In the initial
stages of training, the α value quickly converged towards
either 0 or 1. As the number of training data increased,
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TABLE 13. Comparison of PESQ scores for two tailed t-test results.

TABLE 14. Comparison of SISDR scores for two tailed t-test results.

most α values moved closer to 0, with only a few approach-
ing 1. However, in the later stages of training, α did not
converge well and exhibited significant oscillations, with a
maximum amplitude of approximately 0.3. Nevertheless, due
to algorithmic reasons, the convergence curve fluctuates too
much compared with Method C, resulting in unstable speech
quality.

Continuing with Method B, it can be observed from the
average value in (d) that all α values in the early stages
quickly converge to near 1. This suggests that hard targets are
more beneficial for model training than soft targets, regard-
less of subsequent input conditions. Additionally, in (c),
it can be noted that the variation in α during the training
process for different samples is minimal, resulting in the
entire training process not significantly differing from the
typical KD training. For Method C, (f) illustrates that α

quickly converges to 1 at the beginning of training, once again
highlighting the value of soft targets during the early stages of
training. As training progressed, distinct convergence curves
and points emerged for different samples. As depicted in (e),
the convergence process remained stable, and the maximum
amplitude during the later stages of training did not exceed
0.05. The final convergence values ranged from approxi-
mately 0.3 to 0.6, with an average convergence value of
around 0.4 across all samples. The α values obtained from
Method C proved to be more reasonable and effective. When
compared to Method A, Method C exhibited a more stable
training process, resulting in a final α value with only 1/10th
the amplitude seen in Method A. Compared to Method B,
Method C demonstrated superior sample recognition capa-
bility. Furthermore, apart from estimating the α value based
on different samples, it can also be adjusted according to
different training time points. From (e), it is evident that the
α value curve for the 10 samples is quite distinct, demon-
strating that the model performs well at every step. Adjusting
the learning objectives’ proportions also addresses the TIP
problem and fully leverages the benefits of knowledge distil-
lation. Consequently,Method Cwas selected to build the final
model.

5) SPECTRUM DIFFERENCE OF KDRL
We examined the speech output represented by the spectrum
and compare the difference in output between various meth-
ods. The results of two different cases are discussed below.

In the first case, leopard noise was used, as shown in
Figure 8. Leopard noise was present throughout the entire
speech signal, including the silent parts. From figures (c), (d),
and (e), it can be observed that the noise in the silent parts of
the speech can be filtered out by the teacher model or the
RL-based KD method. However, the baseline model is not
able to effectively remove the noise. Moving on to the second
case, machinegun noise was used, as shown in Figure 9. This
noise is non-stationary in nature. It can be observed that in the
second half of the speech signal, neither the teacher model
nor the baseline model can effectively eliminate the noise.
However, our method demonstrates a significant reduction in
noise and even performs better than the teacher model.

These results indicate that our proposedmethod is effective
in reducing different types of noise, including noise present
in silent parts and non-stationary noise. It outperforms the
baseline model and even achieves better performance than the
teacher model in certain scenarios.

6) COMPARISON OF CSTR VCTK DATASET
To facilitate comparison with other methods, we con-
ducted similar experiments on the CSTR VCTK dataset
and included the effects of the policy network learning rate
and low-performing teacher tests. The results are presented
in Table 12. For the baseline we implemented the method
according to [42], and achieved results close to the original
research in terms of speech clarity. As the evaluation scores
were similar when the model size was set to 25%, we per-
formed a two-tailed t-test between the results of fixed KD,
Method C, and non-KD to assess their significance, as shown
in Table 13 and Table 14.

The results in Table 12 show that Method C consistently
performs better than the teacher model at a 25% model
size, regardless of whether a less effective teacher is used
or not. To confirm that our proposed method is suitable

VOLUME 11, 2023 144431



S.-C. Chu et al.: SE Using Dynamic Learning in KD via Reinforcement Learning

FIGURE 10. Compare silent segments of the following results: (a) noisy
(b) teacher 100% (c) teacher 25% (d) fixed ratio KD (e) baseline (f) KDRL
and (g) clean, selected from the CSTR VCTK dataset.

FIGURE 11. Comparing speech end segments from following results:
(a) noisy (b) teacher 100% (c) teacher 25% (d) fixed ratio KD (e) KDRL,
and (f) clean, selected from the CSTR VCTK dataset.

for various SE models, we selected Wave-U-Net and Conv-
TasNet, which utilize different loss functions. We compared
our proposed method with recent SE methods using knowl-
edge distillation on the pre-mixed CSTR VCTK dataset.
Unlike other methods that require multiple pre-trained teach-
ers, large models for feature extraction, or additional labels
and materials, our approach is straightforward, uncompli-
cated, and efficient. Nevertheless, for direct comparison

TABLE 15. Performance and model size comparison on CSTR VCTK
dataset: ‘‘-’’ denotes the results not provided in the original paper; repro.
- our reproduction of experiments.

purposes, we have included the data in Table 15. Although
there are already excellent compact models available, our
method can achieve even further model size compression.
The training time listed in the table is an estimate based on
the model trained with an Nvidia GeForce GTX 1080 Ti.
Because the baseline method consists of multiple modules,
with some requiring fine-tuning, we are unable to provide
specific training times. When the proposed method KDRL
is integrated into Wave-U-Net (Wave-U-Net+KDRL), it can
enhance PESQ by 0.039 and SISDR by 0.146 while reducing
the model’s parameters by 7.7 million. Similarly, when inte-
grated into Conv-TasNet (Conv-TasNet+KDRL), it results in
a 0.033 increase in PESQ and a 1.198 improvement in SISDR,
all while saving 6.3 million parameters.

Furthermore, we present some differences between our
method and others on the CSTR VCTK dataset in Figure 10.
In Figure 11 we compare the spectrum of each method of
KD, the green rectangle in the spectrogram corresponds to the
first red rectangle in the time-domain waveform on the right,
highlighting the difference in noise reduction for silent seg-
ments. The right side red rectangle indicates that the speech
energy in (e) remains relatively intact when the silent segment
is cleaner. Additionally, Figure 11 demonstrates that when
the teacher model is reduced from 100% to 25%, the speech
segment in (c) within the green rectangle has been effec-
tively filtered out, while the speech component can be well
preserved by utilizing the knowledge distillation approach.
Overall, these results illustrate the superiority of our method
compared to others on the CSTRVCTK dataset, both in terms
of performance and the ability to preserve speech components
in noisy segments.

V. CONCLUSION
This study presents an effective solution to the TIP prob-
lem and demonstrates, through experiments, that providing
dynamic learning objectives based on different samples can
significantly enhance the quality of student learning during
their training. By training the policy network to observe
student performance and adjust the reward function, we can
generate progressive teaching materials and replicate the
advantages of ‘‘low-performing teachers’’ without the need
for extensive teacher selection or storage. Additionally, there
is no requirement for additional corpora, annotations, or large
pre-trained models. This approach has been validated using
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two representative SE models employing different loss func-
tions. As long as the loss function allows for evaluation by
the RL model, our KDRL method should be compatible with
most SE models.

Furthermore, we conducted experiments on two datasets of
varying sizes: TIMIT and CSTR VCTK. The results indicate
that the proposed KDRL method effectively eliminates noise
while preserving speech components and reducing computa-
tional demands. Moreover, sample-level guidance continues
to enhance speech quality even after reducing the size of the
student model.

REFERENCES
[1] Y. Luo andN.Mesgarani, ‘‘Conv-TasNet: Surpassing ideal time–frequency

magnitude masking for speech separation,’’ IEEE/ACM Trans. Audio,
Speech, Language Process., vol. 27, no. 8, pp. 1256–1266, Aug. 2019.

[2] T.-A. Hsieh, C. Yu, S.-W. Fu, X. Lu, and Y. Tsao, ‘‘Improving perceptual
quality by phone-fortified perceptual loss using Wasserstein distance for
speech enhancement,’’ 2020, arXiv:2010.15174.

[3] A. Sivaraman and M. Kim, ‘‘Sparse mixture of local experts for efficient
speech enhancement,’’ 2020, arXiv:2005.08128.

[4] K. Tan and D. Wang, ‘‘Learning complex spectral mapping with
gated convolutional recurrent networks for monaural speech enhance-
ment,’’ IEEE/ACM Trans. Audio, Speech, Language Process., vol. 28,
pp. 380–390, 2020.

[5] S. Pascual, A. Bonafonte, and J. Serrà, ‘‘SEGAN: Speech enhancement
generative adversarial network,’’ 2017, arXiv:1703.09452.

[6] D. Stoller, S. Ewert, and S. Dixon, ‘‘Wave-U-Net: A multi-scale neural
network for end-to-end audio source separation,’’ 2018, arXiv:1806.03185.

[7] J. L. Roux, S.Wisdom, H. Erdogan, and J. R. Hershey, ‘‘SDR—Half-baked
or well done?’’ in Proc. IEEE Int. Conf. Acoust., Speech Signal Process.
(ICASSP), May 2019, pp. 626–630.

[8] Z. Meng, J. Li, Y. Gong, and B.-H. Juang, ‘‘Adversarial feature-mapping
for speech enhancement,’’ 2018, arXiv:1809.02251.

[9] S.-W. Fu, C.-F. Liao, and Y. Tsao, ‘‘Learning with learned loss function:
Speech enhancement with quality-net to improve perceptual evaluation of
speech quality,’’ IEEE Signal Process. Lett., vol. 27, pp. 26–30, 2020.

[10] S.-W. Fu, C. Yu, T.-A. Hsieh, P. Plantinga, M. Ravanelli, X. Lu, and
Y. Tsao, ‘‘MetricGAN+: An improved version of MetricGAN for speech
enhancement,’’ 2021, arXiv:2104.03538.

[11] S. Kataria, J. Villalba, andN.Dehak, ‘‘Perceptual loss based speech denois-
ing with an ensemble of audio pattern recognition and self-supervised
models,’’ in Proc. IEEE Int. Conf. Acoust., Speech Signal Process.
(ICASSP), Jun. 2021, pp. 7118–7122.

[12] X. Tan and X.-L. Zhang, ‘‘Speech enhancement aided end-to-end multi-
task learning for voice activity detection,’’ inProc. IEEE Int. Conf. Acoust.,
Speech Signal Process. (ICASSP), Jun. 2021, pp. 6823–6827.

[13] Y. Gong, L. Liu, M. Yang, and L. Bourdev, ‘‘Compressing deep convolu-
tional networks using vector quantization,’’ 2014, arXiv:1412.6115.

[14] A. van den Oord, O. Vinyals, and K. Kavukcuoglu, ‘‘Neural discrete
representation learning,’’ 2017, arXiv:1711.00937.

[15] E. Agustsson, F. Mentzer, M. Tschannen, L. Cavigelli, R. Timofte,
L. Benini, and L. Van Gool, ‘‘Soft-to-hard vector quantization for end-to-
end learning compressible representations,’’ 2017, arXiv:1704.00648.

[16] Z. Huang and N. Wang, ‘‘Data-driven sparse structure selection for deep
neural networks,’’ in Proc. Eur. Conf. Comput. Vis. (ECCV), vol. 2018,
pp. 304–320.

[17] P. Molchanov, A. Mallya, S. Tyree, I. Frosio, and J. Kautz, ‘‘Importance
estimation for neural network pruning,’’ inProc. IEEE/CVFConf. Comput.
Vis. Pattern Recognit. (CVPR), Jun. 2019, pp. 11256–11264.

[18] Z. Liu, M. Sun, T. Zhou, G. Huang, and T. Darrell, ‘‘Rethinking the value
of network pruning,’’ 2018, arXiv:1810.05270.

[19] G. Hinton, O. Vinyals, and J. Dean, ‘‘Distilling the knowledge in a neural
network,’’ 2015, arXiv:1503.02531.

[20] L. Yuan, F. E. Tay, G. Li, T. Wang, and J. Feng, ‘‘Revisiting knowledge
distillation via label smoothing regularization,’’ in Proc. IEEE/CVF Conf.
Comput. Vis. Pattern Recognit. (CVPR), Jun. 2020, pp. 3902–3910.

[21] X. Hao, S. Wen, X. Su, Y. Liu, G. Gao, and X. Li, ‘‘Sub-band knowledge
distillation framework for speech enhancement,’’ 2020, arXiv:2005.14435.

[22] S. Nakaoka, L. Li, S. Inoue, and S. Makino, ‘‘Teacher–student learning
for low-latency online speech enhancement using Wave-U-Net,’’ in Proc.
IEEE Int. Conf. Acoust., Speech Signal Process. (ICASSP), Jun. 2021,
pp. 661–665.

[23] K. Xu, L. Rui, Y. Li, and L. Gu, ‘‘Feature normalized knowledge distil-
lation for image classification,’’ in Computer Vision—ECCV 2020. Cham,
Switzerland: Springer, 2020, pp. 664–680.

[24] Y. Liu, L. Sheng, J. Shao, J. Yan, S. Xiang, and C. Pan, ‘‘Multi-label
image classification via knowledge distillation from weakly-supervised
detection,’’ in Proc. 26th ACM Int. Conf. Multimedia, Oct. 2018,
pp. 700–708.

[25] L. Zhang, J. Song, A. Gao, J. Chen, C. Bao, and K. Ma, ‘‘Be your own
teacher: Improve the performance of convolutional neural networks via
self distillation,’’ in Proc. IEEE/CVF Int. Conf. Comput. Vis. (ICCV),
Oct. 2019, pp. 3712–3721.

[26] K. Kim, B. Ji, D. Yoon, and S. Hwang, ‘‘Self-knowledge distillation with
progressive refinement of targets,’’ 2020, arXiv:2006.12000.

[27] K. Tan and D. Wang, ‘‘Towards model compression for deep learning
based speech enhancement,’’ IEEE/ACM Trans. Audio, Speech, Language
Process., vol. 29, pp. 1785–1794, 2021.

[28] S. Wang, K. Li, Z. Huang, S. M. Siniscalchi, and C.-H. Lee, ‘‘A transfer
learning and progressive stacking approach to reducing deep model sizes
with an application to speech enhancement,’’ in Proc. IEEE Int. Conf.
Acoust., Speech Signal Process. (ICASSP), Mar. 2017, pp. 5575–5579.

[29] D. Y. Park, M.-H. Cha, D. Kim, and B. Han, ‘‘Learning student-friendly
teacher networks for knowledge distillation,’’ in Proc. Adv. Neural Inf.
Process. Syst., vol. 34, 2021, pp. 13292–13303.

[30] H. Ma, T. Chen, T.-K. Hu, C. You, X. Xie, and Z. Wang, ‘‘Undis-
tillable: Making a nasty teacher that CANNOT teach students,’’ 2021,
arXiv:2105.07381.

[31] X. Hao, C. Xu, L. Xie, and H. Li, ‘‘Optimizing the perceptual quality of
time-domain speech enhancement with reinforcement learning,’’ Tsinghua
Sci. Technol., vol. 27, no. 6, pp. 939–947, Dec. 2022.

[32] Z. Zhao, S. Elshamy, and T. Fingscheidt, ‘‘A perceptual weighting fil-
ter loss for DNN training in speech enhancement,’’ in Proc. IEEE
Workshop Appl. Signal Process. Audio Acoust. (WASPAA), Oct. 2019,
pp. 229–233.

[33] A. S. Subramanian, X. Wang, M. K. Baskar, S. Watanabe, T. Taniguchi,
D. Tran, and Y. Fujita, ‘‘Speech enhancement using end-to-end speech
recognition objectives,’’ in Proc. IEEE Workshop Appl. Signal Process.
Audio Acoust. (WASPAA), Oct. 2019, pp. 234–238.

[34] S. Zhao, T. H. Nguyen, and B. Ma, ‘‘Monaural speech enhancement
with complex convolutional block attention module and joint time fre-
quency losses,’’ in Proc. IEEE Int. Conf. Acoust., Speech Signal Process.
(ICASSP), Jun. 2021, pp. 6648–6652.

[35] G. Yu, A. Li, C. Zheng, Y. Guo, Y. Wang, and H. Wang, ‘‘Dual-branch
attention-in-attention transformer for single-channel speech enhance-
ment,’’ in Proc. IEEE Int. Conf. Acoust., Speech Signal Process. (ICASSP),
May 2022, pp. 7847–7851.

[36] R. Cao, S. Abdulatif, and B. Yang, ‘‘CMGAN: Conformer-based metric
GAN for speech enhancement,’’ 2022, arXiv:2203.15149.

[37] A. Baevski, Y. Zhou, A. Mohamed, and M. Auli, ‘‘wav2vec 2.0: A frame-
work for self-supervised learning of speech representations,’’ in Proc. Adv.
Neural Inf. Process. Syst., vol. 33, 2020, pp. 12449–12460.

[38] S.-W. Fu, Y. Tsao, H.-T. Hwang, and H.-M. Wang, ‘‘Quality-Net: An end-
to-end non-intrusive speech quality assessment model based on BLSTM,’’
2018, arXiv:1808.05344.

[39] J. S. Garofolo, L. F. Lamel, W. M. Fisher, J. G. Fiscus, and
D. S. Pallett, ‘‘DARPA TIMIT acoustic-phonetic continuous speech
corpus CD-ROM. NIST speech disc1-1.1,’’ NASA STI/Recon, Tech.
Rep. NISTIR4930, 1993.

[40] A. Varga and H. J. M. Steeneken, ‘‘Assessment for automatic speech
recognition: II. NOISEX-92: A database and an experiment to study the
effect of additive noise on speech recognition systems,’’ Speech Commun.,
vol. 12, no. 3, pp. 247–251, Jul. 1993.

[41] J. Thiemann, N. Ito, and E. Vincent, ‘‘The diverse environments multi-
channel acoustic noise database (DEMAND): A database of multichan-
nel environmental noise recordings,’’ in Proc. Meetings Acoust., 2013,
Art. no. 035081.

[42] M. Thakker, S. E. Eskimez, T. Yoshioka, and H.Wang, ‘‘Fast real-time per-
sonalized speech enhancement: End-to-end enhancement network (E3Net)
and knowledge distillation,’’ 2022, arXiv:2204.00771.

VOLUME 11, 2023 144433



S.-C. Chu et al.: SE Using Dynamic Learning in KD via Reinforcement Learning

[43] N. Saleem, T. S. Gunawan, M. Kartiwi, B. S. Nugroho, and
I. Wijayanto, ‘‘NSE-CATNet: Deep neural speech enhancement using
convolutional attention transformer network,’’ IEEE Access, vol. 11,
pp. 66979–66994, 2023.

[44] M. Chen, Q. Zhang, Q. Song, X. Qian, R. Guo, M. Wang, and D. Chen,
‘‘Neural-free attention for monaural speech enhancement towards voice
user interface for consumer electronics,’’ IEEE Trans. Consum. Electron.,
early access, Mar. 14, 2023, doi: 10.1109/TCE.2023.3254507.

[45] R. Soleymanpour, M. Soleymanpour, A. J. Brammer, M. T. Johnson,
and I. Kim, ‘‘Speech enhancement algorithm based on a convolutional
neural network reconstruction of the temporal envelope of speech in noisy
environments,’’ IEEE Access, vol. 11, pp. 5328–5336, 2023.

[46] F. K. Peracha, M. I. Khattak, N. Salem, and N. Saleem, ‘‘Causal speech
enhancement using dynamical-weighted loss and attention encoder–
decoder recurrent neural network,’’ PLoS ONE, vol. 18, no. 5, May 2023,
Art. no. e0285629.

[47] A. Defossez, G. Synnaeve, and Y. Adi, ‘‘Real time speech enhancement in
the waveform domain,’’ 2020, arXiv:2006.12847.

[48] Z. Kong, W. Ping, A. Dantrey, and B. Catanzaro, ‘‘Speech denoising in the
waveform domain with self-attention,’’ in Proc. IEEE Int. Conf. Acoust.,
Speech Signal Process. (ICASSP), May 2022, pp. 7867–7871.

SHIH-CHUAN CHU received the B.S. and
M.S. degrees in electrical engineering from the
Southern Taiwan University of Science and Tech-
nology, Tainan, Taiwan, in 2017 and 2019, respec-
tively. He is currently pursuing the Ph.D. degree
with National Cheng Kung University (NCKU).
His research interests include speech signal pro-
cessing, speech enhancement, and separation.

CHUNG-HSIEN WU (Senior Member, IEEE)
received the B.S. degree in electronics engineering
from National Chiao Tung University, Hsinchu,
Taiwan, in 1981, and the M.S. and Ph.D. degrees
in electrical engineering from National Cheng
Kung University (NCKU), Tainan, Taiwan, in
1987 and 1991, respectively. Since 1991, he has
been with the Department of Computer Science
and Information Engineering, NCKU. He was a
Visiting Scientist with the Computer Science and

Artificial Intelligence Laboratory, Massachusetts Institute of Technology
(MIT), Cambridge, MA, USA, in Summer 2003. He was the Deputy Dean
of the College of Electrical Engineering and Computer Science, NCKU,
from 2009 to 2015. He was a Chair Professor, in 2017. His research interests
include deep learning, affective computing, speech recognition/synthesis,
and spoken language processing. He was the APSIPA BoG Member,
from 2019 to 2021. He received the 2018 APSIPA Sadaoki Furui Prize
Paper Award, in 2018, and the Outstanding Research Award from the Min-
istry of Science and Technology, Taiwan, in 2010 and 2016. He was an
Associate Editor of IEEE TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE

PROCESSING, from 2010 to 2014; IEEE TRANSACTIONSONAFFECTIVECOMPUTING,
from 2010 to 2014; ACM Transactions on Asian and Low-Resource Lan-
guage Information Processing; and APSIPA Transactions on Signal and
Information Processing, from 2014 to 2020.

TSAI-WEI SU received the B.S. degree in
computer science and information engineering
from National Sun Yat-sen University (NSYSU),
Kaohsiung, Taiwan, in 2019, and the M.S. degree
in computer science and information engineering
from National Cheng Kung University (NCKU),
Tainan, Taiwan, in 2021.

144434 VOLUME 11, 2023

http://dx.doi.org/10.1109/TCE.2023.3254507

