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ABSTRACT Efficient task scheduling on the cloud is critical for optimal utilization of resources in data
centers. It became even more challenging with the emergence of 5G and IoT applications that generate
massive number of tasks with stringent latency requirements. This gives birth to fog/edge computing - a
complementary layer to cloud. Tasks latency in fog computing can be reduced as processing in the network
is done closer to the end devices and users, but every task cannot be scheduled in the fog due to limited
resources availability. Conventional scheduling algorithms often fail to exploit the heterogeneous resources;
therefore, specially designed and well-tuned scheduling algorithms are desired for achieving better quality
of service. In this study, the state-of-the-art task scheduling algorithms in the cloud and fog environments
are investigated in a diverse set of dimensions. Among the relevant studies published between 2018-2022
and indexed in the Web-of-Science (WOS), SCOPUS, and Google Scholar databases, eighteen studies are
selected for both the cloud and fog domains from WOS and Scopus, while seventeen studies are chosen
for both the cloud and fog domains from Google Scholar. Thus, a total of 106 studies are included in this
survey for the detail investigation. The scheduling algorithms are broadly classified into three categories
such as heuristic, meta-heuristic, and hybrid meta-heuristic followed by detailed critical analysis. It has been
observed that most of the scheduling algorithms are dynamic and non-preemptive in nature, while the higher
fraction of the tasks is independent in comparison to bag of tasks andworkflows. Similarly, 97%of the studies
focus on multiple objectives and 68% of the techniques are non-deterministic. Further, a total of twenty
different scheduling objectives are identified with makespan, resource utilization, delay, load balancing, and
energy consumption as the most significant metrics. The evaluation methods including simulations (51%),
real experiments (4%), analytical equations (2%), and datasets (43%) etc. are surveyed. At the end, the open
issues, challenges, and future directions are argued.

INDEX TERMS Cloud computing, fog computing, task scheduling, workflow, Internet of Things (IoT).

I. INTRODUCTION
Cloud computing offers different kinds of scalable resources
to end users based on pay-per-use basis by providing cost
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savings, security, flexibility, and automatic software updates
etc. The users can concentrate on their personal and business
objectives without bothering about the infrastructure and
supporting services as the vendor is responsible for managing
it. There are three service models and four deployment
models provided by the cloud providers [1]. Though it is
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presumed that there is an unlimited number of resources on
the cloud, in fact it is not true. The service providers strive
their best to reduce the hardware and software expenses for
maximizing profits. Cloud computing offers a platform to run
tasks on rented Virtual Machines (VMs). Being a pay per
use model, researchers are trying to come up with efficient
and cost-effective solutions for task execution on VMs. The
incoming tasks are assigned to VMs that can fulfill the
associated Quality of Service (QoS) requirements. Therefore,
optimal usage of the resources is crucial.

With a variety of solutions for data management and
improvements in transmission technologies, it became immi-
nent to use the cloud infrastructure for storing the gigantic
data from various devices/machines and data analytics.
In addition to the cloud, the cost efficiency of Internet
of Things (IoT) technologies resulted in the production of
billions of devices worldwide. The IoT devices capture and
transmit the data from its environment to store on the cloud.

Over the years, the IoT devices have become intelligent,
but resource hungry at the same time. The cloud serves the
needs of these devices, but at the cost of long transmission
delays. Intelligent devices executing near real-time tasks need
the resources on urgent basis and cannot tolerate delays.
To cater the needs of such devices, Fog Computing has
emerged. Instead of a cloud competitor, fog computing
complements it by reducing the transmission delays and offer
services at the network edge as shown in figure1. Fog devices
offer computation and storage services to the IoT devices.
But substantial number of requests and limited resources at
the fog nodes need optimum scheduling algorithm. Though
the fog infrastructure is closer to the end users, it has limited
computing and storages resources. Therefore, task scheduling
is equally important in fog computing to provide services
to the end users in a resource constraint environment with
substantial number of user requests.

Cloud computing solves the problems of resource
availability, while fog computing complements the cloud
paradigm addressing the delay bottlenecks for deadline
constraint tasks.

A. MOTIVATION AND RESEARCH QUESTIONS
There are ample Systematic Literature Reviews (SLR) for
task scheduling on the cloud in comparison with a limited
number of such studies at the fog. In [2], an SLR on the
fog task scheduling algorithms provided the studymotivation,
analysis, taxonomy, classification, and comparison of the
existing works with relevant discussion. The open issues and
future directions were also highlighted. But the algorithmic
approaches, nature of algorithms, datasets, disparate evalua-
tion methods, and comparison of simulation tools were not
included.

For cloud computing, a task scheduling SLR categorized
different scheduling approaches followed by a taxonomy
and classification. The pros and cons of the scheduling
approaches were presented in addition to the challenges and

FIGURE 1. Three layered architecture.

open issues [3]. Nonetheless, the algorithmic approaches,
datasets, evaluation methods, and comparison of the sim-
ulation tools were not covered. A survey on cloud task
scheduling reported different approaches from 2005 to
2018 by reviewing 65 research papers [4]. The algorithms
were organized based on the application and parameters in
addition to the future directions. But the study motivation,
research questions, algorithms approaches, taxonomy, nature
of the algorithms, datasets, challenges, different evaluation
methods, and comparison of simulation tools were not
catered.

Another SLR for fog task scheduling approaches reviewed
56 studies after presenting inclusion/exclusion criteria
in [5]. The studies were summarized by mentioning their
strengths/weaknesses. Further the research gaps were iden-
tified in the existing solutions along with future directions.
However, evaluation methods were not highlighted cate-
gorically. A comprehensive review on task and workflow
scheduling algorithms in cloud presented the taxonomy and
classification of multi-objective frameworks in [6]. The
results of the selected studies were compared by presenting
the issues and open research areas. But the paper selection
procedure, the time span of the selected studies, nature
of algorithms, evaluation techniques, and comparison of
simulation tools were not part of the review.

In [7], the meta-heuristic algorithms for task scheduling
on the cloud reviewed the categorization of different tech-
niques, taxonomy, and the advantages and disadvantages
of different algorithms. Open issues and future trends
were highlighted along with a comparison of frequently
used simulation tools. Yet the algorithmic approaches and
analysis of datasets are ignored in the study. Another
review on fog task scheduling investigated and categorized

143418 VOLUME 11, 2023



Z. A. Khan et al.: Review on Task Scheduling Techniques in Cloud and Fog Computing

TABLE 1. Comparison of the cloud and fog review studies.

the algorithms as heuristics and meta-heuristics [8]. The
existing algorithms, challenges, and future directions were
emphasized. Nevertheless, only 15 studies were part of the
review and algorithmic approaches, nature of algorithms,
datasets, different evaluation methods, and comparison of
simulation tools were not covered in this study. A recent
survey on fog computing and internet of everything presented
the different optimization metrics followed by classifying the
existing scheduling techniques [9]. The studies were analyzed
for identifying open issues and possible future approaches.
But neither the paper selection process nor the duration of the
studies was mentioned. Further, the nature for the algorithms,
datasets, different evaluation methods, and comparison of the
simulation tools were not part of the survey.

There is no comprehensive SLR up to our best knowledge
that covers the task scheduling on both the cloud and fog
computing till date. The existing review studies lack some
aspects like algorithmic approaches, nature of algorithms,
datasets, evaluation methods, and comparison of simulation
tools etc. as given in Table 1, therefore a systematic study
covering the different dimensions of task scheduling on the
cloud and fog computing is presented in this article.

The study attempts to answer the following research
questions:

1) What are the most commonly used techniques for task
scheduling on the cloud and fog in the past five years?

2) Which metrics are considered by the task scheduling
algorithms?

3) Which evaluation methods are applied to verify the
efficacy of the scheduling algorithms?

4) Which tools/simulators are widely used for imple-
menting and evaluation of the cloud and fog task
scheduling?

5) How many studies discussed the time complexity of
their proposed techniques?

6) How many studies performed real experiments to
validate their proposed techniques?

7) Which research gaps need more exploration in task
scheduling approaches?

8) What are the current issues, impediments and future
directions in the cloud and fog task scheduling?

B. OUR CONTRIBUTIONS AND ORGANIZATION OF PAPER:
The following are this SLR’s main contributions:

1) A motivation for the study and research questions.
2) The taxonomy and classification of task scheduling

algorithms on the cloud and fog computing.
3) The study of the proposed algorithms based on resource

mapping and preemptive/non-preemptive algorithms.
4) Identifying the types of tasks, number of objectives,

and algorithmic approaches used for task scheduling on
the cloud and fog.

5) A comprehensive analysis of heuristics, meta-
heuristics, and hybrid meta-heuristic algorithms with
critical insight.

6) The assessment of all task scheduling objectives
discovered in the selected articles on the cloud and fog.

7) The discussion on various evaluation methods includ-
ing simulation tools, datasets, and real experiments etc.

8) Discussing the open issues, challenges, and future
directions.

The remaining sections are categorized as follows:
Section II describes the paper selection procedure followed
by the computing environments in Section III. Resource
mapping, nature of scheduling algorithms, types of tasks, and
number of objectives are presented in Sections IV to VII
respectively. Algorithmic approaches, categories of solutions,
scheduling objectives, and evaluation techniques are given
in Sections VIII to XI. Open issues, challenges, and future
directions are stated in Section XII-XIII.
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FIGURE 2. Shortlisting of articles.

FIGURE 3. Year-wise paper distribution.

C. PAPER SELECTION PROCEDURE
The duration of last five years (2018 to 2022) is chosen for
this study based on the keywords of (scheduleOR scheduling)
AND (cloud) and (schedule OR scheduling) AND (fog) in
phase one. The papers in other languages besides English
have been ignored. In the second phase, for Web-of-Science
(WOS) and Scopus, shortlisting is performed based on the
abstracts considering the keywords of (task OR workflow)
and removed the papers related to irrelevant fields. In the
case of Google Scholar, the edge computing related papers
have been excluded. The duplicates are removed in the third
phase, while the abstracts are analyzed for further shortlisting
in phase 4. Finally, the top 18 papers are selected from WOS
and Scopus, and 17 papers fromGoogle Scholar in phase five.
The complete process of paper selection is shown in Figure 2.

The year wise distribution of fifty-three papers each
for task scheduling on the cloud and fog is depicted in
Figure 3 and the trend clearly indicates growing interest
in this domain. For task scheduling on the cloud and fog,
the maximum number of papers are published in 2021 and
2022 respectively.

II. ENVIRONMENT
The scope of this study spans over the cloud and fog
computing paradigms due to a wide range of similarities in
scheduling of tasks. Yet there are several factors that make
the task scheduling different on the two platforms altogether,
but such differences are highlighted wherever required in
the article. Task scheduling is equally critical in both the
cloud and fog computing but targets dissimilar objective
functions. Resource utilization, load balancing, and SLA
violations are important on the cloud, while delay, energy
consumption, and meeting the deadlines have the same level
of importance on the fog. Cloud being a resource rich
platform has a lot of resources making use of virtualization
technology [10]. One server machine hosts hundreds of
VMs that make efficient use of the physical machine’s
resources, thus providing cost efficient services to multiple
concurrent users. But these servers are distant from the
end users and suffer from transmission delays, thus not
feasible for delay-intolerant applications. Fog computing on
the other hand, is a decentralized system residing next to the
network edge- closer to end-devices and users. It provides
services for delay intolerant tasks but possess limited
resources [5]. Besides the cloud’s high pricing, the data
escalates at a rapid pace on the cloud that makes it difficult
to provide real time response. Therefore, fog computing as
complementary architecture handles delay intolerant tasks in
real time and lowers the overall costs. So, the cloud resources
are provisioned only for long term data management and
analytics.

Figure 4 presents the complete taxonomy of task schedul-
ing on the cloud and fog.
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FIGURE 4. Taxonomy of task scheduling on the cloud and fog.

III. RESOURCE MAPPING
The assignment of computing resources to the incoming
tasks is called resource mapping. During task scheduling, the
resources can be mapped in two ways, static and dynamic.

A static scheduler has a predefined number of tasks in
hand; thus, it utilizes the given information to come up
with an accurate schedule providing minimum scheduling
overhead [11]. For example, Round Robin (RM), Shortest
Job First (SJF), and First Come First Serve (FCFS). The
static algorithms explored in this study are [12], [13],
[14], [15], [16], and [17]. On the contrary, a dynamic
scheduler does not know in advance about all the tasks that
need to be scheduled. Such algorithms are less efficient as
compared to static methods, but they are better suited to
environments where tasks are received in a non-periodic
fashion and the scheduling decision needs to be taken
at run time. Hence, the effectiveness of both resource
mapping techniques varies with the specific scheduling
environment. Some of the dynamic scheduling algorithms
include Earliest Finish Time (EFT), Particle Swarm Opti-
mization (PSO), andDelay Optimal Task Scheduling (DOTS)
[18]. 68% of the algorithms explored in this study are
dynamic, while 6% and 1% are static and both static and
dynamic methods respectively as shown in Figure 5. 25%
of the studies have not mentioned the type of resource
mapping.

FIGURE 5. Resource mapping distribution in 106 articles included in this
study.

IV. NATURE OF SCHEDULING ALGORITHMS
A task scheduling algorithm can be either preemptive or non-
preemptive.

A. PREEMPTIVE SCHEDULING
In preemptive scheduling, the CPU is assigned to the
incoming tasks for a limited amount of time. The scheduler
has the authority to assign and withdraw the CPU during a
task’s lifetime. However, the context of such tasks is saved
and restored during the switching process. Only 3% of the
task scheduling algorithms are found to be preemptive in this
study and all are used in the cloud environment as shown in
Figure 6.
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FIGURE 6. Ratio of preemptive/non-preemptive algorithms in 106 included studies.

B. NON-PREEMPTIVE SCHEDULING
A non-preemptive scheduling algorithm assigns the CPU to
a task until it completes its execution while the other tasks
wait in the ready queue. From Figure 6, it is evident that
majority of the algorithms examined in this study are non-
preemptive. It omits the overhead of saving and restoring
the context of preempted tasks that is particularly useful in
fog computing due to its limited resources. Moreover, there
are few studies that have incorporated both preemptive and
non-preemptive scheduling. There is a substantial number
of studies that do not describe the nature of the algorithms,
especially in fog computing relying on the assumption that
the tasks are non-preemptive unless explicitlymentioned. The
same assumption also applies in cloud computing but to a
relatively lesser extent than in fog computing.

V. TYPES OF TASKS
The tasks received by the cloud and fog nodes can be of
three types - independent, dependent (workflow), and bag of
tasks. An independent task is a standalone task without any
dependency on other tasks. Whereas a dependent task is part
of a workflow and cannot execute before certain tasks due to
its dependency on the earlier tasks. A bag of tasks on the other
hand are parallel tasks with no dependency among them [19].
The majority of the studies have considered independent
tasks for scheduling on the cloud and fog followed by
workflows. Only three studies performed the scheduling of
both independent tasks and workflows. The ratio of different
types of tasks is presented in Figure 7.

FIGURE 7. Distribution of types of tasks in 106 articles included in this
study.

Table 2 in Appendix-A provides a comprehensive sum-
mary of various features of task scheduling algorithms
commonly used in the cloud and fog computing in the
shortlisted articles.

VI. NUMBER OF OBJECTIVES
Task scheduling is basically an optimization problem. There
is an objective function (minimization or maximization) at
the core of every optimization problem. A task scheduling
algorithm can be intended to achieve a single objective or
multiple objectives. It is observed that majority of the studies
(97%) consider multiple objectives like reducing the delay
and SLA violations along with meeting the task deadlines.
Only four studies (3%) focused on a single objective,
with one study each for optimizing the makespan [20] and
reliability [21], and two studies ( [22], [23]) on meeting the
task deadlines. A detailed discussion on makespan, resource
utilization, delay, load balancing, and energy consumption is
provided in Section IX.
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FIGURE 8. Ratio of different algorithmic approaches.

FIGURE 9. Three categories of solutions.

VII. ALGORITHMIC APPROACHES
An algorithmic approach towards task scheduling can be
deterministic or non-deterministic. A deterministic routine
provides the same output under different runs for the same
input [24]. For task scheduling, it exploits all permutations
for a typical combinatorial problem. It can solve a problem
in polynomial time, but such programs work at their best
when there are limited number of parameters. If the number
of parameters increases above a certain threshold, a determin-
istic routine becomes impractical due to its increased time
complexity. On the cloud, the number of resources can be
large, but the incoming tasks can be huge.

Non-deterministic algorithms, on the other hand, are based
on guided-random set of steps that explore and exploit the
solution space to provide solutions that are sufficiently good
within an acceptable amount of time. They may produce
different output for the same input in different executions.
The provided solutions are not the best, but good enough
to serve the purpose. Such algorithms are widely used to
tackle NP-hard combinatorial problems. Figure 8 shows that
two third of the methods explored in this study are non-
deterministic algorithms. In task scheduling, a good enough
solution is preferred as opposed to a best solution with high
time complexity.

VIII. CATEGORIES OF SOLUTIONS
In this review, the various task scheduling algorithms found
in the shortlisted papers are categorized into three types:
heuristic algorithms, meta-heuristic algorithms, and hybrid
meta-heuristic algorithms. Nearly half of the solutions fall in
the category of heuristics, while 39% of the studies are based
on meta-heuristics. 12% are hybrid meta-heuristics as shown
in Figure 9.

Heuristic algorithms are problem dependent techniques
such as list based solutions, priority driven techniques
or threshold based algorithms etc. These algorithms are
tailored for specific problems and may not perform well
for other problems. The second category (meta-heuristic
algorithms) constitute high level strategies, independent of
any specific problem, making them applicable to a wide
range of problems. Particle Swarm Optimization and Genetic
Algorithm are the two prominent meta-heuristic algorithms
used across many disciplines. The third category (hybrid
meta-heuristic algorithms) includes studies that employ more
than one meta-heuristic algorithm to find a solution. These
algorithms result from combining two or more meta-heuristic
algorithms. If a particular meta-heuristic algorithm has
deficiencies, such as poor convergence or limited explo-
ration ability, hybridization could be a promising solution.
By hybridization, a poor performing algorithm can offset its
weakness(es).

A. HEURISTICS
The algorithms based on heuristics are problem dependent
and only applicable for a specific problem. For other problem
domains, they are not useful. Though heuristic algorithms
provide exact solutions for a particular problem, they struggle
to solve complex optimization problems. For task scheduling
on the cloud and fog, heuristics appeared to be widely used
with various types of algorithms as shown in Figure 9.
In heuristic based scheduling algorithms, some studies

have utilized more than one technique. For example, ana-
lytical hierarchy process and divide and conquer strategies
were used together along other techniques in [1]. Such studies
are categorized as a sub-category ‘‘Multi-Heuristics’’ under
‘‘Heuristics’’. Further, there are 12 heuristic algorithms that
appeared only once out of 106 studies. These techniques
are illustrated in the ‘‘Other Heuristics’’ sub-category under
‘‘Heuristics’’ instead of creating a separate sub-category.
Following are the eleven sub-categories of heuristics:

1) EARLIEST DUE DATE (EDD) BASED ALGORITHMS
The number of IoT applications have been surging progres-
sively. Some of these applications generate delay sensitive
tasks which need to be served with minimum response time.
A reliability aware task scheduling algorithm based on EDD
proposed for hard deadline tasks [21]. The taskswere grouped
into two categories based on common deadline/execution
time. The task ordering and mapping were the two proposed
approaches that could be further improved through task repli-
cation and repetition. A similar study in [25] managed delay
sensitive applications cost-efficiently in a mobile environ-
ment having heterogeneous fog servers. A task offloading and
scheduling framework (CACOTS) reduced service bootup
time with minimum cost and increased resource utilization.
But makespan of the tasks was not considered. Another
EDD based novel task scheduling and offloading algorithm
(CEMOTS) devised to offer cost efficient services [26].
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Under deadline constraints, the algorithm offloaded tasks at
the right time, followed by their scheduling on the appropriate
resources to reduce computational and communication costs.
Nevertheless, energy consumption was not optimized.

2) EARLIEST DEADLINE FIRST (EDF) BASED ALGORITHMS
Most of the proposed solutions for deadline sensitive bag-
of-tasks do not consider the dynamic aspects of clouds.
A scheduling algorithm proposed in [27] maximized the
number of meeting deadlines with minimal infrastructure
cost in a heterogeneous environment. But response time was
ignored in the comparative analysis against Bossche05 and
BosscheChebyshev schedulers. A task scheduling algorithm
(HCCETS) devised to minimize cost and execution of the
tasks within deadlines [28]. However, under large number
of patients, the deterministic routine could not handle large
traffic. Similarly, RT-SANE, a task scheduling algorithm
proposed to consider security and deadline constraints in [29].
Based on security and delay, RT-SANE used the resources
on fog and cloud nodes accordingly. Tasks and resources
were both classified into three categories based on privacy,
security, and trust levels. Though the study also included
the straggling tasks and their migrations, the comparative
analysis was quite shallow.

3) EARLIEST FINISH TIME (EFT) BASED ALGORITHMS
The cloud service providers are concerned for the efficiency
and reliability of services. RALBA, a task scheduling
algorithm, balanced the workload on available computational
resources on a cloud server [30]. Being a batch dynamic
algorithm, it had two phases. In the first phase, bigger VMs
were assigned to bigger tasks, while in the second phase, the
VMs providing EFT for jobs were selected. It outperformed
the traditional heuristics in terms of makespan, throughput,
and resource utilization. However, it favored larger tasks and
penalizing the smaller ones. In [31], a fault tolerant task
allocation procedure based on EFT was proposed. It used
two fault-tolerant scheduling models, considered uncertainty
and an overlapping mechanism. Further, a Dynamic Fault-
Tolerant Elastic algorithm was proposed for the fault-tolerant
models to improve resource utilization and fault tolerance
in real time task scheduling. However, the fault tolerant
models did not support multiple backups. The authors
in [32] proposed a dynamic task scheduling algorithm to
achieve load balancing of available resources, thus increasing
Average Resource Utilization (ARUR), reducing the task
execution time, and a reasonable Average Response Time
(ART). Larger VMs were assigned to larger tasks followed
by the allocation of remaining tasks through EFT. Being a
variation of EFT with 1024 tasks and 32 VMs, the algorithm
behaved as a pure EFT for most of the time. In [33],
an algorithm proposed for scientific workflows utilized a
realistic model with random weights by extending min-min
algorithm and Heterogeneous EFT (HEFT) algorithm to
minimize budget and makespan.

4) ANALYTICAL HIERARCHY PROCESS (AHP) BASED
ALGORITHMS
Task scheduling and resource allocation is complex in
a heterogeneous environment. Analytic Hierarchy Process
(AHP) used to calculate priority weights followed by ranking
of computing nodes by TOPSIS (To Order the Preference by
Similarity to Ideal Solution) [34]. It improved security, cost,
and performance, but makespan was not discussed. Another
task scheduling algorithm (PQFAHP) employed priority
queue, fuzzy logic, and AHP to minimize makespan, energy
utilization, and memory [35]. However, the computation
capability of simulated nodes was not given. The AHP
based techniques are often time consuming beyond a certain
threshold, due to its pair wise comparison operation.

5) LIST BASED ALGORITHMS
While using multiple manycore processors for cloud task
scheduling, many tasks run in parallel sharing the computing
resources. The allocation of core(s) to different tasks for
better system performance and energy consumption is a
challenge. It becomes even more complex when energy
and time constraints are added. For both continuous and
discrete speed intervals, a list based pre-power and post-
power determination technique was proposed for parallel
workflows in [36]. The method of equal speed is applied
to the given techniques yielding better performance. But
the benchmark techniques were not mentioned in this study.
Similarly, a task scheduling algorithm in [16] utilized lists
and Directed Acyclic Graphs (DAG) to identify suitable
nodes for task scheduling to optimize computation and finish
times. The independent and dependent tasks were identified
followed by task prioritization and allocation to a suitable
processor. The algorithm minimized makespan and cost of
computation. However, transmission cost was not discussed.

6) PRIORITY BASED ALGORITHMS
With the advancement in IoT devices, low latency applica-
tions have been developed that require real time response.
A novel classification mining algorithm (I-Aprior) was
proposed followed by another task scheduling algorithm
(TSFC) based on I-Aprior in [37]. The task with minimum
completion time ran on a node that can execute it in minimum
time. The TSFC reduced task execution time and waiting
time, but load balancing of multiple nodes was not addressed.
Similarly, a laxity-based priority algorithm combined with
Ant Colony Optimization (LBP-ACS) scheduled IoT tasks
having both priority and deadline constraints [38]. Laxity-
based priority addressed the task delay sensitivity, while the
ACO used to minimize the energy consumption by finding
a global approximate scheduling scheme. In another study,
a Priority based Load Balancing (PLB) algorithm utilized
multi-queues to improve makespan, response time, resource
utilization, and bandwidth by resolving starvation of low
priority tasks with idle resources [39]. But the computation
capability of simulated VMs was not given. Two task
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scheduling algorithms (PSG and PSG-M) based on greedy
approach were proposed to minimize energy consumption,
makespan, and deadline violation time in [40]. PSG was
a priority-aware semi-greedy approach, while a combination
of multi-start procedure to PSG resulted in PSG-M. However,
neither PSG nor PSG-M addressed delay and latency.

7) GRADIENT BASED ALGORITHMS
For efficient resource utilization, task scheduling plays a
very important role. In [20], a Gradient Based Optimization
(GBO) was applied for the first time to improve makespan
of tasks. Being a continuous optimization technique, GBO
used rounding off technique to transform a real vector into
the nearest integer value as a scheduling solution with fast
convergence and avoiding local optima. For large tasks,
the performance of the GBO was better in comparison
with PSO, WOA, and Grey Wolf Optimization (GWO)
utilizing different sizes of GoCJ workload. However, the
study focused on a single objective optimization problem and
evaluated against the old versions of the given meta-heuristic
algorithms. Deterministic surrogate models do not cater
uncertainties in QoS distribution, resulting in increasing SLA
violations. The limited exploration ability of gradient driven
optimization and the computationally expensive Deep Neural
Network (DNN) training hinders finding the minimum
response time and energy. To solve these issues, a novel
task scheduling algorithm (GOSH) based on GBO utilized
heteroscedastic deep surrogate models and second order
derivative functions to achieve minimum scheduling time
and better QoS [41]. The simulation results validated the
GOSH suitability for resource contrained environments,
while GOASH*, an extension of GOSH showed promising
performance for a resource rich system. Both techniques
achieved minimum SLA violations, energy consumption, and
response time.

8) THRESHOLD BASED ALGORITHMS
The future of high performance computing is apparently
an interconnected system of heterogenous nodes under the
paradigm of the cloud and fog computing. An architecture
proposed in [42] utilized containers to design two types of
service models to reduce service delay and increase resource
utilization of nodes. A real time task scheduling algorithm
presented to balance the terminal devices’ energy consump-
tion with the help of a dynamic threshold policy. It also
reduced the transmission delay and latency, however, the
effect of energy balancing on throughput was not mentioned.
To improve makespan and scheduling performance, two
algorithms (TBTS and SLA-LB) were proposed based on
a threshold and service level agreement respectively [43].
The TBTS was a prediction based technique that worked in
two phases with threshold data based on ETC matrix, while
the SLA-LB scheduled online tasks dynamically based on
budget and deadline to minimize makespan, and improve
resource utilization and load balancing. But the preemptive/

non-preemptive nature of the algorithm was not stated.
Similarly, a computing system developed utilizing the
computational resources of a cloud (VMs and containers),
raspberry pi’s, smartphones, and grids in [44]. A bag of
tasks workload was executed on the given resources to
achieve minimum cost and response time. Nonetheless, the
comparative analysis only included weighted round robin
algorithm.

9) REINFORCEMENT LEARNING (RL) BASED ALGORITHMS
IoT devices generate enormous data that not only chokes the
network, but due to a large hop count, latency also increases.
An overloaded or underloaded machine is always precluded
as it not only affects the processing time, but also results in
a system crash. To enhance fault tolerance with minimum
cost, a model proposed to incorporate predictive maintenance
in a heterogenous environment by proposing two dynamic
programming based problems [45]. The problems were
converted into approximate dynamic programming problems
using RL. It reduced the computation complexity of the
problems and improved the scheduling efficiency. However,
latency of the tasks was neglected. In [46], a framework
proposed to enable mobile crowdsensing utilizing deep RL
to manage the different resources in a network, based on
bandwidth and computation cost. But energy consumption in
relation to the computation cost and transmission cost was not
highlighted.

A machine learning based adaptive algorithm scheduled
sequential tasks and load balanced the collaborative servers,
considered power usage of user device, remaining task
data size, and server load [47]. The tasks were executed
cooperatively by the server and user device using Software
Defined Networking to minimize power usage and latency.
But, the impact on response time was not examined in the
context of cooperative computing. In [48], a task scheduling
framework (QEEC) proposed to improve energy efficiency.
A M/M/S queue model was implemented in the first phase
to assign user requests for each node. In the second phase,
a scheduler based on Q-learning on each node filters
out the requests based on task laxity and deadline. The
tasks were assigned to the nodes followed by rewarding
the assignments that improved response time and resource
utilization. Nonetheless, energy consumption in response to
the higher resource utilization was not addressed.

In [49], tasks were scheduled using Double Deep
Q-network (DDQN) in a real experiment. The adaptive
learning ability of DDQN produced an optimal task sched-
ule with minimum average response time and maximum
completion rate. Despite that, the resulting degree of energy
consumption was overlooked in the study. MOABCQ,
a multi objective scheduling approach based on Artificial Bee
Colony (ABC) and Q-learning optimized ARUR, makespan,
cost, throughput, and VM imbalance [50]. But, the proposed
algorithm’s performance was below par in some of the
tests against alternative algorithms. Similarly, IoT tasks were
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divided into smaller tasks and scheduled on multiple secure
computing nodes in [51]. A RL model scheduled the smallar
tasks, incorporating privacy and latency constraints, and
avoiding overloading the nodes to minimize delay, however,
makespan and meeting deadlines were not addressed.

A container based algorithm (CBTSA) executed tasks
dynamically on fog and cloud nodes for a given set of
resources and deadline constraints. But, it did not cater
the unbounded nature of cloud resources and computational
cost of its usage. So, an improved CBTSA (ECBTSA-
IRA) proposed utilizing RL and workload prioritization
to address these problems by making a tradeoff among
energy consumption, makespan, and cost [52]. However,
the subsequent effect on response time was not elaborated.
A task scheduling and preemption model (OSCAR) used
clustering, heap-based optimizer, and a deep Q-network to
decrease response time, makespan, waiting time, and SLA
violations in [53]. It also improved system throughput while
satisfying deadlines. Nonetheless, energy consumption with
the improved throughput was not discussed in the study.

With a couple of exceptions, all the studies based on rein-
forcement learning did not validate the proposed techniques
against meta-heuristics, and hybrid meta-heuristics.

10) MULTI-HEURISTICS
A multi-heuristic uses more than one heuristic technique to
schedule tasks on the cloud and fog computing. Such kind of
studies are presented here.

Resource allocation and task scheduling are critical to
achieve better performance. A heuristic proposed in [54]
combined Bandwidth-Aware Divisible Scheduling (BATS)
plus BAR optimization, divide and conquer techniques, Mod-
ified AHP (MAHP), and Longest Expected Processing Time
preemption (LEPT) method to improve response time and
turnaround time. BATS plus BAR optimization performed the
task allocation, while MAHP processed each task before its
actual allocation to a resource. The resources were preempted
using LEPT, while divide and conquer further improved
the solutions. The proposed algorithm outperformed the
prevailing BATS algorithms, but the resulting cost factors
were not highlighted.

Service providers offer different resources as either on-
spot, on-demand or reserved. On-spot proves to be a
cheaper alternative than on-demand, but due to dynamic
pricing, failures can also occur. The right mix of on-spot
and on-demand resources for workflows is a challenging
task. To minimize the rental cost for deadline constraint
workflows, an idle-time-block based technique was proposed
in [55] to develop different workflow schedules. The
mix of on-spot and on-demand resource provisioning is
directly proportional to resource utilization, but it was not
elaborated in the study. In [11], a real time task scheduling
algorithmwas proposed tominimize energy consumption and
execution time. A prototype scheduler application validated
the effectiveness of the algorithm using various kinds of
DAGs.

In [56], an interlacing peak task scheduling algorithm
(MIPSM) was presented. It worked in three phases. In the
first phase, the requirements and status of tasks and resources
were taken periodically and updated. The second phase
sorted out (classified) all the resources into different queues
based on computation, input/output, and memory. In the
last phase, after task scheduling, interlacing was performed
with the peak resource loads. The interlacing peak algorithm
improved resource utilization, load balancing, response time,
and deadline violations. But, the type of the tasks was not
stated. In another study, an Energy-efficient Task Scheduling
Algorithm (ETSA) followed a normalization process to make
scheduling decisions, taking into account task completion
times and resource usage [57]. It offered an elegant trade-off
between energy efficiency and makespan in a heterogeneous
environment. However, the cost related to the resource usage
was not included in the study.

A load balancing and cost saving task scheduling algorithm
(HDCBS) in [58] improved system throughput. First, average
figures were computed for task response time and wait
time in queues for each resource. In the next stage, a task
scheduling decision was taken based on convex optimization
theory to minimize cost and maximize throughput. An onliNe
multi-workflOw Scheduling Framework (NOSF) scheduled
deadline sensitive workflows at run time without prior
information about the task execution time and arrival time
in [59]. A heuristic algorithm elastically allocated apposite
resources to the workflows, improving resource utilization,
deadline violation and minimizing rental cost. It outper-
formed IaaS-Cloud Partial Critical Paths with Deadline
Distribution (IC-PCPD2) algorithm and unceRtainty-aware
Online Scheduling Algorithm (ROSA). However, IC-PCPD2
being an old technique was not suitable for a comparative
analysis of the proposed algorithm.

For fault tolerant scheduling, task resubmission and repli-
cation are the widely used techniques. The task replication
can be in the form of a primary-backup setup where
the backup instance executes if a primary fails. Both
the task resubmission and replication increased resource
utilization and decreased task execution time. AHybrid Fault-
Tolerant Scheduling Algorithm (HFTSA) was proposed for
independent tasks with strict deadline constraints, utilizing
both resubmission and replication in [60]. Online adjustment
scheme and elastic resource provisioning were used by
HFTSA to improve fault tolerance and resource utilization
respectively. However, the effect of resubmission and repli-
cation on energy consumption was not elaborated.

11) OTHER HEURISTICS
Rejecting a lease request is always a last resort when users’
demand for deadline sensitive tasks cannot be met. In [12],
a backfilling task scheduling approach utilized Multiple-
Criteria Decision-Making (MCDM) and Technique for Order
Preference by Similarity to Ideal Solution (TOPSIS) for
deadline sensitive tasks. The study validated higher task
completion rate and lower task rejection rate in comparison
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to the existing backfilling algorithms. Execution time and
deadlines were considered with better resource utilization.
A prediction model proposed in [61] provided efficient
resource management without violating SLAs. The model
based on past usage, considered SLA at both scheduling
and load balancing stages to minimize makespan, and load
imbalance. A novel task scheduling algorithm (DOTS) mini-
mized average task delay, transmission energy, and improved
load balancing [18]. However, the proposed algorithm was
not evaluated with any benchmark technique. In another
study, the Lyapunov drift-plus-penalty stabilized a network
and maximized completing tasks within deadlines [62].
An efficient IoT architecture, and task scheduling and
allocation protocol (MobMBAR) were proposed to support
patient’smobility by distributing the tasks dynamically on fog
and cloud devices [63]. MobMBAR minimized makespan,
energy consumption, and response time.

Game theory was employed to schedule IoT-tasks using
multiple criteria in [64]. The preference functions ranked
nodes based on resource utilization and latency. Usingmatch-
ing theory, distributed and centralized scheduling algorithms
were devised, that incorporated nodes preferences, aiming to
improve computation time, makespan, latency, and resource
utilization. The Comparative Attributes Algorithm (CAA)
was applied for task scheduling on a priority basis, while the
Linear Attribute Summarized Algorithm (LASA) was used to
pick the optimum nodes with maximum computation power
to minimize delays in [65]. Nevertheless, the cooperation
among the computing nodes was limited.

A task scheduling model and algorithm based on queuing
models were formulated to estimate delay and energy
consumption in [66]. Further, a tree based search proposed
to improve local non-dominated solutions. But resource
utilization in relation to the minimum energy consumption
was not discussed. Two heuristic algorithms Min-CCV and
Min-V minimized computation, transmission, and violation
costs during task scheduling in volunteer computing [17].
They efficiently allocated the tasks, satisfying deadline
constraints with minimum cost. In another study, a Hyper
Heuristic Scheduling (HHS) algorithm minimized execution
cost, energy consumption, and latency [67]. However,
transmission cost was not included in the cost. A Critical Task
First Scheduler (CTFS)was presented to classify critical/non-
critical tasks and prioritized large sized tasks [68]. It reduced
latency, network usage, and energy consumption. However,
it did not provide any solution to obviate the starvation of
smaller tasks. In [69], an artificial neural networks-based
algorithm reduced latency through data partitioning to com-
pute hyperparameters in parallel, thus minimizing response
time and latency. However, the completion rate of incoming
tasks was not optimized.

B. META-HEURISTICS
This category comprises of studies based on meta-heuristic
algorithms. It showcases scheduling techniques that utilize a
single meta-heuristic algorithm in addition to other strategies.

There are 9 meta-heuristic algorithms that appeared only
once out of 106 studies. These techniques are illustrated
in the ‘‘Other Meta-Heuristics’’ sub-category under ‘‘Meta-
Heuristics’’. A meta-heuristic algorithm is a set of processes
that are independent of any specific problem, making it
applicable to a variety of problems. These algorithms work
through the phases of exploration and exploitation.

1) PARTICLE SWARM OPTIMIZATION (PSO) BASED
ALGORITHMS
Dynamic task scheduling within a heterogenous environment
is a challenging problem. A task scheduling algorithm
was devised for manufacturing clusters in [70]. An energy
consumption model was presented in addition to an improved
PSO algorithm to optimally schedule tasks and balance the
workload. Similarly, a binary version of PSO algorithm
with low time complexity improved completion time and
execution cost of tasks in [71]. In another study, a hybrid
task scheduling algorithm proposed in [72] combined fuzzy
theory and a modified PSO to improve throughput and
load balancing. There were three phases in the proposed
approach. The first phase focused on enhancing the global
search through updates to the velocity methods and roulette
wheel selection. The second phase improved the proposed
PSO by crossover and mutation followed by a third phase
to apply fuzzy logic to enhance the fitness function. This
hybrid technique improved makespan, execution time, load
balancing, throughput, and resource utilization. However, the
dataset used in the simulation was not elaborated.

An algorithm based on Canonical PSO solved the
resource allocation and management issues, and minimized
makespan in an IoT based system [73]. It outperformed the
traditional list based scheduling algorithms, but frequently
entrapped in local optima. A scheduling model and algorithm
(QoS-Discrete-PSO)was proposed tomeet QoS requirements
(time, cost, and reliability) and improve fault tolerance
in [74]. A secure task scheduling approach, called FUPE, was
designed to address malicious such as node breakage in [75].
It used fuzzy logic and Multi-Objective PSO (MOPSO) to
enhance security during scheduling IoT tasks. FUPE achieved
an improvement of 17% in average response time and 22% in
network utilization.

In [76], two parallelized PSO algorithms minimized the
time complexity of PSO. The GPU based parallel PSO
outperformed many multicore PSO algorithm to minimize
total cost and running time of the algorithm. The proposed
G-RMPSO used fine-grained GPU threads to accelerate
RMPSO particles, achieving improved parallelism. However,
wait commands during synchronization decreased the effi-
ciency of parallelized PSO algorithms. Further, the master
node could become a bottleneck, especially when number
of slaves are large in number. An adaptive PSO based
technique, as presented in [77], aimed to minimize execution
time while maximizing resource utilization and throughput.
An adaptive inertia weight technique was added to the PSO
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for a better tradeoff between exploration and exploitation.
The performance of the algorithm was better in comparison
to five renown variants of PSO except for makespan. Another
hybrid approach in [14] combined Interval Type-2 Fuzzy
C-Means (IT2FCM) and PSO to improve reliability and
efficiency of task scheduling.

2) EVOLUTIONARY ALGORITHM (EA) BASED TECHNIQUES
A task scheduling approach based on advanced phasmatodea
population evolution minimized makespan while improving
resource utilization and load balancing [13]. The algorithm
used convergent evolution and a restart strategy for better
exploration and exploitation. The evaluation was performed
on thirty benchmark functions in a heterogenous environment
against Gravitational Search Algorithm (GSA), PSO, Butter-
fly Optimization Algorithm (BOA), and Genetic Algorithm
(GA). In [78], an Opposition-Based Chemical Reaction
(OBCR) method employed upward ranking, Opposition-
Based learning, and Chemical Reaction optimization. The
combination of these techniques resulted in diverse popula-
tion avoiding local optimum solutions. OBCRperformed four
operations to better explore and exploit the solution space.
It minimized service latency and improved the stability of
dynamic nodes. However, opposition-based learning incurs
high computational cost due to the evaluation of multiple
solutions.

3) GENETIC ALGORITHM (GA) BASED TECHNIQUES
A decentralized task scheduling algorithm based on immune
mechanism was presented in [79]. It employed both forward
and backward propagation to generate optimal scheduling
schemes. The proposed algorithm minimized execution time,
makespan and improved load balancing. But the computation
capability of simulated nodes was not provided in the
study. Similarly, a Deadline and Cost aware GA (DCGA)
minimized the cost of workflow execution in [80]. The tasks
were classified into different levels, without exhibiting any
dependencies at the same level. HEFT generatedminimal cost
and completion time for each task, followed by crossover and
mutation operations to enhance solution diversity. However,
load balancing and resource utilization were not considered.
In [81], a Time-Cost aware Scheduling (TCaS) algorithm
based on GA reduced operating costs and execution time.

In [82], a hybrid model, named GAECS (Genetic
Algorithm and Energy-Conscious Scheduling Heuristic),
prioritized tasks and assigned them to relevant resources.
It minimized both makespan and energy consumption.
A Hybrid Electro Search GA (HESGA) improved makespan,
resource utilization, cost, and load balancing in [83]. The
GA and Electro Search facilitated local and global searches
respectively and outperformed ACO, GA, and Hybrid PSO-
GA (HPSOGA). An Improved Elitism GA (IEGA) was
devised to minimize makespan, carbon emissions, flow time,
and energy consumption in [84]. In [85], another improved
GA based on linear weighting was presented to minimize

delay, service cost, and communication cost. By specifying
the preference weights, the algorithm achieved optimal
results using linear weighting. With average preference
weights, the result was not satisfactory, while with the
increase in single objective weight, it showed better results.
In case of ignoring the preference weights altogether, optimal
solutions were attained through an improved Non-Dominated
Sorting GA with elitism. However, the non-dominated
solutions did not increase in the latter stages of the linear
weighted GA. However, the study did not consider the
resource dimensions of nodes.

In [86], another task scheduling algorithm, which consider
resource management, employed a modified GA. This
approach produced better results than Energy-aware Task-
based Virtual Machine Consolidation (ETVMC), Traveling
Salesman Approach for Cloudlet Scheduling (TSACS),
and ACO in terms of load balancing, makespan, resource
utilization, throughput, and scheduling length. But, the
datasets used in the simulation were not provided. MCGA,
another GA based algorithm, optimized scheduling time,
cost, resource utilization, and bandwidth in [87]. Another
improved and adaptive GA addressed the issues of lengthy
delays, less reliability, high energy consumption, and
resources distribution in [88]. The crossover and mutation
operations were divided into different intervals.

In [89], Kubernetes was employed for the containerized
deployment of tasks. First, the GA was improved (IDGSA)
through interval division for task scheduling. This was
proceeded by adding a penalty factor, resulting in IDGSA-P,
designed to foster a collaborative environment. It minimize
task execution time and delays along with improved load
balancing and resource utilization. However, the type of
tasks was not illustrated. In another study [90], an energy
efficient task scheduling algorithm (EMCS) was presented
to minimize cost, energy consumption, and completion time
using GA.

4) ANT COLONY OPTIMIZATION (ACO) BASED ALGORITHMS
A substantial number of applications are deadline sensitive
like in healthcare and IoT etc. Therefore, efficient scheduling
of tasks is crucial to improve makespan, reduce deadline
violations, and energy consumption. Two algorithms based
on Linear Weighted Sum and ACO were proposed to
minimize energy consumption and makespan for deadline
constraint tasks in a heterogenous environment [91]. Further
a scaling strategy was devised to improve task scheduling
and energy efficiency. The linear weighted sum can be
extended to make ACO converge faster without losing
solution diversity.

Another improved ACO algorithm was employed to
schedule tasks in a blockchain-assisted network in [92].
The blockchain scheduling model and algorithm mini-
mized latency, network overhead, and execution time in
addition to improved privacy. Similarly, another algorithm
named MOTS-ACO, utilized adaptive probability for task
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scheduling to minimize turnaround time and makespan
in [93]. The study also enhanced load balancing and power
efficiency, achieving higher convergence speed and yielding
pareto-optimal solutions.

5) WHALE OPTIMIZATION ALGORITHM (WOA) BASED
TECHNIQUES
With the increasing number of tasks and resources, task
scheduling is becoming more complex. The study in [94]
focused on maximizing revenue within the constaints of
delay-tolerant tasks. This was achieved by applying WOA
to increase efficiency and profits. Nonetheless, makespan
was neglected in the study. In [95], an enhanced WOA
(OppoCWOA) was applied for task scheduling to optimize
energy consumption and time. However, its worth noting
that opposition based learning, despite its benefits, is often
computationally expensive due to the evaluation of multiple
solutions. Further, it is also conspicuous that chaos theory
adds an overhead to theWOA. A slight increase in parameters
will have a considerable effect on the algorithm’s time
complexity. Parallelization of algorithm can alleviate the
issues of high computation complexity. In another study [96],
the WOA was employed to minimize energy consumption
and cost, considering task priorities.

6) SIMULATED ANNEALING (SA) BASED ALGORITHMS
For IoT driven systems, task service cost and execution
within deadline are the two task scheduling challenges.
A privacy-aware task scheduling algorithm based on Sim-
ulated Annealing (SA) was presented to minimize ser-
vice cost and execution time utilizing goal programming
approach [97]. Nevertheless, datasets used in the simulation
were not mentioned. Similarly, a Multi Objective SA
(MOSA) algorithm improved delay time, satisfied deadlines,
and access level controls [98]. Multiple goals were achieved
by finding compromised solutions, and a new goal of
access level was introduced to appropriately distribute IoT
tasks. However, the communication cost was ignored in the
study.

7) OTHER META-HEURISTICS
There is often a conflict between user requirements and
objectives of service providers, particularly for deadline-
sensitive tasks. In [99], the authors proposed a task scheduling
algorithm (EATSD) for deadline constraint tasks. They
employed Differential Evolution (DE) and ELECTRE-III
to minimize makespan and energy consumption while
improving resource utilization. But, only one benchmark
technique was a valid contender in the comparative analysis.
In [100], Moth Flame Optimization (MFO) scheduled tasks
to meet QoS requirements. It minimized task execution time
and transfer time for cyber physical applications.

In [101], Chaotic Squirrel Search Algorithm (CSSA)
performed the workflow scheduling where job plans were
continuously generated that rendered CSSA cost-effective.

For achieving global convergence, CSSA was applied to
an early ecosystem produced with messy optimization.
Messy local search complemented the SSA to minimize
time, expenses, energy, resource consumption, and violation
levels. It increased the speed and precision of convergence
while retaining population diversity. But, the workload used
in the simulation was not stated. In [102], NMTFOLS
(a threshold-based FireFly) algorithm scheduled tasks with
load balancing. It discovered the state of workload to be
normal or bursty using workload predictor based on adaptive
regressive holt winters algorithm. Using the given techniques
with Firefly Algorithm (FA) lottery approach, appropriate
tasks were assigned to the optimal VMs. Minimizing SLA
violations, resource usage and improving energy efficiency
were the objectives of the study.

The authors in [103] optimized the Dragonfly Algorithm
(DA) to avoid pre-mature convergence through muta-
tion (combining Mexican Hat Wavelet transform and
Biography-based optimization migration process) to sched-
ule independent tasks. The tasks were scheduled dynamically
to improve response time, execution time, and SLA viola-
tions. However, a Generic GA employing the right weights
could have further improved the mutation phase. A modified
Henry Gas Solubility Optimization (HGSO) based on WOA
and Comprehensive Opposition Based Learning (COBL)
was proposed for task scheduling in [104]. The WOA and
COBL improved local search and worst solutions respec-
tively. The proposed algorithm was evaluated against WOA,
HGSO, MFO, FA, PSO, and SSA using real and synthetic
datasets, showing improvements in makespan and perfor-
mance. But, all the compared techniques were the primitive
versions.

In [105], an improved FireWorks Algorithm (FWA) was
proposed, utilizing opposition based learning and Differential
Evolution (DE). Opposition based learning facilitated a
diversified solution set, while DE avoided local optimum
solutions. The algorithm was successful at increasing
resource utilization, and minimizing makespan and cost.
However, according to the author, the proposed technique
is resistant to task migration and did not support node
failures. A strategy based on binary Jaya algorithm scheduled
incoming tasks by improving energy consumption, resource
utilization, load balancing, and makespan in [106]. Initially,
the load was dispersed uniformly on relevant VMs followed
by the best possible mapping between the tasks and VMs.
NASA-iPC dataset was used on CloudSim to schedule
non-preemptive and independent tasks in both heterogeneous
and homogenous environments, validating both the Friedman
and Holm’s tests. But, the modified Jaya algorithm was
compared against RR, binary PSO, and GA instead of
enhanced versions of the same algorithms. An Ant Mating
Optimization (AMO) in conjunction with an optimized
procedure performd task scheduling by making a tradeoff
between minimizing energy consumption and completion
time in [107]. The datasets used in simulation was not
highlighted.
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C. HYBRID META-HEURISTICS
A hybrid meta-heuristic utilizes more than one meta-heuristic
algorithm to schedule tasks on the cloud and fog. Such kinds
of studies are grouped in this category. Hybridizing two
meta-heuristic algorithms is intended to alleviate potential
weaknesses in a specific meta-heuristic algorithm. However,
it often increases the time complexity of the resulting hybrid
algorithm. Like the heuristic based algorithms, there are also
6 hybrid meta-heuristic algorithms that appeared once in our
selected literature. These techniques are listed in the ‘‘Other
Hybrid Meta-Heuristics’’ sub-category under ‘‘Hybrid Meta-
Heuristics’’. Following are the hybrid meta-heuristic algo-
rithms explored in this study.

1) HYBRID VARIANTS OF PARTICLE SWARM OPTIMIZATION
Two hybrid algorithms were proposed in [108] by apply-
ing fuzzy logic and SA to PSO that produced FL-PSO
and SA-PSO respectively. The proposed algorithms were
further combined with dynamic dispatch queues technique
to efficiently schedule tasks. The novel techniques were
evaluated to be effective particularly for high dimensional
problems. Makespan, cost, load balancing, waiting time,
resource utilization, and queue length were optimized in the
study. Still, latency was disregarded in the study. Similarly,
an algorithm based on PSO improved resource utilization and
makespan of non-preemptive tasks [15]. The PSO algorithm
was enhanced with Hony Bee Optimization (HBO) based
load balancing procedure. The proposed algorithm converged
faster yielding near optimal solutions for independent task
scheduling.

The improved variants of PSO andACOwere hybridized to
minimize energy consumption of resource constraint nodes in
a real time environment [109]. Nonetheless, the computation
capability of simulated nodes was not given in the study.
Similarly, a hybrid algorithm, combining PSO and SSA
addressed the issues of missed deadlines and increasing
number of offloaded workflows to the cloud in a multiple fog
based system [110]. Further, two Markov-chain models were
presented to mitigate distributed denial-of-service (DDoS)
attacks by computing average bandwidth and number of VMs
available for each fog network.

2) HYBRID VARIANTS OF ANT COLONY OPTIMIZATION AND
GENETIC ALGORITHM
A novel model (HFSGA) and scheduling algorithm based
on Flamino Search and GA improved cost, makespan,
and total number of deadlines met in [113]. The cost
included transmission, computation, cost associated with
missing deadlines. Yet, the corresponding energy consump-
tion was not discussed. Another study [114], formulated
a multi-objective task scheduling problem based on task
priority to minimize energy consumption and delay. ACO and
Monarch Butterfly Optimization (MBO) were individually
enhanced and subsequently hybridized to schedule indepen-
dent tasks to minimize task completion rate in a real time

environment. Nonetheless, the comparative analysis only
included FCFS.

3) OTHER HYBRID META-HEURISTIC ALGORITHMS
The Moth Search Algorithm (MSA) was improved using
Differential Evolution (DE) to minimize makespan by
scheduling tasks on different VMs [115]. The study used the
concept of phototaxis for exploration and Levy flights for
exploitation of the search space. DE further improved the
ability of local search. In another study, Dynamic Voltage
and Frequency Scaling (DVFS), and a hybrid Invasive
Weed Optimization and Culture Algorithm (IWO-CA) were
employed to minimize energy consumption and improve
resource utilization [116]. Yet, the task completion time was
not discussed.

A modified Artificial Ecosystem based Optimization
(AEO) scheduled IoT tasks in [117]. To improve the
exploitation ability of AEO, Salp Swarm Algorithm (SSA)
was applied to find an optimum solution to minimize
makespan and increase throughput.

A hybrid Firebug and Tunicate Optimization (HFTO)
algorithm minimized task completion time along with
improving load balancing [118]. Different variants of VMs
were created and the tasks were classified into different
categories. It also enhanced fault tolerance, makespan,
response time, and throughput. The tasks were assigned to
machines based on peak load. Light weight and computation
intensive tasks were allocated to the VMs with high and low
CPU utilization figures respectively. The algorithm improved
makespan and computational complexity even with limited
resources. However, the workload used in the simulation was
not mentioned.

Chimp Optimization Algorithm (ChOA) and Marine
Predators Algorithm (MPA) were combined (CHMPAD) to
perform task scheduling to improve makespan and through-
put [119]. CHMPAD improved the exploitation ability of
ChOA and escaped local optimum solutions. In [120],
an infrastructure was designed for energy management fol-
lowed by proposing an algorithm based on Tabu Search (TS)
that was enhanced by Approximate Nearest Neighbor (ANN)
and Fruit fly Optimization Algorithm (FOA). It minimized
latency, response time, execution time, and allocatedmemory,
but neglected the transmission cost.

Figure 10 presents the different categories and subcate-
gories of heuristic, meta-heuristic, and hybrid meta-heuristic
algorithms, while Figure 11 depicts the number of studies
published each year, focusing on different task scheduling
algorithms on the cloud and fog.

Traditional policy based algorithms, such as earliest
finish time and priority driven techniques, are designed
for environments where the range of workload is roughly
predetermined. They better suit an environment that is not
expected to face major changes in the foreseeable workload
and number of users. A large part of heuristics, especially
deterministic heuristics, falls into this category. However, for
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FIGURE 10. Categories and sub-categores of algorithms.

FIGURE 11. Year-wise no. of studies for each algorithm/group of
algorithms.

the cloud and fog computing, the nature of workload can
change at run time, unlike traditional computing systems.
Machine Learning (ML) and Artificial Intelligence (AI) not
only remedy the limitations of traditional task scheduling
algorithms but also enhance the robustness of task scheduling.
The ML models are trained with historical data, enabling
them to adapt to diverse workloads in real time. On the
other hand, AI possesses the ability to select strategies
for computation/decision making based on prevailing cir-
cumstances. A system based on ML or AI, or both, can
outperform traditional scheduling algorithms provided its
computation cost is acceptable. In essence, ML and AI
expedite the development of dynamic and adaptive task
scheduling algorithms for the cloud and fog computing.

IX. SCHEDULING OBJECTIVES
The majority (97%) of the studies consider task scheduling
as a muti-objective optimization problem. The distribution of
20 commonly used scheduling objectives in both the cloud
and fog computing is presented in Figure 12.

It is observed that makespan is the prime optimization
metric that received most of researchers’ attention (>14%)
during task scheduling on both the cloud and fog. Makespan

FIGURE 12. Task scheduling objectives on the cloud and fog.

refers to the completion time of all tasks submitted to a
machine. It shows the efficiency of any cloud/fog node to
execute a given set of tasks in the minimum possible time.
Similarly, after task submission, response time and execution
within deadline are equally important factors on both the
cloud and fog as illustrated in Figure 12.

On the other hand, fault tolerance (2.5%) and turnaround
time (1%) are addressed in a couple of studies on cloud,
but are altogether neglected in the context of fog computing.
Likewise, latency (6.3%), security/privacy (3.7%), and stor-
age (1.1%) are considered in fog paradigm, but not catered in
the cloud.

For task scheduling on cloud computing, makespan,
resource utilization, load balancing, and cost are observed
to have more than 50% of significance. For an end user,
makespan and cost are crucial factors for executingworkloads
in minimum time, subsequently reducing cost. However,
resource utilization and load balancing are decisive for cloud
service providers to efficiently utilize their resources and
reduce operating costs. In the cloud, poor load balancing
exacerbates the overall efficiency of the infrastructure,
increasing running costs.

In fog computing, makespan, delay, energy consumption,
execution time, and cost are shown to have higher signif-
icance (>50%). The basic purpose of fog computing has
been to serve the delay-sensitive tasks close to network
edge. The fog devices being run on batteries require efficient
utilization of energy to remain active for extended periods.
The cost of services at cloud computing are high; therefore,
fog computing strives to provide the same services at a lower
cost.

Reduced makespan provides quicker results and improves
overall efficiency. Better resource utilization reduces idle
times, thus increasing efficiency and throughput. It also
plays a substantial role in the cost-effectiveness of provided
services. Load balancing avoids overloads and underloads
as improper loads on machines affect stability, scalability
and efficient resource usage. Energy consumption is directly
proportional to environmental impacts and operational costs,
posing one of the pressing issues for both the cloud and
fog computing. In the cloud, it correlates with operational
costs, while in fog computing, it determines the active state
of fog nodes as they could have limited battery-powered
energy. Cost determines the economic viability of the cloud
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FIGURE 13. Evaluation methods.

and fog architectures, which cannot be ignored. More-
over, minimizing task execution time enhances application
response time, making it valuable for both the cloud and fog
environments.

The relative difference among the significance of various
optimization metrics is higher in cloud computing compared
to fog computing. It is due to the different nature of both
models. It is pertinent to consider that cloud computing is a
far mature model than fog computing, which is still evolving.

Following are the seven common parameters out of twenty
on the cloud and fog computing:

1) Makespan
2) Resource Utilization
3) Delay
4) Load Balancing
5) Energy Consumption
6) Cost
7) Execution Time
Besides delay which is the core reason of introducing

fog computing, all the above parameters are empirical and
important to evaluate any task scheduling algorithm on both
the cloud and fog computing. Table 3 inAppendix-A provides
various task scheduling metrics in articles reviewed for the
cloud and fog computing.

Scalability and reliability are vital aspects of the cloud
and fog computing; however, the shortlisted articles do
not delve into them in depth. Our paper selection criteria
could have overlooked studies focused on these aspects.
This study specifically included articles from the past five
years. Scalability and reliability might have been pressing
optimization issues in the nascent stages of the cloud and fog
computing. A challenging validation process for researchers
could be another reason for their relatively lesser significance
in this study.

X. EVALUATION TECHNIQUES
The validation and verification of the proposed models and
algorithms have been performed through simulations, real
experiments, analytical reasoning, and utilizing different
sorts of datasets. Majority of the studies have performed
simulations using real and synthetic datasets, while real
experiments and analytical reasoning are conducted sparingly
as shown in Figure 13.

Computer simulations are easy to conduct with a bunch of
options as simulation tools, while real experiments require

FIGURE 14. Types of workloads.

more resources, expertise, and time to configure a system
for experiment. Thus, researchers opt for simulations to save
time, resources, and cost. Real experiments are conducted
in eight studies, but the relevant details are only provided
by three. An experiment was conducted at a private cloud at
Barcelona Supercomputing Center (BSC) in [11]. In another
study, along with Python, Java, C#, and Eclipse, [28] used
Arduino and DFR0027 for an experiment. Similarly, [70]
employed Raspberry-Pies, and UDOO and ESP8266 boards
in a real experiment to validate the proposed algorithm.
Moreover, four studies [18], [36], [58], and [89] have used
analytical expressions to validate various aspects of their
findigs.

The datasets used in simulations and experiments can
be real and/or synthetic. Real workloads are the real time
logs of machines, while synthetic datasets are developed
by simulations through a variety of methods. For example,
a synthetic dataset can be a subset of any real dataset or can
be developed based on the qualities of a real dataset. The
studies included in this SLR used synthetic datasets up to
43% due to its provided ease and avoiding a compromise on
the security/privacy of real data. 22% of the studies utilized
both real and synthetic datasets that seems to be the safest
approach for researchers. 13% of the studies have relied on
real workloads only. Further, 10% of the researchers have
not used any dataset, whereas 12% have not mentioned any
workload in their studies as shown in Figure 14.
The respective frequencies of all workloads investigated in

this study are shown in Figure 15.
Synthetic and randomly generated workloads are the

choice of authors due to their provided convenience. Further,
Montage, NASA Ames iPSC/860 Log, Epigenomics, and
Cybershake workflows are among the widely used datasets
for task scheduling on the cloud and fog. A variety of simu-
lation tools are used for running task scheduling algorithms.
CloudSim andMATLAB stands out as a dominant simulation
tools in the cloud, and with the addition of iFogSim, these
simulators are also widely employed in the fog, as shown in
Figure 16.
A substantial number of authors also used custom-built

simulations instead of the above renowned simulators.
They used numerous programming languages, Integrated
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FIGURE 15. Frequencies of different real, synthetic, and random simulation workloads.

FIGURE 16. The usage of different simulation tools for task scheduling on
the cloud and fog.

Development Environments (IDE), libraries, platforms, and
Database Management Systems (DBMS) as shown in
Figure 17.

XI. OPEN ISSUES
Task scheduling is an optimization problem where
researchers strive to improve one metric without degrading
others or compromising beyond a certain threshold value.
This SLR examined 20 task scheduling objectives in the
selected studies. Makespan, resource utilization, delay,
energy consumption, and cost are the top five objectives in
task scheduling on the cloud and fog. Some of the open issues
are:

1) How to improve the given QoS metrics without
degrading others? is an open issue as these objectives
are often inversely proportional to each other. Due
to the inverse association among scheduling metrics,

FIGURE 17. Comparison of Tools/Languages/Libraries/DBMS/IDE for
custom built simulations.

it is observed that one algorithm cannot minimize
the makespan, cost, energy consumption, and delay
along with increasing the resource utilization etc. at the
same time. Therefore, multiple algorithms need to be
developed to focus on a specific group of factors at one
time.

2) In the context of heterogenous resources, load bal-
ancing is vital for energy savings and performance
improvements. In the prevalent scheduling mecha-
nisms targeting load balancing, mostly earlist finish
time of tasks is utilized to use the provided resources in
a balanced manner, but, it is at the cost of overloading
fastest VMs or nodes. A mechanism is needed to
balance the resource utilization of available computing
resources.

3) The communication overhead between end users and
the cloud and fog computing is crucial for QoS, but it
is not addressed adequately by the researchers.
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FIGURE 18. Parallel execution of meta-heuristic algorithm.

FIGURE 19. Master/slave topology.

4) The issues raised due to task migration and offloading
during task scheduling need further research efforts
as it can improve the practicality of scheduling
algorithms.

5) The carbon footprint is a serious concern as it
contributes substantially to ecosystem. The usage of
clean fuel by cloud data centers is an open issue to
reduce CO2 emissions.

6) Task scheduling under the umbrella of minimizing
SLA violations and improving fault tolerance requires
the researcher’s attention. Machine learning techniques
can enhance the prediction and remedy of SLA
violations and fault occurrence.

7) IoT applications rely on the cloud and fog resources;
so further efforts are needed to make the service
provisioning lightweight.

8) The issues raised by Big-Data to efficiently use the
cloud computing and reduce the associated communi-
cation overhead.

9) With the emergence of 5G, the mobility of fog nodes
is a hot topic of research. Unlike cloud servers, the
mobility of fog nodes is linked with aggravating
its security. Further, the management issues can be
resolved effectively by Software Defined Networking
in fog computing.

10) The factors of heterogeneity, different application
requirements, virtualization technologies, and unex-
pected workloads are some of the open issues while
scheduling tasks on the cloud and fog.

11) A scheduling algorithm is able to work across different
architectures in multi-clouds, provided it accommo-
dates the various requirements and constraints of these

FIGURE 20. Coarse-grained topology.

FIGURE 21. Fine-Grained Topology.

architectures. Some cloud providers can use virtual
machines, while others could employ containers.
Therefore, an algorithm should cater to these differ-
ences by adhering to open standards. Interoperability
standards and cloudAPIs are critical to enable seamless
provisioning of resources across multiple clouds. The
development of common standards facilitates task
scheduling algorithms in working across different
infrastructures. Although established standards are
in place for multi-cloud applications, it remains a
challenging aspect that requires further efforts.

12) For a hybrid fog-cloud infrastructure, the task
scheduling algorithm can perform the mapping
of tasks based on the specific characteristics and
constraints of fog and cloud nodes to optimize the
overall system performance. A prevalent solution
is to direct compute-intensive tasks to the cloud
and execute delay-sensitive tasks at the fog nodes.
Dynamic load balancing in fog-cloud can enhance
system performance. However, accomplishing it with
resource-constrained devices is a challenge.

XII. CHALLENGES AND FUTURE DIRECTIONS
Numerous techniques have been investigated in the
three categories of heuristics, meta-heuristics, and hybrid
meta-heuristic algorithms for task scheduling on the cloud
and fog. However, based on individual technique(s), multi-
heuristic and meta-heuristic algorithms especially PSO and
GA have been the choice of researchers. In multi-heuristics,
there is a wide range of different algorithms utilized for task
scheduling, but none of the given techniques got exclusively
attention. Based on the PSO and GA based studies, it is
examined that the computational complexity and the right
mix of exploration and exploitation determines the viability
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FIGURE 22. Position of particles in different iterations in PSO.

of a meta-heuristic algorithm. Following can be some of
the challenging endeavours to improve the existing meta-
heuristic algorithms:

A. PARALLELIZATION
The inherent complexity of a meta-heuristic algorithm
increases its execution time. A meta-heuristic algorithm
converges to a final solution in each iteration starting with
exploration and ending in exploitation in the later stages. This
process takes time and one of the methods for speedup is
parallel execution as shown in Figure 18. So, an algorithm
can be run on multiple machines/threads to get the solution
in minimum time. Due to large search space with CPU and
memory intensive objective functions, concurrent execution
of a meta-heuristic algorithm is viable. Yet, if there is only
one machine available, the parallelized algorithm will still
perform better and provide a robust solution assisted by
cooperation. Moreover, a parallel meta-heuristic algorithm is
useful when the scale of a problem increases up to a point
that cannot be processed by a single machine. In this case, the
solution space or the required computations can be distributed
onmultiple machines. For example, a Parallel Squirrel Search
algorithm using fuzzy logic optimally scheduled tasks in high
load conditions in [121].

The following three models define the granularity of a
parallelized meta-heuristic algorithm:

1) Algorithmic level parallelism
2) Iteration level parallelism and
3) Solution level parallelism
At the algorithmic level, multiple instances of a

meta-heuristic can run either in an independent or cooperative
manner to construct final solution. At the iteration level,
a single step of the algorithm is parallelized for time efficient
execution that is based on the distribution of the solution.
On the other hand, solution level parallelism deals with the
parallelization of the processing for a single solution. Both

FIGURE 23. Genetic algorithm operations.

FIGURE 24. Whale optimization algorithm.

the algorithmic and iteration level parallelism are problem
independent, while the solution level parallelism is problem
dependent. Further, algorithmic and solution level parallelism
alter the behavior of a meta-heuristic, while the iteration level
parallelism does not.

There are also two parallelization strategies used with
population based meta-heuristic algorithms.
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TABLE 2. Comparison of tasks, types of solutions, algorithms, and evaluation methods.
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TABLE 2. (Continued.) Comparison of tasks, types of solutions, algorithms, and evaluation methods.
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TABLE 2. (Continued.) Comparison of tasks, types of solutions, algorithms, and evaluation methods.

1) Computation based parallelism: The operations that
are performed on each particle/individual of the whole
population are performed in parallel.

2) Population based parallelism: The population is
divided into multiple parts, each of which is handled
separately. These parts exchange information and then
combine to form the final solution.

Similarly, there are two modes for the function evaluation
in a parallel metaheuristic algorithm: synchronous and
asynchronous. If the evaluation is performed for each particle
in parallel and the state is synchronized at each iteration,
is referred to as synchronous parallel mode. However,
synchronous parallelism is less productive. For example,
a parallelized variants of GA and PSO dynamically offloaded
tasks in [122]. But they were only appropriate for low
rate of task generation by the IoT devices due to the
reduced productivity by synchronous parallelism. In contrast,
in asynchronous mode, the evaluation of populations does
not synchronize with each other in each iteration, instead,
it depends upon the state and update timings of separate
populations/agents. Here every subpopulation/agent exhibits
different behavior using same/different function evaluation.
The different topologies for parallel meta-heuristic algo-
rithms are:

1) Master-Slave: There is a single master node with
multiple slave nodes coordinating with the master
as shown in Figure 19. However, if the slave nodes
increase over a certain limit, then communication
overhead becomes a bottleneck.
In [123], a multi-objective parallelized PSO algorithm
combined with pareto optimal theory to sched-
ule micro-services based on containers. But, the
inter-process communication among swarms of parti-
cles was based on a master-slave model that resulted in
small improvements with increasing number of swarms
and iterations. The best possible results were achieved
with pnum= 300, iter-num= 300, c1= 0.1, c2= 0.45,
and w = 0.45.

2) Coarse-Grained (Island or Ring topology): A program
is split into multiple chunks where separate compu-
tation(s) takes place. It provides low synchronization
and communication overheads due to a ring structure as

expressed in Figure 20. But, due to the uncertain degree
of workload on different processors, load balancing
could be a challenge.
A parallel GA for job shop scheduling used two
level parallelization in [124]. Executing the exigent
tasks with the fastest machines impacted the overall
efficiency of the scheduling. Using a hybrid GPU-
CPU approach, and island topology with classic GA
and cellular GA made the algorithm complex. Further,
the classic GA can also be partially parallelized on
multi-core CPU. But, it can trap in local optimum
due the naive nature of roulette wheel technique
when dealt with classic GA on island B. Moreover,
at the migration, the individuals running on GPU were
migrated to the CPU that degraded the performance.

3) Fine-Grained topology (Cellular topology) distributes a
program into smaller tasks evenly to run on more pro-
cessors achieving better load balancing. In Figure 21,
it is evident that every island is connected to two to
four islands that results into higher synchronization and
communication overheads.

4) The combination of any of the above results into a
hybrid topology.

In essence, the parallelization of ameta-heuristic algorithm
addressing the above limitations is one of the future directions
of this study for scheduling of independent tasks in cloud
computing.

B. SETTING/CONFIGURATION OF WEIGHTS
Ameta-heuristic algorithm uses random agents to converge to
a global minimum/maximum. A large inertia weight enables
global search, while a smaller value accelerates the local
search. Similarly, a largemutation ratio enables global search,
while a large crossover ratio facilitates local search. The
convergence can be improved by appropriate values of the
different weights to balance the exploration and exploitation
without losing diversity. In Figure 22, an improved PSO
algorithm utilized adaptive randomweights in the later stages
to obviate local optimum solutions by restricting the inertia
weight between 0.4 and 0.7 [125].
An enhanced PSO (SADCPSO) combined three tech-

niques of adaptive inertia weight, and the operators for chaos
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TABLE 3. Various task scheduling metrics in articles reviewed for the cloud and fog computing.
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TABLE 3. (Continued.) Various task scheduling metrics in articles reviewed for the cloud and fog computing.

and disruption theories [126]. The three techniques facilitated
adjustments in convergence, retaining population diversity,
and global optimum solutions to minimize execution time.
The inertia weight was maximized to favor exploration

after getting particles with more fitness. The disruption
operator maintained the Euclidean distance among the
random particles based on a threshold, the current, and
maximum iteration values to avoid local optimum solutions.
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A chaotic variable also improved the randomness of the
particles with both upper and lower limits. However, how to
specify the threshold, upper, and lower limits need further
investigation.

In another study, a task scheduler utilized PSOwith several
strategies (linear, sigmoid, chaotic, SA, and logarithm) for
controlling inertia weights in [127]. But, the increasing
number of parameters made the algorithm complex that
resulted in performance degradation. In [128], another
improved PSO algorithm was introduced, incorporated a
cosine inertial weight strategy along with uniform initial
parameter values and ranking. This appraoch aimed to
optimize both the exploration and exploitation. Uniform
random values averted the particles to be in clumps (results
into local optimum solutions). However, the time complexity
of the PSO increased significantly due to these three
techniques.

The GA is inspired from the concept of evolution where
parents produce an offspring having the characteristic of
both parents as shown in Figure 23. Crossover and mutation
control the ratio of exploration and exploitation and after
hundreds of generations, an optimal solution is produced.
A biased random key GA introduced with a new feature of
shaking to solve the permutation for a flow shop scheduling
in [129]. The shaking facilitated the solution to escape from
local optima. Though the shakingwas not productive at times,
it can also reduce the fitness of the elite set. Further, if the
shaking did not help, then a full reset was the only remaining
choice. In [130], the GA combined with biased random
algorithm to discover VMs with minimum load to achieve
a better fitness value. It helped load balancing of resources
and minimum migrations based on the average load of VMs
instead of instances. However, the best candidates and the
non-best candidates participated in crossover and mutation
without elitism. Also, a replication based crossover was used
since the normal crossover did not work after using the biased
random algorithm.

Unlike PSO and GA, WOA is a relatively new
meta-heuritic algorithm in which whales use maneuvers such
as upward spirals and double loops as part of a bubble
net strategy to capture prey as shown in Figure 24. Here,
the distance control parameter predominantly determines
the balance between exploration and exploitation that
requires appropriate manipulation. In [131], an enhanced
WOA was proposed, incorporating random and adaptive
weighting strategies to avoid local optima. Subsequently,
it was combined with the Bees Algorithm. The weights
(w1 and w2) did not reduce linearly due to the cauchy
random numbers, resulting in reduced performance. The
Bees algorithm improved the final results, but at the cost of
expensive mutation operation.

Several studies have been conducted to set/configure the
different weights/parameters of meta-heuristic algorithms,
but they have their limitations. A robust algorithm by
proper configuring/optimizing the different weights of a
meta-heuristic algorithm is another future direction of

this study for scheduling of independent tasks in fog
computing.

XIII. CONCLUSION
This study presented a comprehensive review of state-of-the-
art task scheduling algorithms in the cloud and fog computing
from 2018-2022. It provided the taxonomy and classification
of different task scheduling algorithms. The existing studies
are categorized into heuristics, meta-heuristics, and hybrid
meta-heuristic algorithms with relevant subcategories. All
the explored methods are analyzed based on the resource
mapping and nature of algorithms. The types of tasks, number
of objectives, and algorithmic approaches are examined
followed by the critical evaluation of all studies. Most of the
task scheduling algorithms are dynamic and non-preemptive
in nature, while the higher ratio of tasks is independent
as compared to bag of tasks and workflows. Moreover,
a total of twenty task scheduling objectives are surveyed from
106 studies with a comparative analysis of significance on
the cloud and fog computing. Makespan, resource utilization,
delay, load balancing, and energy consumption are observed
to be the imperative objectives on the cloud and fog. The
evaluation methods used by the researchers are investigated
including simulations, real experiments, analytical equations,
and datasets. Synthetic and random datasets are largely
employed due to their provided convenience. Further, the
widely used simulation tools and other programming lan-
guages/IDEs/libraries/platforms for custom built simulations
are highlighted. CloudSim, iFogSim, and MATLAB are
found to be the widely used simulation tools. At the
end, the open issues, challenges, and future directions are
discussed.

APPENDIX
See Tables 2 and 3.
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