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ABSTRACT Counting the number of Circulating Tumor Cells (CTCs) for cancer screenings is currently done
by cytopathologists with a heavy time and energy cost. AI, especially deep learning, has shown great potential
in medical imaging domains. The aim of this paper is to develop a novel hybrid intelligence approach to
automatically enumerate CTCs by combining cytopathologist expertise with the efficiency of deep learning
convolutional neural networks (CNNs). This hybrid intelligence approach includes three major components:
CNN based CTC detection/localization using weak annotations, CNN based CTC segmentation, and a
classifier to ultimately determine CTCs. A support vector machine (SVM) was investigated for classification
efficiency. The B-scale transform was also introduced to find the maximum sphericality of a given region.
The SVM classifier was implemented to use a three-element vector as its input, including the B-scale (size),
texture, and area values from the detection and segmentation results. We collected 466 fluoroscopic images
for CTC detection/localization, 473 images for CTC segmentation and another 198 images with 323 CTCs
as an independent data set for CTC enumeration. Precision and recall for CTC detection are 0.98 and 0.92,
which is comparable with the state-of-the-art results that needed much larger and stricter training data sets.
The counting error on an independent testing set was 2-3% and 9% (with/without B-scale) and performs
much better than previous thresholding approaches with 30% of counting error rates. Recent publications
prove facilitation of other types of research in object localization and segmentation are necessary.

INDEX TERMS Circulating tumor cells, enumeration, U-Net, region of interest (ROI), deep learning.

I. INTRODUCTION
A. BACKGROUND
Circulating tumor cells (CTCs) originate from the primary
tumor mass and travel through the blood to distant bod-
ily locations via circulation [1]. The presence of CTCs in
the blood of cancer patients is an important indicator of
metastatic disease and resulting treatment speed. The count-
ing of these target cells with highlights based on cellu-
lar bodies and structures allows for early cancer detection,
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prognosis, treatment monitoring, and survival prediction [2],
[3]. Liquid biopsy, a method for collection of target cells,
allows the analysis of these CTCs, tumor DNA (ctDNA) and
exosomes. It is a widely used method in terms of general
cancer monitoring [4]. In particular, the identification and
characterization of CTCs provides researchers with a gold-
mine of information that goes beyond just DNA mutations
and the cancer itself [5].

B. RELATED LITERATURE
Currently, there are many ways to extract the informa-
tion embedded inside CTCs. One such way is through
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manual extraction of information. The CellSearchTM plat-
form is widely used in labs and allows for the detection
of CTCs in cancer patients with metastatic breast, prostate
or colorectal cancer. However, its emphasis on a single
biomarker (an epithelial cell adhesion molecule (EpCAM)-
based biomarker) for detection makes it susceptible to false
positives and false negatives [6]. Advances in cellular high-
lighting have made alternatives possible by overlapping the
original CellSearchTM’s technology with other methods. The
CellBrowser software, a handy interface to the CellSearchTM

platform, provides an interactive mode to view, count and
select cells from the fluorescence images and further output
related measurements of the cell [5]. However, the current
methods of enumerating CTCs from the fluorescence images,
which are manually performed by cytopathologists in the
lab, usually take large amounts of effort and is plagued with
inefficiency due to potential inexperience and fatigue even in
the most experienced of workers [7], [8].
The extensive development in recent years of machine

and deep learning automation provides valuable evidence on
the effectiveness of automated image analysis. Traditional
machine learning techniques have, in the past, been used
in cellular enumeration for cancer screening purposes [5],
[9], but were usually trained with very limited samples.
The classification and detection of CTCs were usually per-
formed after the cells were manually contoured first, and
the accuracy of classification was relatively low. Some of
the non-traditional-machine-learning techniques include the
usage of thresholding as its singular discriminator, providing
a simpler method but usually also resulting in a significant
error percentage of false positives or false negatives.

While these simple, traditional machine learning and
non-machine learning cell enumeration tactics resulted in
interesting results, deep learning-based techniques have been
successfully used in object detection and segmentation on
both natural and medical images. From general topics like
general Explainable AI [28], to deep-reinforcement learning
[29] and new architectures, like vision transformer (ViT) [27],
it is evident many perspectives and tools have been developed
for medical image processing.

Several papers have already started to apply deep learn-
ing techniques for CTC enumeration [10], [11], [12], [13],
[14], [15]. These previous proposals simply applied different
convolutional neural networks (CNNs) including VGG16,
VGG19 [12], ResNet18, ResNet50 [13], AlexNet [14], [15]
and also YOLO-V4 [16] on digital pathology images and
reported the CTC counting results. For this type of usage and
network designs, there are several flaws. For these approaches
[10], [11], [12], [15], the deep learning model needed large
amounts of data compared to traditional machine learning
models to train. Ranging from between several thousand to
tens of thousands of labeled samples, these high quality, man-
ually labeled ‘‘ground truth’’ datasets create significant tech-
nical challenges in the training of these models. In addition,
some approaches, for example [12], used a strict center-point

based method of annotation, while [5] used the CNN for rare
CTC detection with a single clear cell image being allowed
to be used for training and testing. The YOLO-V4, which
was originally designed to recognize cars, humans, trees etc.,
needed an especially large amount of training samples when
it was used for CTC localization during enumeration in [16].
In addition, only one feature - the cell size - was actively
considered for detecting/classifying the final CTC labels [16].
A reliance on a single aspect for a multi-featured object
declines the performance of any network trained specifically
to do such things. In this case, it declines the performance
of counting CTCs especially as select CTC cells have a
variation on morphology, or when two CTC cells are very
close to each other. Important features of the cell such as
size or homogeneity that cellular experts and screeners use
to enumerate were also not explicitly used in the previous
deep learning enumeration models. In other words, it is very
hard to correlate the deep learning network results to what
information and what features were utilized in beneficially
deciding and counting the candidate CTCs. On the other
hand, weak annotations from lower time-cost labeling can
be more easily acquired in practice but were not suitable
for the above, strict, ground truth annotation required deep
learning approaches. By modifying methods slightly, weak
annotations may be included and a heavy time cost may be
saved by their inclusion.

In this paper, rather than strict, tight labels that would sur-
round the CTCs and would force annotators to be extremely
diligent to find the centers, the proposed method allows weak
annotations of either a rough region of interest (ROI) box or
a rough circle near and around the CTC cells (as testing for
the effects of labels was also done). For the weak annotated
labels in this study, it was not necessary to just have one single
CTC cell inside a box, which means non-CTCs can also be
included in ROI. Those labels take much less time than those
needing careful contouring on each CTC cell [17], being
more efficient and more successful in the output/input ratio.
We also conceived in this study an approach of using deep
learning combined with prior knowledge to enumerate CTCs.
Prior knowledge in this experiment includes the encoding of
sphericality via the ball-scale transform [18], homogeneity
via texture filter, and size estimation. All three features are
key points that screeners use, and by integrating them into
the network procedure, a hybrid, due to the inclusion of man-
ual features alongside deep learning recognition, and more
efficient automated process can be reached.

We have published preliminary results in one conference
paper, SPIE [19], but this paper significantly extends the
previous version by providing more literatures, different deep
learning architectures with more details on methods, and
more results from the differing, tested procedures. Through
including new, multiple feature-based classifications as com-
pared to before literatures [19], adding the comparation
of using circular annotation, and incorporating compari-
son with existing approaches, this paper aims to conceive
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FIGURE 1. Methodology of hybrid intelligence system for circulating tumor cell (CTC) enumeration.

a novel and informative comparison of the works in this
paper.

The major contribution of this paper is to present a hybrid
intelligence (HI) approach for CTC counting by combining
cytopathology expertise on CTCs along with the efficiency of
machine learning via deep CNNs. Our HI approach includes
three main steps: image recognition/detection, segmentation,
and classification. The proposed work on weak annotation
and B-scale transform technique is more general and can
facilitate other types of research in object localization and
segmentation.

The paper is arranged as below. Materials and methods
are introduced in section II, followed by the qualitative and
quantitative results in section III. Section IV discusses and
analyzes the results for significance and summarizes the con-
clusion and limitations as well as the work in the future.

II. MATERIALS AND METHODS
A. OVERVIEW
The methodology of the hybrid intelligence (HI) based auto-
matic CTC enumeration is illustrated in Figure 1. There are
three steps in the HI CTC enumeration. Firstly, we localized
the regions where possible CTCs are by providing a detected

ROI for each one. This requires a CNN for CTC recognition
named CNNr. Secondly, we took the resulting ROI as the
input for our segmentation network, named CNNs, and fur-
ther segmented the CTCs within the ROI. Lastly, we enabled
a support vector machine (SVM), a previously used classifier
in a multitude of medical screenings [32], Cf, for a final
determination of the CTC using the ball scale transform with
the ROI, as well as the computed features from segmentation.

B. IMAGE DATA SET AND MATERIALS
This study deals with fluoroscopy images from scanned Cir-
culating Tumor Cells (CTCs). These CTCs were first grown
in lab culture and then injected into prepared blood samples.
The resulting images were used for deep learning algorithms
to test and train them. No patient information was included,
as all blood samples had been deidentified prior to the project
start. No human subjects were harmed or hurt throughout the
duration of this study. The image datasets were summarized
in Table 1.
We first gathered viable dataset images for training and

testing. In total, we collected 1000+ total CTC positive
images for our networks’ (CNNr andCNNs) training and test-
ing phases. 466 total viable images were split in [233:93:140]
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TABLE 1. Image data allocations.

respectively, for the training, validation, and testing of the
detection/localization network; and a total of 473 images
were split in [236:95:142] for training, validation, and testing
of the segmentation network. Around 1/3 of all images were
CTC positive with at least one CTC in the entire image. The
ground truths for the detection network in this case were
weak box-based annotations for the general cell area. We also
investigated another annotation approach using a rough circle
to label the CTC in the following sessions.

The support vector machine was trained with a dataset
of 66 randomly selected samples from the whole training
dataset, split into 30 positive and 36 negative samples. The
final CTC enumeration testing datasets are totally indepen-
dent from any training data set. The enumeration, which is the
ultimate goal of this entire endeavor, was tested with another
independent testing data set. This includes 198 images with
323 total positive CTCs. There is no overlap between this
enumeration testing data set and any other data sets (training
and testing) of CNNr or CNNs.

C. METHODS
In this study, CNN based deep learning was utilized to
automate the process of CTC enumeration. Instead of only
utilizing one network as was done in previous experiments
[12], [13], [14], [15], we used two CNNs: CNNr (recogni-
tion) and CNNs (segmentation). The aim was to mimic how
expert screeners recognize and then double check if CTCs
are positive. The two neural networks were used sequentially
with the CNNr recognizing the general area where possible
CTCs lay first. With those results, it finds those ROIs in
the image and then transfers these positive CTC locations
to the CNNs. The CNNs only focuses on the highlighted
region instead of shifting windows/patches as those in regular
segmentation methods [20], [21], [22], providing a more
efficient method for cell segmentation. By combining these
segmentation results with texture, ball scale value, and cell
morphology measurements, these values can be input into the
final classification/discrimination of CTCs via SVM.

1) CNNr FOR CTC RECOGNITION/LOCALIZATION
We proposed a center-point based nuclear detection network
based on the U-Net framework. The ROI was determined by
the location of the center-point (xc, yc) as well as the hori-
zontal and vertical distance offsets (1xTL ,1yTL ,1xBR,1yBR)

between the center-point, top-left and bottom-right points as
shown in Figure 2.

FIGURE 2. Box based detection.

The network architecture (using the green channel as an
example) of the CNNr is shown in Figure 3. The whole
network utilized the UNet network framework as its back-
bone but with specific parameters changed in accordance
for the data in this study. Firstly, the below network (the
detection/localization network) resizes the entire fluoroscopy
image (1920×1080), into smaller, single-CTC positive pres-
ence image/patches. Ater training, the CNNr outputs the
localization of one CTC via an ROI (region of interest), which
gives a preliminary ‘‘count’’ or recognition of CTC cells.

The specific changes that wemade to theU-Net were all for
efficiency and compatibility with our purpose. We replaced
the de-convolutional layer with an up-sampling layer for
reducing the number of parameters. 3×3 kernels and 32 out-
put channels (in the middle of U-Net) were used to reduce
the redundancy of the feature pyramid. The design of loss
function for our network considered both the detection error
and the distant offsets with the formular as follows:

L (SG,OG;W ) = −

∑
x∈� log (P (l = SG (x) | x))

N

+
λ1

∑
x∈� ∥OG (x) − O(x)∥1

N
+ λ2 ∥W∥1

(1)

where SG(x) and OG (x) denote the ground truth of the
category and distance offset at pixel x, P (l = SG (x) | x) rep-
resents the possibility value of pixel x classified as ground
truth SG (x), O (x) denotes the predicted distance offset at
pixel x, W and � represent the parameters of the network
and image domains, ∥·∥1 is the L1-norm, and λ1 and λ2 serve
as trade-off parameters among the three terms. As shown in
Figure 3, after training with the given image as an input,
we receive the probability map of the centers (which are
highlighted, possible regions for two CTC centers - also note
that the center of the cell may not be just a single pixel, but
rather a center region that consists of a cluster of pixels within
a very tight circle, 5×5 in our method.). Then, for each center
we have the mapped offsets for indicating the displacement
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FIGURE 3. CNNr framework. The outputs include a probability map of the centers, and the 4 distant offset matrixes of corners for the building
rectangles.

in x and y directions. These correspond to the 1x and 1y in
for the predicted corners of the ROI detection box.

FIGURE 4. Weak annotation using center-point based ROI via a circle.

We also investigated another network to recognize / local-
ize CTCs by using the weak annotation of center-point based
ROI via a rough circle. As seen in Figure 4, the center point
at (xc, yc) from the rough circle (in white) is not the real

CTC center, which is shown as the red dot. Due to that
weakness/non-strictness of our annotations, we first refined
the location ground truth before using it in our deep learn-
ing networks as seen below. We extracted the coordinate
information of a labeled region’s center, and then built one
circle with a radius of 5 pixels around that center point. The
background and pixels in the center-point circles were anno-
tated with labels ‘‘0’’ and ‘‘1’’. We then utilized the refined
annotation data to train the CNNs network for segmenting
the center-point circles from fluorescence images (by using
one output channel representing the probability map of seg-
mentation which will derived the center point at (xc, yc)), and
also predicting the distance offset (1xc, 1yc) between any
surrounding pixels and the center-point (by using two output
channels representing probability maps of distance offset in
the x and y directions separately) as shown in Figure 5. The
loss function for our network also considered classes and
distance offsets, which is the same as equation 1.

After training, for each pixel in the testing image, we were
able to check every pixel’s maximum possible circular
region and the displacements (distance offset in x and y).
The final calculated center point

(
x∗
c , y

∗
c
)

= (xc, yc) +

(1xc, 1yc). So, in Figure 5, we can find that the output
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FIGURE 5. The center point-based detection method using rough cycle labels during training is seen above, with two distance offset
and a center-based probability map of the centers.

of the distance offset is different now with only two
distance offsets - red for 1 distance delta x and blue for
delta y.

2) CNNs FOR CTC SEGMENTATION
The secondary segmentation network, CNNs, follows a simi-
lar architecture to that of the aboveCNNr but uses the cropped
tumor cell masks as training samples instead. The segmenta-
tion network will ‘‘cut-out’’/overlay a mask delineating the
circulating tumor cell’s boundaries. The result can be utilized
for feature extraction such as to provide prior information of
size, homogeneity, and texture of CTCs, a vital contribution
that this work aimed to improve. By taking the localized
regions from the detection network, the segmentation net-
work is more efficient by checking only at those regions
with high probabilities in terms of positive presence of CTC
centers.

DICE, a statistic that is commonly chosen for segmentation
network reporting, has a large bias towards object size [22].

Due to the small cell size of CTCs, we instead designed the
loss function of this segmentation network directly using the
FP (false positive) & FN (false negative) as below,

L (G, S,W ) = [

∑
x∈� (1 − G(x)S(x,W )∑

x∈� S (x,W ) + ε
]
2

+ [

∑
x∈� (1 − S(x)G(x,W )∑
x∈� G (x,W ) + ε

]
2

, (2)

where G(x) is the ground truth at pixel x and S(x, W) are the
segmentation results at x.

3) BALL SCALE
The B-scale transform was originally developed and utilized
for object segmentations in MRI and CT images [11], [12].
We are the first to adopt it into digital pathology according
to our knowledge. Given an image C = (C , f ) where C is the
2D/3D (which can be nD) array of pixels, and f is an intensity
function defined on C, for each pixel c∈ C, the B-scale image
has the pixel value of the maximum radius for a circle, which
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covers a region with the sufficient homogeneous with c. The
maximum radius is achieved by continuously comparing a
fraction FOk (c) with a given threshold (ts = 0.85),

FOk (c) =

∑
d∈Bk (c) Wϕs (|f (c) − f (d)|)

|Bk (c) − Bk−1 (c) |
, (3)

where |Bk(c)- Bk-1(c)| is the number of pixels in (i.e., volume
of) Bk(c)- Bk-1(c) and Wϕs is the homogeneity function
using a zero-mean unnormalized Gaussian function. More
details aboutWϕs can be found in [18].

4) CLASSIFIER FOR FINAL DETERMINING CTCs
CTC recognition roughly finds and estimates the number of
CTCs. We can thus further refine and confirm the final CTC
number by utilizing classifiers. We applied the traditional
sophisticated classifier, Support Vector Machine (SVM),
using three features as the inputs.

The pixel value in a B-scale image is the maximum ball
radius for that pixel (according to the homogeneity defined
inside the ball [18]). B-scale provides the information that
allows us to enhance the image by encoding the object size
(ball radius) and the object shape (how similar it is to a
ball) information. These B-scaled images can also be used
as an additional input channel for UNet, and can also be
used for refining the output from deep learning for CTC
enumeration. This additional knowledge of maximum radius
size is a great beneficiary for efficiency and results and
can be used as one feature for SVM. We also considered
the area of segmentation results as the 2nd feature. The
third important feature is the texture information. Texture
as a feature was calculated by using co-occurrence-based
approach with entropy as target function, and with parame-
ter of win size, [23]. Encoded with a texture filter, we can
input the resulting value into the SVM. The transparent input
of each feature in the Support Vector Machine achieves
the initial target of making a hybrid, easily analyzable net-
work for determining beneficial and harmful features to
recognition.

5) DATA AUGMENTATION AND PLATFORM SETTING
To increase the number and diversity of training data, we var-
ied the intensity level of the image by multiplying the
pixel-wise intensity value with scale factors 0.9 and 1.1.
All experiments were conducted on a PC with an Intel
i7-7700KCPU and twoNVIDIA 1080 Ti GPUswith RAMof
11Gbytes. Unfortunately, due to the image size of detection
dataset being too large, the storage capacity of the GPU
was not enough to construct the detection network. All deep
learning network used the Stochastic gradient descent (SGD)
optimizer. Therefore, we resized the input image with scale
factors 0.5 for the detection network and, in total, it took us
8 hours for 500 epochs of training for the detection network.
It cost around 1 hour to train the segmentation network (using
ROI region as the input) and using specific cropped samples
for 1000 epochs training.

III. RESULTS
A. QUALITATIVE RESULTS
1) WEAK ANNOTATIONS FOR CTC LOCALIZATION
Figure 6 shows the weak annotations in their respective dif-
ferences: box-labels and circle-labels. Compared to stricter
and higher-quality annotations which require an exact con-
tour or tight bounding box around the CTC, these labels
took much less energy and time. In this method, the CTCs
and their neighboring regions are included in the labeled
region, which can provide more information and facilitate the
training for achieving a more effective localization model.
In other words, the presence of CTCs in those regions were
found to be successful in rough counts, showing our CNNr
training on weak-annotation data provides good effort/output
ratio. Figure 7. shows the original image and the B-scale
image after the transform was completed. With heightened
contrast between the brightened CTC cell area and darkened
background, the images strongly suggests B-scale enhances
the CTCs for further detection and enumeration. These
B-Scale images allow us to find the largest circle/sphericity
in a given area in 2D/3D space with adequate homogeneity,
and each pixel in B-scale image gets a radius value. The
successful highlights from our experiment evidence that the
ball scale transform can be used as a tool for pre-processing
on the image and as a tool for providing useful features for
further classifiers as shown in the following sections. Figure 8
shows different CTC detection/recognition results via box
for some difficult cases. Figure 9 shows the segmentation
results compared with the ground truth (GT) of a manual
segmentation of a CTC.

2) EVALUATION MATRIX
Precision (TP / (TP + FP)) and Recall (TP / (TP+ FN)) were
two common factors used for evaluating detection results.
The CTC counting error, Ec, is equal to |Ng-Nc|/Ng, with
Ng as the real number of the CTCs as the ground truth
value, and Nc is the number of CTC from the enumeration
approaches.

3) ESTIMATION OF THE NON-CTC CELLS
To provide a more detailed and accurate diagnostic of our
results, we had to determine the total number of non-CTCs.
In this study, an averaging statistical method was used to
estimate all the non-CTCs in any image (1920× 1080). This
worked by setting an image-center based rectangular sample
region with the size of 192 × 108, and then counting the
number of cells within this sampling region. By dividing the
number of cells with the scale factor of the sampling (1% of
total image dimensions), the total amount of estimated cells
in the entire image is calculated. This estimation process was
performed on 20 randomly selected training images. The total
number of cells can be estimated by checking the ratio of the
area of the whole image (excluding the exposed region in the
images, such as the left top corner in Figure 8) to the area of
sampling region. The amount of total non-CTCs can then be
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FIGURE 6. Illustration of weak annotations on CTCs: original image (l), rough circle (middle) and box (r).

FIGURE 7. Illustration of the B-scale transform on digital pathology images.

TABLE 2. CTC recognition, segmentation and enumberation performance on testing set.

FIGURE 8. Different CTC detection/recognition results via box for some difficult cases.

obtained by subtracting the number of CTCs in the current
image from the total estimated cells for the whole image.

Through such computation, we calculated there to be around
400,000 non-CTCs in the testing images.
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TABLE 3. CTC enumeration approach comparisons.

4) ESTIMATION OF CTC DETECTION, SEGMENTATION AND
ENUMERATION
Table 2 summarized the results from the proposed approach
using box labels for CTC ground truth location. In this study,

we proposed approaches to enumerate CTCs via detecting
and segmenting CTCs, and then using an SVM for the
final CTC determination. We evaluated our detection net-
work (CNNr) using Precision and Recall, and evaluated our
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TABLE 4. CTC detection and enumeration on the testing set using CNN being trained via circle labels vs. box labels.

FIGURE 9. Illustrations of the original image with the manual
segmentation (GT) and automatic segmentation (Auto-seg) of two
example CTCs samples.

FIGURE 10. ROC curves of CTC enumeration from SVM.

segmentation network (CNNs) using DICE. These results
were reported in Table 2, despite segmentation itself not
being the purpose of this study. It is important to note that
the segmentation for CTCs was only performed for the deep
learning approach using box labels in this study. In addition,
through segmentation results, we obtained our morphologic
information of the cell which is inputted into the SVM. For
the purpose of comparison, we also listed the results by using
a separate thresholding action on the green channel, which
seems to be an intrinsic and straight approach.

The lowest CTC counting error, Ec, on the independent
data set was 0.03 through using the deep learning with box
labels following CNNr+CNNs+SVM in this study. Without

using the B-scale filter, Ec was 0.09, which was still much
better than that from commonly done threshold approaches
(0.30) that are prevalent in the field now. Meanwhile, our
method is comparable with the results in even the most
recent publication [11], which reported sensitivity and speci-
ficity as 0.95 and 0.92 but required a significantly larger
training data set. More details of the comparisons among
different approaches can be found in Table 3. Compared
with other related methods, our method applied a simple
CNN architecture. Our testing datasets were relatively equal
to some [5], [24], or were dwarfed by those in [11], [16],
and [26]. Even with our weak annotations, our performance
is comparable and outperform most algorithms using strict
and high quality labels in training. In addition, our usage
of CTC positives is noteworthy. Reference [11] only used
139 CTCs in testing, and the resulting performance on its
training dataset was much lower than that in testing set.
This generally indicates that the CNN was not well trained,
meaning more samples were needed, as ours provided. Ref-
erence [26], in addition, only used very limited CTCs, with
only 31 total in testing. Reference [24] had lower sensitivity
and specificity of 90.3 and 91.3% with no previous knowl-
edge (cell size, etc. that our paper provided) being adopted.
Reference [30] used a larger training dataset (5699 images)
and very strict annotation for ground truth with two experts
manually bounding boxes around CTCs and cross-checking
the results. Yet, our method is still very comparable with its
results.

Figure 10. shows the ROC curve of the final CTC deter-
mination from SVM using the features of size, B-scale value
and texture. Red ROC curve is for the results from the pro-
posed approach following CNNr+CNNs+SVM. The AUC
is close to 1 which means the enumeration achieved good
performance after SVM classification.

The blue curve is used for the purpose of comparing SVM
using the features from the automatic via CNNr+CNNs vs.
the feature from the ground truth masks. These two ROCs
are very close to each other, which means the automatic
localization and segmentation have the similar performance
as the idea scenario. In the above experiments, 860 random
selected non-CTCs were used together with 323 CTCs in
SVM classifier for achieving the ROC. Although it is not the
purpose of this paper to test different classifiers, we evaluated
the random forest classifier with AUC 0.82 and accurate
0.84. We had a simliar conclusion comparing SVM with
the random forest method as in [31]. It seems that SVM
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FIGURE 11. Illustration of CTC detection results from the proposed CNN by using circle-based labels (left and middle) and box-based
labels (right) during training.

performs better in general than random classifiers on the
limited training dataset.

5) FURTHER EXPLORATION ON BOX LABELS VS. CIRCLE
BASED LABELS
Figure 11 shows the challenge of CTC detection usingmodels
being trained with labels via rough circle annotation (left and
middle) or box annotation (right). The CNNr, using the rough
circle-based labels, can localize the two neighboring CTCs.
However, it missed a cell (labelled via white arrows). In most
cases, the CNNr using the box-based annotation seems to
have caught more CTCs and performed better (illustrated in
Table 4). The detection approach using box labels achieved
better detection and enumeration results (0.03 vs. 0.08 of
counting error), which indicates that the box from manual
labeling involved more interesting information from neigh-
boring regions than just the circle labels on the CTC cell itself.
The inclusion of the image background, in other words, could
be of vital importance for the neural networks for detection
to work efficiently.

IV. CONCLUSION
In this paper, we proposed a novel hybrid intelligence
approach for CTC enumeration, which includes CTC auto-
matic recognition/ detection, CTC automatic segmentation
and three vector, and SVM based classification to enumer-
ate CTCs. The CNN for the CTC detection network was
trained using weak annotations with rough circles and boxes
labeling the CTC locations. B-scale transform was intro-
duced to enhance digital pathology images and provide the
SVM discriminator with homogeneity, size, and spherical
shape of the CTC for estimation information. Our method
is comparable and competitive with the results in recent
publications. We also investigated CTC detection by using
different labels: circle label ground truth location vs. box
labeling ground truth location, which is very interesting and
has not been reported before. The proposed approach and
framework are flexible and can be easily propagated to other
types of research of locations and detection. The number of
samples in this study is limited since it is only from one center.
The limited number of samples could be a constraint on
deep learning training and affect deep learning performance.
We are trying to collect more samples for both training and

testing in the ongoingwork. In addition, our paper’s focuswas
on developing a structured method to automatically enumer-
ate CTCs. With its current success, we are now not limited
by the structure and can explore ablational experiments to
narrow further which variables benefited our method. It also
interests us to check different deep learning architectures,
such as the recent machine learning vision transformer [27],
reinforcement learning strategies [33] and different training
methodologies on this task in the future.
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