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ABSTRACT Nowadays, innovative applications in the field of virtual reality (VR) are being developed,
attracting the interest of both academia and industry. Wireless VR applications focus on various aspects
of daily life, such as smart education, entertainment, healthcare, tourism, architecture, automotive, and
industrial automation. All these inherently interactive applications that aim to create immersive experiences
for users are closely related to the concept of quality of experience (QoE), which expresses the quality of
a service as perceived by end-users. In this paper, we develop an objective QoE prediction model based
on deep learning techniques. The prediction model examines the impact of wireless network operation on
the quality of VR 360-degree video streaming. It is based on an encoder-decoder long short-term memory
(LSTM) neural network and is able to predict in real-time the overall transmission-related QoE value using
only measurable quality of service (QoS) parameters. The prediction model is tested and evaluated on an
open radio access network testbed with interfaces based on the O-RAN specifications.

INDEX TERMS Deep learning, deep neural network (DNN), long short-term memory (LSTM), open radio
access network (Open RAN), quality of experience (QoE), QoE prediction, recurrent neural network (RNN),
virtual reality (VR).

I. INTRODUCTION
Alongside the remarkable advancement of Internet tech-
nologies, network data traffic driven by video streaming
services has been constantly growing in recent years,
bringing new challenges to current wireless communication
networks. The popularity of streaming media is growing,
creating new markets and business models, and spawning
new video formats such as virtual reality (VR) 360-degree
video. VR 360-degree video offers omnidirectional content
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that creates a much more immersive viewing experience
compared to conventional two-dimensional (2D) videos. This
has the consequence of attracting the attention of over-the-
top and video-on-demand platforms, which are constantly
increasing their content in this type of video. In addition, the
head-mounted displays (HMDs) required to view VR 360-
degree videos are becoming more affordable and available to
the public, allowing a larger audience to access them.

VR 360-degree video and all other examples of VR
applications are based on interactivity and immersion,
making the users’ quality of experience (QoE) a particularly
important aspect for their effective deployment. Both in the
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design of new use cases and in the implementation of VR
applications, it is critical to capture and understand the user
experiences of VR services as defined and quantified by
QoE. As a metric, QoE can be considered a multidisciplinary
quantity influenced by a variety of parameters attributed
to different scientific domains. In recent years, QoE has
been established as an important tool for evaluating the
quality of operation of wireless communication networks.
This is because it allows a deeper understanding of how
the quality of service (QoS) parameters of a network affect
the quality of communication services as perceived by
end-users.

Today’s wireless communication networks cannot ade-
quately meet the extremely high demands of VR applications
for very high bandwidth, ultra-low latency, high energy effi-
ciency, and high computational capabilities. Consequently,
there is a need to develop improved wireless network
architectures capable of providing programmable, flexible,
scalable, and virtualized communication solutions to address
these challenges. The technology that holds great promise for
transforming the radio access network (RAN) architecture of
wireless and mobile networks into tailored communication
solutions is that of the open RAN (Open RAN), as proposed
by the O-RAN Alliance [1]. Open RAN can be regarded as
a disruptive and innovative technology within the wireless
communications ecosystem based on two cardinal concepts:
openness and intelligence. A major advantage of developing
communication networks based on Open RAN technology
lies in its architecture, where the implementation of special-
ized intelligent network controllers is foreseen.

The benefits of QoE prediction in a wireless commu-
nication system with respect to system performance arise
from the ability to proactively analyze the patterns and
dynamic characteristics of QoE, based on which a network
optimization policy can be implemented. Consequently,
accurate QoE prediction allows for efficient planning of the
allocation of both radio and computational resources, improv-
ing network energy efficiency, limiting network congestion,
as well as reducing capital expenditure (CapEx) and operating
expenditure (OpEx) and improving profitability.

In this paper, we propose an objective QoE prediction
model for VR 360-degree video streaming supported by deep
learning methodologies. Specifically, the prediction model
is based on an encoder-decoder long short-term memory
(LSTM) deep neural network (DNN), which is applied
to an Open RAN wireless network based on the O-RAN
architecture and specifications. The purpose of the prediction
model is to quantify in real-time the effect of wireless network
operation on VR service quality as perceived by end-users.
The QoE evaluation can be classified as an objective method,
since the prediction model is able to predict the overall QoE
value using only measurable QoS parameters. These QoS
parameters, which are the key performance indicators (KPIs)
of the network, are collected and recorded using a QoS mon-
itoring system based on open-source monitoring tools. The
prediction model maps the collected values of the network

KPIs, namely bandwidth, delay, and packet loss, to mean
opinion score (MOS) values, and the encoder-decoder LSTM
network examines the interdependencies between them to
determine the overall QoE value for the VR 360-degree video
streaming service.

The structure of the paper is as follows: in Section II,
we review state-of-the-art models for QoE management for
wireless VR video streaming and VR 360-degree video
QoE prediction. In Section III, we classify QoE assessment
methods in relation to VR applications. Moreover, we exam-
ine the VR QoE influencing factors (IFs) and analyze the
network/transmission-related IFs. In addition, we analyze the
QoS/QoE mapping methodologies. In Section IV, we present
the proposed QoE prediction model. First, we describe the
Open RAN testbed. Next, we introduce the QoS monitoring
system and data generation process. Then, we define the
QoS/QoE mapping model, and finally, we analyze the
deep learning-based QoE prediction model. In Section V,
we present a comparative study of DNN techniques that
belong to the RNNcategory and demonstrate the performance
evaluation and measurement results for the proposed predic-
tion model. Finally, Section VI includes final remarks and
conclusions.

To the best of the authors’ knowledge, this is the first work
that quantifies and predicts the QoE of a wireless VR appli-
cation over Open RAN. In addition, it presents for the first
time a comparative study of DNN techniques belonging to
the recurrent neural network (RNN) category for this type of
application. Real-time QoE prediction should be considered
a critical parameter for the design of next-generation wireless
communication networks, especially for the transmission of
services with inherent interactivity, such as VR applications.

II. RELATED WORK
In recent years, there has been significant interest in
developing QoE management models for wireless streaming
of ultra-high-definition (UHD) and VR video and in QoE
prediction for VR 360-degree video.

In [2], an analysis of the impact of network parameters on
the evaluation of QoE, taking into account both subjective
and objective approaches, is offered. This analysis took
into account video and receiver characteristics and wireless
channel capacity. The model includes the use of the
least absolute shrinkage and selection operator regression
(LASSO) algorithm to predict QoE and adjust the video
quality accordingly.

In [3], a generalized QoE model derived from experiments
involving subjective quality evaluations is presented. Initially,
the model uses VR 360-degree video processing and wireless
transmission methods to conduct subjective experiments.
Then, the effect of various factors on the user experience,
such as user viewing angle, tiling, stall and resolution
switch, is mathematically analyzed. Finally, a universal QoE
model is proposed to manage wireless VR 360-degree video
streaming.
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In [4], a platform for reinforcement learning (RL) is
introduced, showcasing its ability to dynamically adjust
the feedback control loop within a wireless network. This
study focuses on the influence of reconfigurable queuing on
video streaming. The model encompasses both model-free
and model-based RL strategies to address the challenge of
assigning clients to specific queues during each decision
period, especially in high-load scenarios.

In [5], a transmission strategy for VR video is proposed.
This method constructs an integer nonlinear programming
(INLP) problemwith the goal ofmaximizing the averageQoE
in wireless VR 360-degree video transmission. By exploiting
the correlation between the structure of viewport tiles
and spectral efficiency expression, the model introduces a
multi-stream clustering technique to enhance the overall VR
video transmission performance.

In [6], an examination of a network structure tailored
for mobile VR video streaming applications is undertaken.
The study encompasses various modulation and coding
schemes offering different rates, with a subsequent analysis
of performance metrics including blocking probability,
throughput, queueing delay, and average packet error rate,
taking into account Nakagami-m fading on the wireless link.
Numerical findings show that the proposed system ensures
high QoE levels for diverse mobile VR video streaming
applications.

In [7], a two-phase predictionmethod is employed to assess
the perceived quality of adaptive VR video streaming in
mobile networks. In the first phase, the prediction model
utilizes a decision tree regression algorithm, providing an
estimate of video playback performance by incorporating
network QoS metrics as predictive factors. In the next
phase, it models and predicts end-user perceived quality by
considering the expected metrics for VR video playback
performance.

In [8], a method that combines neural network-driven
viewport estimation with a rate control system is introduced.
The proposed model utilizes a three-dimensional convolu-
tional neural network (3D CNN) and LSTM. It considers
two algorithms for non-tiled adaptive video streaming,
namely the buffer-based algorithm (BBA) and the buffer
occupancy-based Lyapunov algorithm (BOLA), along with
two variants of tiled adaptive video streaming algorithms,
namely viewport only and viewport plus.

In [9], amodel for predictingQoE inVR 360-degree videos
is proposed, employing both the linear regression algorithm
and a neural network utilizing the stochastic gradient descent
(SGD) optimization algorithm. This model considers two
dimensions of QoE: perceptual quality and cybersickness.
Additionally, it introduces two supplementary parameters
influencing QoE evaluation: the level of familiarity with VR
and the degree of interest in 360-degree video.

In [10], a QoE prediction technique is created using a
neural network optimized through SGD. This method is
designed to estimate the extent of cybersickness induced
by VR 360-degree videos, particularly during stalling

events. The evaluation and prediction of cybersickness
levels involve metrics such as the simulator sickness
questionnaire (SSQ), virtual reality sickness predictor
(VRSP), virtual reality sickness assessment (VRSA), and
visual comfort assessment (VCA). Additionally, the user’s
sense of presence is assessed using the igroup presence
questionnaire (IPQ).

In [11], a method for estimating QoE using a decision tree
algorithm is introduced. This method involves a subjective
exploration of factors influencing QoE in VR 360-degree
videos, such as quantization parameter (QP), resolution, and
initial delay. The model predicts four VR QoE factors based
on subjective evaluation: immersion, acceptability, reality
judgment, and attention captivation.

Our work is distinct from the above state-of-the-art
approaches, as it focuses on the effect of the transmission
channel on QoE. The vast majority of works on QoE
assessment and prediction focus on human and system
IFs, as analyzed in Section III-C, without examining the
impact of network/transmission-related IFs. In the few cases
where the impact of the wireless transmission channel is
considered, this is achieved by using network simulators
and emulators. Our work is the first to use a real 4G/5G
wireless network based on Open RAN technology and
examine the effect of network/transmission-related IFs in
real-world conditions. In addition, our work focuses on
developing a purely objective QoE prediction model based
on the utilization of QoS/QoE mapping functions. In par-
ticular, we consider real-world network design scenarios
where the use of subjective QoE evaluation and prediction
models is not feasible due to their limitations, as described
in Section III-A.

III. VIRTUAL REALITY QOE ASSESSMENT
The perceived quality of an application or service by
end-users is defined by the QoE measure. Consequently,
in the context of mobile and wireless networks, QoE
expresses how network operation affects the perceived
quality of communication services. The evaluation of QoE
is based on the juxtaposition of the intended quality features
that set the user’s expectations with the perceived features
resulting from a natural stimulus. Immersive applications
present some peculiarities in QoE evaluation, which mainly
focus on the experience itself, as well as the IFs [12].
In immersive applications, the following can have an
important impact on QoE: 1) the ‘‘sense of being there’’,
which refers to a sense of embodiment in a VR environment;
2) the ‘‘place of illusion’’, which permits users to perceive
virtual objects as real; and 3) the interaction among the
user and the VR environment [13]. Two methods for QoE
evaluation are mentioned in the literature: subjective and
objective evaluation. Subjectivemodels use human evaluators
who assess the quality of a service after being exposed to
a series of tests or stimuli. In contrast, objective models
capture end-users’ perceived quality using only objective
quality metrics [14].
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A. SUBJECTIVE METHODOLOGIES
In subjective methods, the evaluators’ perception of service
quality is quantified using psychophysical and psychometric
methodologies. In addition, qualitative approaches such as
focus groups, interviews and profile surveys are used to
find out which IFs affect QoE and to what extent [15].
Typically, evaluators assign a series of perceived quality
attributes to a MOS scale, which is scaled from 1 to 5 (i.e.,
poor to excellent), indicating the level of satisfaction with
a service [16]. Subjective evaluation gives precise results
due to the immediate reception of data from end-users.
Subsequently, these results can be used as a reference for
training and validating QoE prediction models. The inherent
disadvantages of subjective methods arise from the fact
that they usually take place in a laboratory setting and,
consequently, are expensive, time-consuming, incapable of
real-time use, and unreproducible [17].
Regarding VR applications, evaluators should use HMDs

to maintain immersive features and ensure accurate percep-
tion of panoramic video quality [18]. In addition, the spatial
and temporal sensory content of the test video sequence
is of particular importance, as it determines the acceptable
degree of video compression and, hence, the level of quality
degradation during the wireless transmission of the test video
sequence [19]. Subjective VR QoE evaluation methodologies
need to map evaluators’ scores to a range of perceptual
scales with respect to parameters such as audiovisual quality,
simulator sickness symptoms, and exploration behavior [20].

B. OBJECTIVE METHODOLOGIES
Due to the restraints imposed by subjective methodologies,
there has been intense interest in developing objective models
that forecast the perceived quality of end-users based purely
on the quality characteristics of communications networks.
The principle of operation of the objective methodologies
is based on achieving a prediction of the QoE values that
approximate the evaluations of the subjective methodologies.
The main advantage of objective methodologies is their sim-
plicity of application and modification, since the evaluation
process needs to consider only measurable QoS parameters
and mathematical models that relate these measurements to
QoE values. The disadvantage of objective methodologies is
their inaccuracy, since the calculated QoE is an estimation
and not precise representation of the perceived quality by end-
users [21].

C. VIRTUAL REALITY QOE INFLUENCING FACTORS
The actual state and adjustment associated with any charac-
teristic of a user, system, service, application or environment
that may affect the perceived quality of the end-user can be
considered a QoE IF [12]. IFs contain, among others, features
that pertain to the characteristics of the application or service,
the context of use, the accomplishment of user expectations,
as well as the user’s cultural identity, social and economic
standing, and cognitive and emotional status [22]. VR QoE

IFs are classified in three major categories: 1) human-related;
2) system-related; and 3) context-related [4], [23]:

1) Human IFs can be any changeable or immutable feature
or characteristic of a user. Human IFs affect both the growth
and overall quality of an experience. They are particularly
complex due to their subjective nature and relationship with
inner human processes [24]. Human IFs in VR-based applica-
tions contain the following: 1) physiological characteristics of
the user; 2) anomalies in the human visual system (HVS) [25]
and impairments in the human auditory system (HAS) [26];
3) simulator sickness [27]; 4) immersion; and 5) the user’s
expectations and competence with VR applications.

2) Properties and characteristics that affect the function-
ality of a VR application in terms of technical parameters
constitute system IFs. VR system IFs are subdivided
into four classes, as content-related, media/encoder-related,
network/broadcast-related, and hardware-related:

• Content characteristics significantly affect the overall
system QoE and refer to attributes such as spatial audio,
spatial depth, and spatiotemporal complexity.

• Media/codec IFs are properties of media modulation
characteristics such as compression, video codecs,
audio, storage and transport, bit rate, resolution, frame
rate, audio sample rate, and encoding delay.

• Network/transmission IFs are affected by transmission
channel deficiencies and pertain to network QoS param-
eters of delay, bandwidth, and packet loss.

• Hardware IFs refer to features of user devices, including
HMDs, headphones, decoder performance, head track-
ing, field of view (FoV), screen resolution, and refresh
rate.

3) Context IFs consider the user’s environment and
are divided into physical context factors, temporal context
factors, social context factors, and task context factors.

D. NETWORK/TRANSMISSION INFLUENCING FACTORS
A wireless VR 360-degree video streaming service requires
the transmission of a huge amount of omnidirectional video
content with extremely low latency. Also, to create truly
immersive VR experiences, the ability to smoothly downlink
high-resolution VR video and haptic feedback is crucial.
Therefore, the network/transmission parameters of latency,
bandwidth, and packet loss play an important role in main-
taining immersive experiences. Because of the limitations of
human perception, a procedure for mapping these parameters
to attributes that directly affect the perceived quality of VR
applications by end-users can be implemented [28].

1) Delay: VR applications must meet stringent latency
requirements to deliver a truly immersive experience. The
most common forms of latency include queuing delay, over-
the-air delay, buffer delay, andmotion-to-photon delay. Delay
effects attributes like initial loading time and stalling, causing
poor presentation quality [29]. Because human perception
requires accurate and seamless visual stimuli, VR should be
treated as a latency-critical application, with latency being the
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most important IF, as it leads to dissociated VR experiences
and can worsen simulator sickness [30].

2) Bandwidth: The amount of necessary data to create
immersive experiences in a VR 360-degree video streaming
environment is significant. Consequently, if the necessary
bandwidth is not provided during transmission, the quality of
the VR setup will deteriorate. Therefore, overload can result
in substantial packet loss and excessive latency, lowering the
perceived quality of the VR service [23]. Network bandwidth
is defined as the throughput necessary to transmit a VR 360-
degree video and can be regarded as one of the most crucial
aspects affecting a VR application [30].

3) Packet loss: The transmission scheme designates
how packet loss affects the creation of immersive VR
experiences. In reliable transmission modes, the necessary
packet retransmissions due to packet loss increase the overall
delay. In unreliable transmission modes, audiovisual quality
is degraded due to packet loss, which causes video freezing
and tiling artifacts [23].

E. QOS/QOE MAPPING
The idea behind QoS/QoE mapping is to derive QoE values
based on measurable input parameters. To determine the
connection between QoS parameters and their distinct and
reciprocal influence on QoE, a correlation model must be
created. The QoS parameters are related to the operational
quality of a communication network and refer to the KPIs of
the network. In a QoS/QoE mapping process, the QoE value
can be calculated from these parameters using appropriate
mathematical models [31].

1) MAPPING FUNCTIONS
To transform the measurable QoS parameters into MOS
scores, a suitable mapping function is required. Mapping
functions can be linear or non-linear. In case where objective
and subjective ratings are arbitrarily scaled, any variation
corresponds with a matching observed quality variation
across the full range, allowing the linear mapping function
to be defined as follows [32]:

QoE = a+ b · QoS. (1)

In order to evaluate the objective measurement, the
predicted QoE values need to be mathematically related to
the observed outcomes. However, because objective quality
metrics are rarely uniform, the linear mapping function may
underestimate the overall outcome. In most cases, non-linear
mapping functions are used to address this issue. Nonlinear
mapping functions achieve higher correlations compared to
the corresponding linear functions [17]. The most frequently
utilized mapping functions are shown in the expressions
below and include the logistic (2), cubic (3), exponential (4),
logarithmic (5) and power function (6):

QoE = a/(1 + e−b(QoS−c)), (2)

QoE = a+ bQoS + cQoS2 + dQoS3, (3)

QoE = aebQoS + cedQoS , (4)

QoE = a− blog(QoS), (5)

QoE = aQoSb + c. (6)

All these different types of mapping functions can be used
to correlate different QoS metrics to QoE values [32].

2) IQX HYPOTHESIS
The IQX hypothesis is an exponential method that describes
QoE as a parameterized negative exponential function of a
QoS impairment attribute. QoE can be defined as a function
of n influence factors Ij, 1 ≤ j ≤ n [33]:

QoE = 8(I1,I2, . . . In). (7)

IQX hypothesis focuses on a single influence component,
I = QoS, to obtain the primary correlation QoE = f(QoS)
[34]. In general, subjective sensitivity to QoE changes
becomes more pronounced when there are high QoE values.
This happens because if the QoE is too high, even a
minor degradation in quality will be immediately noticeable,
whereas if the QoE is already poor, additional degradation is
not as noticeable. In this view, it is stated that changes in QoE
values are dependent on the current QoE level, while changes
in QoS values have the opposite algebraic sign. We fit the
differential equation below, considering a linear connection
at the QoE level:

∂QoE
∂QoS

=∼ −(QoE − γ ). (8)

This equation’s outcome is specified as an exponential
function, reflecting the fundamental relationship of the IQX
hypothesis:

QoE = αe−βQoS
+ γ. (9)

3) WEBER-FECHNER LAW
The Weber-Fechner Law (WFL) is a logarithmic approx-
imation that heralds the birth of psychophysics as a
scientific discipline. WFL relates the perceptual capacities
of the human sensory system to the awareness of scarcely
perceptible changes in a salient stimulus. As far as the human
senses are concerned, a barely perceptible variation turns
out to be a constant ratio of the original magnitude of the
stimulus. Experiments on the sensation of touch, for instance,
have shown that individuals can detect a 3% growth in the
weight of an object, independent of its exact magnitude [35].
The following differential equation explains it:

∂Perception
∂Stimulus

∼ −
1

Stimulus
. (10)

Therefore, the ensuing mathematical equation is logarithmic
and can be utilized to express the coupling of stimulus and
perception as follows:

QoE = a log (QoS) + b. (11)
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4) STEVEN’S POWER LAW
Stevens’ power law (SPL) is a psychophysics law that
describes how the intensity of a physical stimulus affects
human perception [36]. The following equation can be used
to describe SPL:

P (S) = KSb. (12)

where P stands for human perception as a product of stimulus
strength S,K is a constant that varies with the measurement
setting, and the exponent b denotes the kind of stimulus and
defines the curvature of the function power. This formula
spans nearly every perceptual continuum based on stimulus
magnitude over a given range and forms the basis of the
mapping function (6).

IV. QOE PREDICTION MODEL
The proposed QoE prediction model is based on
encoder-decoder LSTM DNN and applied to a small-scale
experimental wireless network built on Open RAN tech-
nology. The QoS monitoring system is developed on the
user’s side using open-source monitoring tools. The captured
QoS attributes of bandwidth, latency, and packet loss
are fed into the QoS/QoE mapping model, which maps
them to MOS values. Finally, the encoder-decoder LSTM
prediction model examines the interdependencies between
the mapped input values to determine the overall QoE
value.

A. OPEN RAN TESTBED
Open RAN technology demonstrates strong potential to
transform the mobile RAN domain and is expected to be an
important component in the development of next-generation
wireless networks. The Open RAN architecture, as suggested
by the O-RAN Alliance, is anticipated to be able to provide
tailored communication services to meet the demanding and
differentiated service requirements of emerging innovative
usage scenarios, including wireless VR applications. The key
elements of the Open RAN technology are founded on the
principles of openness and intelligence and can achieve flex-
ible, programmable and scalable network implementations by
making full use of the capabilities of open and standardized
interfaces as well as the separation between hardware and
software. In this way, RAN is compatible with interoperable
application programming interfaces (APIs) and, thus, can be
considered an enabling technology for building multi-vendor
ecosystems. Open RAN leverages network softwarization
technologies, such as software-defined networking (SDN)
and network function virtualization (NFV), as well as cloud
computing capabilities, to reshape RAN operations and
enable the development of novel applications and services
over RAN [37].

The Open RAN experimental network is built on a
small-scale testbed supporting the 4G architecture as well
as the 5G non-standalone (NSA) architecture, which uses
a combination of the legacy 4G long-term evolution (LTE)

infrastructure with a 5G RAN. It is based on OpenAirInter-
face (OAI), an open-source software suite that supports 3GPP
architectures on multipurpose x86 computer equipment and
commercial off-the-shelf (COTS) software-defined radio
(SDR) systems such as universal software radio peripherals
(USRPs) [38]. The testbed supports three types of evolved
node base station (eNB) architectures (monolithic, split
option 2 and split option 7.2), one type of next generation
node base station (gNB) architecture (monolithic), and
evolved packet core (EPC) [39]. EPC is containerized using
Docker technology, while RAN is deployed as bare metal.
However, all network elements are deployed on the same
physical hardware, a personal computer (PC) equipped
with 64 GB of RAM and an Intel i9 3.6 GHz processor.
For eNB architecture, the transmission is configured in
frequency division duplexing (FDD) mode with 20 MHz
bandwidth in band 7, while for gNB architecture, the
transmission is configured in time division duplexing (TDD)
mode with 40 MHz bandwidth in band n78. The major
attributes of the testbed are shown in Fig. 1 and described
below [40]:

• The remote radio head (RRH) is implemented for all
RAN architectures via a USRP B210 in single-input
single-output (SISO) mode, connected to the PC with
a universal serial bus (USB) 3.0 cable.

• For split option 7.2, the DU implements higher-layer
physical layer (high-PHY) functions, including medium
access control (MAC) and radio link control (RLC)
layer, while the CU deploys radio resource control
(RRC), packet protocol data convergence process
(PDCP), and service data adaptation process (SDAP).
The two units are connected to each other via an F1
interface.

• The virtual baseband unit (vBBU) is present in the cases
of monolithic 4G and 5G architectures, performing the
operations of the CU and DU units.

• EPC comprised of the 3GPP-based units of home
subscriber server (HSS), mobility management entity
(MME), service gateway (SGW) and packet gate-
way (PGW). However, service and packet gateways
(SPGWs) have separate user (SPGW-U) and control
(SPGW-C) planes.

FIGURE 1. Monolithic gNB (5G NSA) architecture [40].
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B. QOS MONITORING AND DATASET GENERATION
The QoS monitoring system to capture the network/
transmission parameters of bandwidth, latency, and packet
loss is built on the monitoring tools of Prometheus, Telegraf,
and Grafana. Prometheus is an open-source cloud-native
monitoring system that captures real-time measurements
into a time-series database using customizable queries and
real-time alerts [41]. Telegraf is an open-source server
agent for gathering, processing, aggregating and writing
measurements from stacks, sensors and systems [42]. Grafana
is an open-source, cross-platform analytics and interactive
visualization tool for providing charts, graphs and web
alerts [43]. The QoS monitoring system is user-centric, as the
network/transmission parameters are collected on the user
side using end-user device probes to provide application-level
measurements [44].

TABLE 1. Network requirements for different VR phases [45].

The dataset for training the neural network has been
generated by monitoring the QoS parameters of bandwidth,
latency, and packet loss during wireless transmission of VR
360-degree YouTube videos. The QoS monitoring system
collected data from November 2022 to January 2023 using
a variety of video streaming loads. The monitoring period
lasted a total of 8 weeks and the values of network bandwidth,
delay and packet loss were collected with a 1-minute
measurement interval, yielding a total of 80640 data samples
for each QoS parameter.

VR applications have been categorized into four phases,
each with its own set of network and video requirements,
as well as technical equipment specifications, as shown in
Table 1: pre-VR, entry-level VR, advanced VR, and ultimate
VR [45]. YouTube’s VR 360-degree videos, like the majority
of today’s commercial VR applications, belong to the
pre-VR phase and have corresponding network requirements.
In order to create a representative dataset, we used a mix
of low, medium, and high motion VR 360-degree videos.
The technical specifications of these videos are as follows:
resolution 3840×2160 pixels (4K UHD), frame rate 30 FPS,
video bitrate 45 Mbps, MP4 container and H.264 video
encoding.

The collected samples of QoS parameters are depicted
in Fig. 2, and the five-number summary of the dataset

FIGURE 2. Samples of QoS parameters.

(i.e., minimum, first quartile, median, third quartile, and
maximum) is depicted in Fig. 3.

FIGURE 3. Five-number summary of QoS parameters.

C. QOS MONITORING AND DATASET GENERATION
To create the QoS/QoE mapping model, we leveraged the
logistic, IQX, WFL, and SPL mapping methods, applying
equations (2), (9), (11), and (12) to the measurements
of network QoS parameters, respectively. To construct an
approximate curve y = f (x) that best fits the discrete set
of measurement points (xi, yi), where i = 1, 2, 3, . . . , n,
we used the curve fitting methodology. Specifically, we used
the least squares method, which is one of the most widely
used methods for finding the curve of best fit to a given data
set [46]. The coefficients a, b, and c of the mapping functions
are adjustable parameters in the formula f (x). The goal of
the least squares method is to determine these parameters
in such a way that the fitting error, i.e., the variance among
the data values yi and the y values f (xi) on the fitted curve,
is minimized. The residuals are defined as the variances
among the observed y values and those given by the fitted
curve to the x values where the data were originally collected.
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Let the data points be (x1, y1) , (x2, y2) , . . . , (xn, yn) where
x is the independent variable and y is the dependent variable.
The deviation error ei of the fitted curve f (x) from each data
point is determined as follows:

e1 = y1 − f (x1) ,

e2 = y2 − f (x2) ,

...

en = yn − f (xn) . (13)

According to the principle of the least squares, the best fitting
curve has the property that the sum of the squares of errors in
formula (14) is minimum, and hence, the calculated value of
the parameters a, b, and c minimizes the error ei.∑n

1
e2i =

∑n

1
[yi − f (xi)]2 . (14)

To implement the least squares curve fitting, we used
Python’s SciPy, NumPy, and Pandas open-source libraries
[47]. SciPy stands for scientific Python and is a scientific
computation library that contains a collection of mathemat-
ical algorithms and functions, NumPy is the main library for
scientific computing in Python, and Pandas is a widely used
library for data analysis and machine learning applications.

To evaluate the curve fitting accuracy, we used R2 and
mean squared error (MSE) metrics, which are defined as
follows:

R2 = 1 −
SSR
SST

. (15)

where SSR denotes the residual sum of squares and SST
denotes the total sum of squares from the regression.

MSE =

∑n
i=1 (yi − λ(xi))2

n
. (16)

where the error prediction for an instance is the variance
among the actual and forecasted values.

TABLE 2. Curve fitting accuracy.

The curve fitting accuracy values for IQX, WFL, SPL,
and logistic QoS/QoE mapping functions are contained in
Table 2, while the corresponding curves are depicted in Fig. 4.
As we can observe in Fig. 4, the QoS/QoE mapping process
converts the measured values of bandwidth, latency, and

packet loss to MOS values. It is worth noting that in the
case of latency and packet loss as QoS attributes, their effect
on the perceived service quality grows reversely with the
impairment, i.e., the higher the value of QoS, the lower the
objective quality is. On the contrary, in the case of bandwidth,
the higher the value of QoS, the higher the objective quality.
Therefore, the algebraic signs in equations (2), (9), (11),
and (12) have been adjusted accordingly.

FIGURE 4. Curve fitting for QoS/QoE mapping.

D. DEEP LEARNING PREDICTION MODEL
The development of the QoE prediction model is based
on deep learning techniques, specifically the LSTM DNN.
LSTM is a subclass of the RNN and is used in many
different real-world applications where the utilization of a
conventional RNN is inefficient. The architectural design
of LSTM is specifically aimed at addressing the primary
drawback of RNNs, which is their inability to retain
information from the previous state. This fact gives rise to
the vanishing gradient problem. The basic design of an LSTM
block incorporates the elements of cells as well as the input
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and output gates. Combined with the use of constant error
carousel (CEC) units, LSTM is capable of handling exploding
and vanishing gradient problems [48].

The LSTM design was primarily developed to address the
problem of long-term dependencies, as long-term retention
of information is its main advantage. RNNs have repeating
neural network chain units, consisting of a simple structure
such as the tanH layer. The LSTM architecture, in contrast,
rather than consisting of a single neural network layer, has
a chain structure. As shown in Fig. 5, the LSTM includes
four gates that constitute single-layer neural networks: 1) the
forget gate, with sigmoid activation; 2) the candidate gate,
with tanH activation; 3) the input gate, with sigmoid
activation; and 4) the output gate, with sigmoid activation.
The input cell comprises the input vector xt , the preceding
hidden state ht−1, and the preceding memory state Ct−1.
The output cell comprises the current hidden cell ht and the
current memory cell Ct . W and U are weight vectors.

FIGURE 5. LSTM cell architecture [40].

The four steps of LSTM operation, as shown in Fig. 5, are
as follows:

1) First, to forecast an impending sequence based on
the set of subsequent timestamps, the cell state stores
information about the current input. When new input
data is received, it is associated with the preceding
pattern in the time series sequential data as follows:

ft = σ (Wf [ht−1, xt ] + bf ). (17)

2) The next stage involves determining what data should
be saved. This is done as follows: initially, the input
gate layer containing the sigmoid layer determines
which values to update, and then a tanH layer
procreates a vector of next potential values called the
candidate gate (C̃t ). These two gates can be correlated
together to produce an updated state. The following are
the input and candidate gate formulas:

it = σ (Wi [ht−1, xt ] + bi), (18)

C̃t = tanh(WC [ht−1, xt ] + bC ). (19)

3) Third, the previous cell state Ct−1 is multiplied by ft to
update it to the new cell state Ct . The input gate it is

then multiplied by the candidate gate Ĉt , resulting in
the new candidate value. The cell state equation is as
follows:

Ct = ftCt−1 + it C̃t . (20)

4) Finally, the output state decision is determined using
a filtered version of the cell state. The sigmoid layer
determines which part of the cell state output to
produce, and subsequently, the cell state is set to tanH
and multiplied by the output of the sigmoid gate. The
following are the formulas for the output state and
hidden state:

Ot = σ (Wo [ht−1, xt ] + bo), (21)

ht = Ot tanh(Ct ). (22)

FIGURE 6. Deep learning QoE prediction model architecture.

To develop the deep learning prediction model, we used
TensorFlow and Keras. TensorFlow is an open-source end-
to-end platform that was initially developed by the Google
Brain Team for large numerical computations but proved to
be very effective for deep learning as well as conventional
machine learning applications [49]. Keras is an open-source
high-level library developed by Google for implementing
neural networks that runs on top of TensorFlow [50]. The
development of the proposed QoE prediction model uses a
multistep encoder-decoder LSTM with multivariate input.
As shown in Fig. 6, the multivariate input consists of
the mapped values of bandwidth, latency, and packet loss.
The hidden layer is built on an encoder-decoder LSTM,
a subcategory of LSTMdesigned to solve sequence problems.
Sequence prediction problems are demanding since the
number of elements in input and output sequences can
differ, and prediction often involves the provision of the
next value in an actual sequence. This is often framed as a
prediction task involving a sequence of one or multiple input
timesteps to one output timestep. In our case, we use the QoS
measurements of the previous 2 days to forecast the QoE of
the next day. The encoder-decoder LSTM network examines
the interdependencies between the input values to determine
the global QoE value in the output layer. In Fig. 7, the diagram
of the complete small-scale testbed architecture including the
Open RAN network, the QoS monitoring system and the
prediction model, is depicted.
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FIGURE 7. Complete testbed architecture.

The integration of the computationally demanding pre-
diction model into a large-scale communication system
architecture is possible in the form of an xApp according
to the O-RAN specifications. The training of deep learning
models in O-RAN systems is performed offline in a
separate cloud cluster with the necessary computational
resources. Once the model is trained, it is converted into
a format compatible with the xApps runtime environment.
In practice, integration into the system is done through the
two components of the RAN intelligent controller (RIC): the
non-real-time RIC (non-RT RIC) and the near-real-time RIC
(near-RT RIC). Specifically, the non-RT RIC implements
the non-real-time control loop to manage and train the deep
learning model and interacts through standardized interfaces
with the near-RT RIC, which is the xApps host platform
during the inference operation, including model execution
and online learning [39].

V. PREDICTION MODEL EVALUATION
The proposed prediction model of the encoder-decoder
LSTM is compared to the most significant and widely used
neural networks in the RNN category, including SimpleRNN,
LSTM, autoencoder LSTM, bidirectional LSTM, and gated
recurrent unit (GRU).

In data preparation, we resampled the dataset, as neural
networks belonging to the LSTM class are most efficient
when handling samples as single sequences of observations
that do not exceed 400 timesteps. Therefore, we resampled
the minute input data as hourly samples, yielding a total
of 1344 samples. Our forecasting model is framed as a
multivariate, multistep time series forecasting model that
predicts the next day’s QoE values based on the observa-
tions of the past 2 days. Specifically, we use 48 hourly
samples (2days × 24h) as backward timesteps to predict
the QoE of the following 24 timesteps (1day × 24h). The
prediction model has 12 input sequences that correspond
to the mapped QoS parameters, as shown in Fig. 4, and 1
output that yields the global QoE value of the wireless
network.

A. COMPERATIVE EVALUATION OF RNN PREDICTION
MODELS
Initially, we developed a Naive prediction model, which
provides a basic performance based on which the more
sophisticated prediction models of SimpleRNN, LSTM,
autoencoder LSTM, bidirectional LSTM, and GRU are
evaluated. Naive forecasting is an estimation approach that
uses the known values of the previous period as prediction
values for the current period without modifying them or
determining a causality rule. It is only useful for compar-
ing these predictions with the results of more advanced
approaches.
SimpleRNN is a variant of conventional feedforward neural

networks (FNN) that is suitable for handling sequential
or time series data, as it can be trained to retain past or
historical information to predict future values. Conventional
FNN is effective for applications involving data values
that are unrelated to one another. Nonetheless, if there is
data in a sequence where each value is contingent on the
preceding one, the neural network must be altered to reflect
the dependencies among these values. SimpleRNN may save
the information of preceding inputs in order to compute the
sequence’s subsequent output.

As mentioned in the previous section, LSTM constitutes
a type of RNN designed to learn long-term dependencies,
as it is particularly designed to overcome the exploding and
vanishing gradient problems that characterize conventional
RNN.
Autoencoder LSTM is a neural network implementation

suitable for sequence data based on the LSTM encoder-
decoder architecture. An autoencoder is a model designed to
learn a compressed version of the input. During training, the
encoder learns a subset of attributes from the input data, and
the decoder is trained to reconstruct the data based on these
features. Models of this kind are referred to as self-supervised
and can be classified as unsupervised learning methods. Its
most common use is the automatic feature extraction.
Bidirectional LSTM is an enhanced LSTM model capable

of increasing efficiency in sequence data applications.
To maintain upcoming and prior knowledge, the input fluxes
in both directions, thus, during training, two models must
be created. The first model learns the input sequence,
and the second model learns the inverse of that sequence.
These models significantly improve the available quantity
of information in the network, consequently enriching the
context provided to the algorithm.

The encoder-decoder LSTM model is very efficient with
sequential data as well as with time series data, a type
of sequential data produced by collecting data points in
a sequence of time values. In this model architecture, the
encoder receives the input sequence data at each time step,
learns the information from the input and propagates it for
further processing. The feature vector is an internal and
intermediate state responsible for maintaining the sequential
information of the input. Finally, the decoder decodes the
output by converting it back to sequential form.
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FIGURE 8. Learning curves of QoE prediction models.

GRU is an improved model of the RNN class, suitable
for solving the vanishing gradient issue of the conventional
RNN. GRU, likewise LSTM, employs two gates to control
the flow of information: the update gate and the reset gate.
Having a simpler architecture than LSTM, GRU can be
considered an improved version since it does not have a
separate cell state (Ct ), but only a hidden state (Ht ). Due to
the simpler architecture, the training time in GRU is improved
substantially.

The 8 weeks of QoS monitoring yielded a total of 56 days
of observations. We split these 56 days as follows: 38 days
were used as a training dataset, 9 days as a test dataset,
and 9 days were reserved as a validation dataset. During
compiling the models, we used Keras callbacks to improve
training efficiency. In particular, we used ModelCheckpoint
to save the model weights at specific time steps, EarlyStop-
ping to halt the process when the observed evaluation metric
stops improving, and ReduceLROnPlateau to minimize
the learning rate once the observed metric is no longer
improving.

To evaluate the accuracy of the prediction models,
in addition to the MSE, we used the root-mean-square error
(RMSE), mean absolute error (MAE), mean absolute per-
centage error (MAPE), and median absolute error (MedAE)

metrics, which are defined as follows:

RMSE =

√
1
N

∑
(yi − ŷi)

2
, (23)

which expresses the level of data dispersion.

MAE =
1
n

∑n

i=1

∣∣yi − ŷi
∣∣ , (24)

which computes the average level of errors in a sequence of
forecasts.

MAPE =
1
n

∑n

i=1

∣∣∣∣yi − ŷi
yi

∣∣∣∣ , (25)

which defines the accuracy of a forecasting method as the
average of the absolute percentage errors in comparison with
the actual values.

MedAE(y, ŷ) = median(
∣∣y1 − ŷ1

∣∣ , . . . , ∣∣yn − ŷn
∣∣). (26)

where the loss is calculated by taking the median of all
absolute differences between the actual values and the
predictions. In the above expressions y signifies the real
values and ŷ signifies the forecasted values.

The results of the prediction accuracymetrics are presented
in Table 3.We can observe that the proposed encoder-decoder
LSTM modem outperforms the rest of the models by
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FIGURE 9. Representation of actual versus predicted QoE value.

achieving better scores in all accuracy metrics. It is worth
noting that all prediction models perform considerably better
than the naive model and that the differences between
them are small, thus confirming the effectiveness of RNN
class models in handling time series data applications. The
effectiveness of the prediction models can also be examined
by the learning curve of the models’ learning performance,
as shown in Fig. 8. The models have been evaluated on the
training dataset utilized to fit each model and on the holdout
validation dataset, which offers an unbiased evaluation of
the model fitting. The learning curves can be used to
diagnose problems during training, such as underfitting and
overfitting.

In order to minimize overfitting and improve the perfor-
mance of the models we used the dropout regularization
technique. As we can see in Fig. 8, the learning curves show
good fit, confirming the good results in the accuracy metrics
presented in Table 3. A good fit is also an indication that
the predictive models will be able to generalize well to new
data. In the event that the learning curves showed overfitting,
this would mean that the prediction models have learned
the training data set too well, including statistical noise and
random fluctuations, resulting in increased generalization

TABLE 3. QoE prediction model evaluation.

error. Accordingly, in the event of underfitting, the prediction
models would not be capable of apprehending the correlation
among the input and output variables accurately, resulting
in an increased error rate in both the training and validation
datasets.

It is also worth noting that all prediction models show
lower validation loss than training loss. This is due to the
use of the dropout, which probabilistically precludes inputs
and recurrent connections from activation and weight updates
during model training, reducing model capacity and resulting
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FIGURE 10. Representation of real-time QoE prediction versus actual values.

in lower validation loss. Moreover, in Keras, regularization
techniques are disabled during validation, so their effect
impacts only the training loss. Additionally, the training loss
is computed as the average of the losses for every batch of
training data for the current epoch. Since the models vary
over time, the loss during the early batches of an epoch is
typically greater than the last batches, resulting in a lower
average value. Contrariwise, the validation loss for each
epoch is calculated at the end of the epoch, leading to a lower
value.

The results of the QoE prediction of the next day over
the validation dataset values of the previous 2 days are
depicted in Fig.9. The next-day prediction corresponds to
24 forward time steps, and the validation basis of the previous
2 days corresponds to 48 backward timesteps. Table 4
includes the mean QoE values as derived from the considered
prediction models. We can observe that the proposed model
approximates the actual QoE value with greater accuracy
compared to the rest of the prediction models. Due to the
small batch size that we employed and the stochastic behavior
of the models, the same model will learn a subtly varying
mapping of inputs to outputs on every training session.
Consequently, when a model is assessed, the outcomes

may differ. Therefore, we ran the models repetitively and
averaged the model performance with regard to the mean
QoE value.

TABLE 4. QoE prediction mean value.

B. REAL-TIME QOE PREDICTION
The trained models are used for real-time QoE prediction,
as depicted in Fig.10, where we can observe the prediction
of QoE values for 24 forward timesteps. The predicted QoE
values are depicted versus the actual QoE values, which are
based on real-time QoS monitoring and QoS/QoE mapping.
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Specifically, the experimental data collection spans a
4-hour time period of monitoring the QoS parameters of a
VR 360-degree video stream over the Open RAN testbed,
yielding a total of 240-minute samples. These samples are
used as backward time steps to evaluate the accuracy of the
real-time QoE prediction and are the dataset against which
the ability of the model to generalize well to new data is
validated.

Each of the 12 time series input variables is used by
the prediction models to predict the global QoE value
for the following 24 time steps. This is accomplished by
feeding each one-dimensional time series into the models
as a distinct input sequence. In turn, the prediction models
generate an internal representation of each input sequence,
which will be interpreted by the output. Incorporating
multivariate inputs is necessary for our application, where
the output sequence represents a function of earlier time step
observations influenced by several independent attributes
instead of predicting a single feature.

TABLE 5. Real-time QoE prediction model evaluation.

As shown in Table 5, the proposed encoder-decoder LSTM
model outperforms the prediction models of SimpleRNN,
LSTM, autoencoder LSTM, bidirectional LSTM, and GRU
by achieving the best score in all accuracy metrics. We can
observe that the real-time QoE prediction accuracy scores
for all models are reduced compared to the scores during
model evaluation. This is due to the small size of the
experimental real-time dataset, which affects the intrinsic
variance of the input data, resulting in a larger internal
variance of the training dataset compared to the validation
dataset. The LSTM encoder- decoder model outperforms
the rest of the prediction models as it exhibits greater
ability to handle small datasets. The prediction accuracy of
the models improves as the size of the dataset increases,
but we wanted to experimentally test the effectiveness
of the models under the conditions of a real-world
application.

In Table 6, we can see the real-time mean QoE values
as derived from the prediction models under study. The
real-time mean QoE value represents the overall QoE value
of the Open RAN testbed, as derived from the synthesis of
the interdependencies between the values of the 12 inputs.
Similar to previous observations, we can observe that the

encoder-decoder LSTM model approximates the actual QoE
value more accurately compared to the state-of-the-art RNN
class prediction models. This is due to the fact that the
encoder-decoder LSTM model has proven to be particularly
efficient for small sequence problems, making it suitable
for real-time applications where the performance evaluation
of a wireless network relies on feeding a limited amount
of new data to the QoE prediction model due to time
constraints.

TABLE 6. Real-time QoE predicted mean value.

VI. CONCLUSION
Real-time QoE prediction should be considered as critical
parameter in the design of next generation wireless commu-
nication networks, specifically for the transmission of the
highly demanding VR applications, which are characterized
by intrinsic interactivity. In this paper, we develop a QoE
prediction model based on deep learning techniques. In par-
ticular, we propose an objective QoE predictionmodel for VR
360-degree video streaming based on the encoder-decoder
LSTMDNN. The predictionmodel is tested on anOpen RAN
testbed and is able to quantify the influence of the wireless
network operation on VR video quality by predicting the QoE
value with the use of the QoS features of bandwidth, delay,
and packet loss.

The proposed prediction model outperforms state-of-the-
art DNN models belonging to the RNN class, including Sim-
pleRNN, LSTM, autoencoder LSTM, bidirectional LSTM,
and GRU. The LSTM encoder-decoder model exhibits
higher prediction accuracy and is able to generalize more
effectively to new data. Furthermore, since the inputs and
outputs of this model are uncoupled and their lengths
can vary, this model is capable of mapping sequences of
different lengths to each other and is hence appropriate for
multistep time series forecasting problems with multivariate
inputs. Also, the encoder-decoder LSTM model has been
proven by our experiments to be suitable for real-time
forecasting applications, as it performs efficiently with small
sequences.

This paper is the first to offer a comparative study on DNN
techniques belonging to the RNN class for QoE prediction
of wireless VR applications. Moreover, this is the first
time that a QoE prediction model for VR applications is
applied and tested on a testbed based on the Open RAN
technology.
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