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ABSTRACT Road user categorization is essential for autonomous driving perception. In challenging traffic
situations including unfavorable weather (such as fog, snow, and rain) and dim lighting. There are several
kinds of sensors that need to be researched in order to achieve the precision and resilience that autonomous
systems demand. Currently, to create a depiction of the environment surrounding the vehicle, principally
cameras and laser scanners (LiDAR) are commissioned. Despite their enticing qualities, Radar sensors are
currently underutilized for autonomous driving, even though, they have been employed in the automobile
industry for a long time. Radar’s ability to measure the relative speed of obstacles and to operate even in
adverse weather conditions makes it a front line contender for road user detection. This study proposes
F-ROADNET, a multi-object classification method for vulnerable road users based on raw Radar data. The
model is trained on Range Angle and Range Doppler maps based on a late fusion architecture. F-ROADNET
has a detection accuracy of 99.01%, precision of 99.3% and recall of 99% on the CARRADA dataset and
detection accuracy of 91.62%, precision of 87.2% and recall of 90.2% on the RADDet dataset. The findings
exhibit that F-ROADNET outperforms established methods in terms of average precision.

INDEX TERMS ADAS, automotive radar, road user safety, late fusion.

I. INTRODUCTION
The development of advanced driver assistance systems
(ADAS) during the past decade has increased the number of
in-car sensors [1], including Radar, LiDAR, and cameras [2].
Together, these sensors provide the ability to visualize its
surroundings and adjust its function accordingly. Nowadays,
camera and LiDAR are employed for ADAS applications in
the majority of intelligent vehicles as camera and LiDAR
produce high-resolution output and performwell in 3D object
identification and classification tasks.

Radar sensors have been mostly employed for blind spot
detection or autonomous cruise control due to their subpar
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angular resolution, which has prevented them from being
employed for object classification and detection tasks. Radars
are unaffected by light or weather and offer information
including range and velocity of the surrounding objects,
Radar sensors seem particularly well-suited for important
and real-time automotive applications such as autonomous
emergency braking. Many self-driving or assisted-driving
LiDARs rely on sensor fusion to improve the accuracy and
reliability of perception findings, with Radar serving as a
supplement to cameras or LiDARs. It is mostly due to
the fact that most fusion systems only use robust location
information in Radar signals and rich semantic information
is less explored.

Object identification and classification is one of the most
important jobs in computer vision, and deep neural networks
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have made significant progress in this area over the last
decade. Such approaches have been deployed successfully
with LiDAR and cameras [3], [4], however a lack of
publicly available annotated Radar datasets has delayed
research in object detection and segmentation from Radar
data. Although vision sensors may offer deeper semantic
understandings of visual environments, they are not a robust
sensor under adverse settings for instance, low/high lighting
or inclement weather, which results in little/high exposure
or blurry/occluded images. LiDAR, on the other hand, is an
alternate sensor with point cloud data that could be utilized
for accurate object detection and localization. Following the
pioneering work on feature extraction from point cloud [5],
following object detection from LiDAR point cloud [6],
[7] has been addressed. However, for detailed semantic
information, these approaches require a relatively dense
LiDAR point cloud, not to mention the high equipment
and processing expenses. Moreover, Radar is typically
more dependable in difficult conditions. The following
characteristics apply to frequency modulated continuous
wave (FMCW) Radar, which works in the millimetre-
wave (MMW) band (30-300GHz), below the visible light
spectrum: 1) MMW has excellent ability to pass through
dust, smoke, and fog; 2) FMCW Radar has excellent range
detection capabilities due to enormous bandwidth and high
working frequency. The FMCW Radar typically uses two
types of data representations: RF images and Radar points.
Fast Fourier transforms (FFTs) [8] are incorporated to create
the RF images from the raw Radar signals, and a peak
detection technique is employed to create the Radar points
from these frequency images.

Despite the fact that Radar points could be directly
incorporated into methods created for LiDAR point cloud [9],
however, Radar points are typically more sparser (less than
5 points on a nearby car) than the LiDAR point cloud [10],
so the information is insufficient to complete object detection.
In contrast, RF images could preserve detailed Doppler and
object motion information, enabling the comprehension of
the semantic significance of a given object. It is possible
to replace and enhance conventional methods for object
recognition, classification, and segmentation without sacri-
ficing information by using raw data tensors and deep neural
networks. Recent research on new deep learning techniques
for automobile Radar, spanning from object detection [11],
[12], to object segmentation [13], has been made possible
by Radar datasets and challenges like CARRADA [14],
RADDet [15], or CRUW [16], where Radar data is offered
as raw data tensors.

This study is motivated by developing a novel Radar based
object detection and classificationmethodwhich is capable of
accurately detecting vulnerable road users well in advance.
The main contributions of this research are proposing F-
ROADNET, a novel late fusion based automotive Radar
object detection method based on Range Doppler (RD) and
Range Angle (RA) maps. The use of RD and RA maps
fusion rather than Range-Angle-Doppler (RAD) tensors is

prompted by the fact that producing RAD tensors is more
computationally intensive and single map do not provide
suitable detection accuracy. The study was evaluated on the
well establishedCARRADAandRADDet dateset, it was then
compared to established methods to prove its performance
capability.

/hlThe novelty of this studies lies in the fact that the Radar
data is treated like images, hence a simple convolutional
model could be used to classify the data, even though some
preprocessing is involved in converting the radar data to
image format but it greatly reduced the complexity of the
model.

The remaining of thismanuscript is organized as following.
Section II presents a review of existing road user based
detection methods and establishes the need for this study.
Section III presents the overall methodology of the late fusion
based automotive Radar object detection method referred
to as F-ROADNET here after. Section IV elaborates the
dataset and training parameters incorporated in this study.
Section V discusses the results. Finally, Section VI concludes
this article.

II. RELATED WORK
Pedestrian detection has been a vital part of ADAS. Signif-
icant research has been performed on pedestrian detection,
where particular emphasis is given to timely and accurate
detection. Originally camera was the sensor of choice,
however, recently LiDAR and Radar sensors are also under
consideration. Sensor fusion has also been incorporated
to enhance detection accuracy. In this section, pedestrian
detection methods are categorized as camera, LiDAR, Radar
and multi-modal fusion based methods.

A. VISION BASED METHODS
In the past decade, the availability of benchmark datasets,
namely, KITTI [17] and Caltech [18] has driven the
performance of vision based pedestrian detection to new
heights. Traditionally, RGB image data has been utilized
for pedestrian detection, while recent research additionally
explore depth information [19], [20]. Vision based pedestrian
could be dated back to 2003 when Viola and Jones (VJ)
[21] incorporated their infamous Viola-Jones detector to
detect walking pedestrians in frames. The VJ detector
extracts features for each frame and integrates intensities
with motion information for efficient pedestrian detection.
Vision based pedestrian detection took a stride forward with
the consideration of the people model [22], where the model
considers the human body as a combination of deformable
parts. Plentiful of research have incorporated the deformable
parts model of accurate pedestrian detection [23], [24]. With
the advent of deep learning, researchers also shifted gears
towards learning features instead of hand crafting features.
Region based Convolutional neural networks (RCNN) [25]
and its variants Fast RCNN [26]and Faster RCNN [27] have
been widely popular for pedestrian detection.
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Many challenges are encountered in vision based pedes-
trian detection including camera motion [28], illumination
variation [29], shadows [30], pedestrian occlusion [31] and
abrupt motion [32]. overcoming these challenges are com-
putationally expensive hence other sensors are potentially
explored.

B. LIDAR BASED METHODS
LiDAR (Light Detection and Ranging) technologies give
cost-effective and straightforward solutions to difficulties
left unanswered by image processing. LiDARs are devices
that emit layers of high-directivity lasers that reflect on all
surrounding objects and provide information about their rel-
ative distance. These characteristics make LiDARs ideal for
pedestrian detection applications in autonomous cars, where
accurate distance estimate is a crucial element for collision
prevention. The Velodyne LiDAR is commonly utilized for
pedestrian detection and dataset including NUSCENE [33]
provide relevant data for method training and testing. In [34],
it was suggested to use streams of LiDAR point clouds
to identify smartphone zombies using a tracking improved
segmentation-based technique. The developed system uses
tracking-enhanced SVM-based feature extraction to learn
a distinctive pattern of the lateral profile for smartphone
zombie detection. However, significant bottlenecks on seg-
mentation and tracking must be overcome to improve the
robustness of the system, and temporal information and
additional features must be investigated to improve the
detection accuracy. Amore time efficient method is presented
in [35], where the pedestrian recognition module uses a
cutting-edge U-shaped CNN framework to input a specially
built voxel feature; nonetheless, accuracy is degraded while
confronting a throng of people or if there are frequent and
thick occlusions in the environment.

With increasing range, the LiDAR point cloud gets sparse,
and the ability to detect objects falls considerably. Weather
conditions, for instance, severe rain, snow, or fog could also
have an impact on camera and LiDAR systems [36]. These
constraints enhance the hazards connected with autonomous
driving and severely limit the development of related
technology.

C. RADAR BASED METHODS
Radar sensors have lately gained popularity in driving
applications, which use representations that vary depending
on the task at hand: Doppler spectrograms for classifying
vehicles [37], range-angle for classifying objects [38], and
range-angle and range-Doppler for object identification [39].
S. Capobianco et al. [37] examine how well Convolutional
Neural Networks (CNN) could identify different types of
vehicles while analyzing an FM-CW Radar signal. Based on
short time fourier transformation, convert a two-dimensional
Radar wave into a three-dimensional tensor. The Deep-
RadarNet convolutional architecture is then trained using the
computed tensors. A more detailed CNN based classifier

is presented in [38], this research study Radar range-angle
information for object detection. In [40] the feasibility of
integrating heterogeneous lidar PC and radar raw data was
examined. The suggested method used enhanced Doppler
contexts to not only increase object identification perfor-
mance for vulnerable road users, but also to precisely classify
object motion status. However, incorporation of a larger data
set and further comparisons with developed methods have to
performed for verification.

A more recent study [41] propose a self-attention-based
4D-Radar 3D object detection network called RPFA-Net. The
point cloud features in the pillar are extracted using the self-
attention method, and RPFAlayer is suggested as a way to
remotely record the data. Resulting in enhanced 3D object
identification accuracy and network regression heading angle
precision.

Although some improvementswere reported, the algorithm
was applied solely to Radar point cloud and did not fully use
data from the Radar.

D. MULTI MODAL FUSION BASED METHODS
One of the fundamental issues in multi-modal fusion is
maintaining a strong link between various aspects of the same
item from each modality. While LiDAR offers great range,
reflectance information, and day-long availability, it lacks
enough deterministic information to allow some classifiers
to correctly identify pedestrians. An Imaging device could
potentially facilitate correct pedestrian identification. Such a
method is presented in [42], where through point-wise and
ROI-wise feature fusion, multi-task learning formap previous
and geometric cues, and denser feature fusion, multi-task
multi-sensor detection is carried out. Wang et al. achieved
the best performance for the KITTI 3D object detection
benchmark in [43] by offering a new viewpoint for converting
images into a point cloud. However, when there were few
LiDAR points and fusion was constrained. Additionally,
unfavorable weather conditions including snow, rain, and fog
greatly reduced the quality of the data produced by imaging
device and LiDAR.

Fusion of vision and Radar data for object recognition
in adverse weather should result in improved outcomes and
increase the resilience of 3D object detection. The camera
data is often employed in Vision-Radar fusion algorithms
to extract area suggestions or 2D bounding boxes for
detection, while 3D Radar gives depth information for the
final detection results. One such method is RODNET [44],
a deep Radar object detection network. The Radar-based
object identification technique that could be more reliable
than vision in challenging lighting situations. The suggested
RODNet is based on a completely systematic cross-modal
supervision scheme from an efficient vision-Radar fusion
method. Even though RODNET performs fairly, however,
its computationally expensive. RAMP-CNN’s [45] extra
Doppler channel enhanced the precision by 1% over ROD-
Net, however this performance advantage comes at the
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FIGURE 1. Radar data acquisition block diagram.

expense of more (3x) model parameters. To address issue of
computational cost the T-RODNET [46] utilizes transformer
to obtain global features causing increasedmodel parameters.
Amore recent study [47] presents an image radar cross modal
technique with radar customised panoptic segmentation in
urban, rural, and highway situations using just range-Doppler
matrix data.

However, in this instance, 3D Radar just serves as an
adjunct, and there is still a sizable gap in the estimation of
object depth.

Sparsity brought on by the filtering methods applied on
the raw Radar signal and the post-processing procedures
causes loss of important data included in the raw Radar
signal shown in Fig. 1. Several publications investigate lower
level representations, primarily the Range-Doppler (RD),
Range-Angle (RA), or Range-Angle-Doppler (RAD) tensors,
to overcome this. As RAD tensors combine distance, velocity,
and angle information, this representation is being adopted in
an increasing number of works. Even though RAD tensors
provide the most information, they are computationally
expensive for Radar processors. In this study we present a late
fusion based Deep learning method for accurate pedestrian
detection incorporating raw Radar data.

III. MATERIALS AND METHOD
This section presents the proposed novel late fusion Radar
object detection deep learning method (F-ROADNET) for
accurate pedestrian detection. Three five-layer CNN models
are trained on RD, RA and AD respectively. Late (Decision
level) fusion is performed to achieve the final decision. Late
fusion is a merging approach that takes place outside of
monomodal classification models. It integrates the results of
each classifier to generate new,more accurate and trustworthy
decisions.

A. OVERVIEW OF RADAR SENSOR
A Radar sensor produces electromagnetic waves using one
or more transmitter antennas (Tx). The waves are reflected
by an object and picked up by the Radar using one or
more receiving antennas (Rx). The comparison of the sent
and received waveforms yields the distance, radial velocity,
azimuth angle, and elevation of the reflector in relation to
the Radar position [8]. The majority of car Radars employ

FIGURE 2. Raw radar data format.

Multiple Input Multiple Output (MIMO) systems, in which
each Tx/Rx pair receives the reflected signal allocated to a
specific Tx broadcasting a waveform. Frequency-Modulated
Continuous Wave (FMCW) Radar sends out a signal known
as a chirp [5], the frequency of which is linearly modulated
throughout the sweeping period Ts. The received signal has
a phase shift of φ(t). Radial velocity is determined by the
frequency shift between the two signals, often known as the
Doppler effect. The doppler frequency can be expressed as:

fd =
1
2π

dφ(t)
dt

=
2vr
c
fs (1)

The radial speed of the object could be recovered using
equation. 1. The time delay between the received signals of
each Rx provided by a particular Tx in a MIMO system
with multiple Rx antennas conveys the object’s orientation
information. Depending on the location of the antennas,
the azimuth angle and the elevation of the object are
respectively deduced from the horizontal and vertical pairings
of Tx/Rx. The Fast Fourier Transform (FFT) technique
converts recorded data from the time domain to the frequency
domain using a Discrete Fourier Transform (DFT). A 3D-
FFT is utilized to process the 3D tensor: a Range-FFT along
the rows to resolve the object range, a Doppler-FFT along
the columns to resolve the object radial velocity, and an
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FIGURE 3. Radar maps (a) Pedestrian Angle Doppler Representation (b) Pedestrian Range Doppler Representation (c) Pedestrian Range Angle
Representation (d) Car Angle Doppler Representation (e) Car Range Doppler Representation (f) Car Range Angle Representation (g) Bicyclist
Angle Doppler Representation (h) Bicyclist Range Doppler Representation (i) Bicyclist Range Angle Representation.

Angle-FFT along the depth to resolve the angle between two
objects as shown in fig. 2.
As shown in Fig. 2, fast Fourier transform (FFT) is

applied to the ADC data within one chirp to retrieve
distance information. A range-Doppler spectrum is obtained
by applying a second FFT over the chirp index to measure
the phase difference between chirps and deduce the Doppler
shift. Finally, in the antenna dimension, a third FFT (or angle
FFT) or more complex methods are incorporated to extract
angle information and construct the Range-Angle-Doppler
tensor. The RAD tensor is too complex to compute, targets
on the RD spectrum are often discovered using peak detection
methods. The Radar reflections are then obtained by the use
of angle FFT or beam forming algorithms, as well as various
post-processing procedures.

B. RAW RADAR DATA
Raw data is noisier, however, contain information on every
reflected object in the scene. Raw Radar data is advantageous
for the purpose of detection as no information is lost. Raw
Radar information could be represented as RD, RA and
AD maps. RD maps represents the velocity information of
moving objects around the vehicle. RA maps offer angle
information, allowing you to identify targets surrounding
vehicle. AD presents the angle information in respect to the

velocity of moving objects. The RD, RA and ADmaps reveal
distinctive patterns for pedestrian, cars and bicyclists, as can
be observed in the Fig 3. Deep learning based model could be
trained to detect vulnerable road users, for instance pedestrian
and bicyclist. The proposed CNN models is elucidated in the
next section.

C. NETWORK ARCHITECTURE DESIGN
The CNN model is trained for RD, RA and AD maps
respectively as shown in fig. 4. Five convolutional layers and
one fully connected layer make up the CNN network. A batch
normalization layer, a rectified linear unit (ReLU) activation
layer, and a max pooling layer are placed after the first four
convolution layers. The max pooling layer is swapped out for
an average pooling layer in the final convolution layer. After
softmax activation, the output layer is a classification layer.
The same network architecture is utilized for all three of the
CNN models, the only difference being the size of the input
layer. The input layer size of the RD and AD network model
is 256× 64 and the input layer size for RA is 256× 256. The
kernel size of the first convolutional layer is 6 × 6, while the
kernel size of the other convolutional layers is 3 × 3.
In late fusion approach, the data for each modality is

processed separately, with each classifier returning a decision
for the respective modality. In the proposed method RD-
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FIGURE 4. Proposed deep network architecture.

CNN, RA-CNN andAD-CNN return a decision regarding the
object detected, eventually decision level fusion is performed
to fuse the decision taken by a combination of the CNNs for
best result. The late fusion is applied of the predicted response
of RD-CNN and RA-CNN, RD-CNN and AD-CNN, RA-
CNN and AD-CNN and RD-CNN, RA-CNN and AD-CNN.
The fusion function can be expressed as in eqs. 2-5.

Fa(d) = Res− RA− CNN (d) ∗ Res− AD− CNN (d) (2)

Fb(d) = Res− RD− CNN (d) ∗ Res− AD− CNN (d) (3)

Fc(d) = Res− RA− CNN (d) ∗ Res− RD− CNN (d) (4)

Fd (d) = Res− RA− CNN (d) ∗ Res− AD− CNN (d)

∗ Res− RD− CNN (d) (5)

Equation 2 represents the fusion function for RA and AD,
where the decision layers are fused to combine the result by
the RA network and the AD network. Equation 3 represents
the fusion function for RD and AD, where the decision layers
are fused to combine the result by the RD network and the AD
network. Equation 4 represents the fusion function for RA
and RD, where the decision layers are fused to combine the
result by the RA network and the RD network. Equation 5
represents the fusion function for RD, RA and AD, where
the decision layers are fused to combine the result by the RD
network, RA network and the AD network.

Fig. 5 represents all possible combinations of RD-
CNN, RA-CNN and AD-CNN under consideration. The
F-ROADNET model aims at achieving the highest accuracy
with the least amount of complexity. The different models
for F-ROADNET is RA-RD fusion network, RA-AD fusion
network, RD-AD fusion network and RD-RA-AD fusion

FIGURE 5. Proposed fusion based automotive radar object detection
deep network (F-ROADNET) architecture.

network. Experimentation would prove the best possible
architecture for road object detection.

IV. EXPERIMENTATION
A. DATASETS
The developed method was evaluated on the CARRADA [14]
and RADDet [15] datasets. Scenarios involving automobiles,
pedestrians, and cyclists have been documented. All vehicles
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FIGURE 6. CARRADA [14] data representation.

such as car, truck and bus have been combined under the
class automobile. The RD and AD representations are saved
as 2D matrices of size 256 × 64 and RA representation is
saved as 256 × 256 matrix, example of CARRADA and
RADDet data is shown in fig 6 and 7 respectively. In the
CARRADA dataset, to mimic urban driving scenarios, one or
two objects move in the area at the same time with different
trajectories. The RADDet dataset is complex in comparison
to the CARRADA dataset due to multiple objects in each
frame and higher chances of occlusion.

The CARRADA and RADDet datasets are developed on
python platform and our proposed method is developed on
MATLAB. Hence, for this study the data set has been made
compatible, so it could be accessed through the training
platform. Secondly the Radar tensor data is stored in image
format for training purpose. The dataset is randomly divided
into training and testing sets, 70% of the data is reserved for
training and 30% for testing.

B. TRAINING PARAMETERS
To put the developed method to the test, the model was
trained using a system equipped with an Intel i7 7700HQ
quad processor, 16 GB of RAM, and an NVIDIA GeForce
GTX 1050 GPU. The Adam optimizer is employed with the
suggested settings. All the experiments employ a learning
rate of 1e-2. The minimum batch size is set to 128 and thirty
epochswere used to train themodel. The learn rate is schedule
as piece-wise, learning rate drop factor is set 0.1 and learning
rate drop period is 10 with data shuffle at every epoch.

V. RESULT AND DISCUSSION
Table 1 represents the accuracy, recall and precision of
ROADNET and F-ROADNET. ROADNET is trained on sin-
gular Radar representation on the other hand F-ROADNET is
fusion network and implements decision level fusion.

ROADNET trained on CARRADA dataset shows that RA
outperforms the other features with an accuracy, precision
and recall of 97.5%, 96.33% and 95.9% respectively. This
proves that Range Angle carries information to accurately
classify cars, pedestrians and bicyclists. ROADNET trained
on either AD or RD perform similarly with an accuracy
of around 93% and precision of around 89%. ROADNET

FIGURE 7. RADDet [15] data representation.

trained on RADDet dataset shows similar results, RA maps
have the highest accuracy of 87.574%, followed by RD with
an accuracy of 85.293%.

As expected, F-ROADNET outperformed ROADNET in
terms of accuracy, precision and recall for both CARRADA
and RADDet. However, to achieve this performance model
complexity is introduced. On the CARRADA dataset,
in terms of accuracy F-ROADNET trained on RD, RA and
AD performs the best with an accuracy of 99.18%, while
F-ROADNET trained on RA and RD comes a close second
with accuracy of 99.02%. Similar results are demonstrated
by F-ROADNET trained on RADDet. In terms of accuracy
network trained on RD, RA and AD has an accuracy of
92.213%, the highest accuracy achieved on the RADDet
dataset. Network trained on RA and RD achieve an accuracy
of 91.622%, Even though highest accuracy is achieved by the
fusion of RA, RD and AD maps but, F-ROADNET trained
on RD and RA is preferred due it credible performance
compared to its complexity.

As pedestrian and bicyclist are more vulnerable road
users, it of utmost importance to detect them accurately and
precisely. Table 2 represents the average precision and recall
of pedestrian, bicyclist and cars for both ROADNET and
F-ROADNET. As could be observed in Table 2 that cars
are easier to detect in Radar data, however, pedestrian and
bicyclist are comparatively challenging to detect accurately.

ROADNET trained on RD has the lowest precision and
recall, while ROADNET trained on RA maps performs
considerably better. However due to the vulnerable nature
of the road users higher precision is needed. F-ROADNET
trained on RD and RAmaps shows themost promising results
with precision of 0.993, 0.951 and 0.99 for pedestrians,
bicyclist and cars respectively on the CARRADA dataset and
precision of 0.913 for pedestrians on the RADDet dataset.

Bicyclists prove to the most challenging class with the
least precision reported on ROADNET trained on RD maps.
On the other hand, F-ROADNET show promising results
with precision of 0.951 on CARRADA dataset and 0.846 on
RADDet dataset.
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TABLE 1. Validation accuracy, recall and precision of ROADNET and F-ROADNET.

TABLE 2. Class-wise recall and precision of ROADNET and F-ROADNET.

TABLE 3. Comparison with existing methods.

It can be seen in the results that the complex nature of
the RADDet dataset effects the performance of the developed
method, still the developed methods show promising results
in the presence of occulusions, as can be experienced in the
RADDet dataset.

Comparisons with already-developed techniques [44],
[45], [48], [49] were done to assess the developed method’s
potential. The developed method performs better than the
existing method as can be seen in table 3. Pedestrian are
detected with average precision of 0.993 by the devel-
oped F-ROADNET whereas RODNET [44], Ramp CNN
[45], Bivariant Cross attention model [48] and MLP-22
[49] achieved average precision of 0.88, 0.89, 0.91 and
0.90 respectively. Bicyclist have been the most challenging
to correctly classify, even so, F-ROADNET achieve average
precision of 0.951, exceeding the average precision accom-
plished by the other methods. Car have been the easiest to
detect (due to its unique signatures) with an average precision
of 0.999, almost perfect classification. It can be observed

in table 3 that RODNET [44], Ramp CNN [45], Bivariant
Cross attention model [48] and MLP-22 [49] also perform
considerably better on car classification. However, cars are
lower on the vulnerable road user scale and higher emphasis
has to be given to pedestrians and bicyclists. Even though
Bivariant Cross attentionmodel [48] show comparable results
on bicyclist detection with an average precision of 0.93, the
developed method outperforms it with an average precision
of 0.951. In the existing methods MLP-22 [49] shows
decent performance, with an average precision of 0.90, F-
ROADNET has an improvement of 9.3% overMLP-22. In the
context of average overall precision, the developed method
has an improvement of 18% over [44], 9.7% over [45], 5.7%
over [48] and 10.7% improvement over [49].
The developed novel method proposed here offers late

fusion based Radar object detection. RA and RD maps
are incorporated with computer vision based deep neural
networks to achieve remarkable results. Vulnerable road users
were detected with high precision.
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VI. CONCLUSION AND FUTURE WORK
Object detection is critical in many fields, including
autonomous driving. For decades, the computer vision
community has focused on this subject and has produced
several useful solutions. However, vision-based detection is
still plagued by a number of serious issues. This research
offered a brand-new and innovative object recognition system
based solely on Radar data that is more robust than vision.
The suggested ROADNet could recognize objects correctly
and robustly in a variety of autonomous driving scenarios,
including at night or in bad weather. Furthermore, this article
developed a unique fusion-based model that may advance the
function of Radar in autonomous driving applications.

Occlusion phenomena make tracking difficult as Doppler
representation may vanish. It might be better to find these
occlusions in the video frames and incorporate them into
the tracking procedure. It is also challenging to distinguish
when objects have similar radial velocities and are close
to one another. Investigation is in progress on optimization
of detection method. Computational load and complexity
analysis for real time application are a vital part of the future
work.
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