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ABSTRACT The distribution network line loss computation method needs to be enhanced in light of
the ongoing growth of the national power grid. The study classifies and segments the station data using
a decision tree model and a multi-feature volume weighted station clustering algorithm. It then uses a
back propagation neural network as a substrate, along with the Levenberg-Marquard algorithm and genetic
algorithm for optimization. Collect and organize relevant data on line loss rates in low-voltage substation
areas, including information on energy meters, meter boxes, and lines. Next, construct a genetic algorithm
neural networkmodel and use the backpropagation algorithm for training. Evaluate the accuracy and stability
of various models by comparing the error between predicted and actual line loss rates through experiments.
Finally, optimize the neural network parameters and network structure to improve the model’s prediction
accuracy and robustness. The experimental data showed that compared to the density-based spatial clustering
algorithm for noisy applications, the contour coefficient metrics of the proposed multi-feature volume
weighted station clustering algorithm improved by 0.05 and the average consumption time of the algorithm
was reduced by 75%. Compared to the back-propagation neural network model optimized by the Levenberg-
Marquard algorithm, the root-mean-square error of the neural network model optimized by the addition of
the genetic algorithm for the calculation of the line loss rate of the four station samples was reduced by 72%,
55%, 53% and 37%, and the values of R2were improved by 8.72%, 13.59%, 7.91% and 11.69%, respectively.
The testing results demonstrated that the neural network model has good generalization capabilities and a
high degree of curve fitting. Also, the relative errors of the calculation of the station area’s line loss rate are
mainly within the range of 0% and 10%. For the growth of energy conservation in the country, this innovative
technology offers a new way to determine and manage line loss of the station area.

INDEX TERMS GA, LMBP, low voltage station, station clustering, feature quantity, line loss calculation.

I. INTRODUCTION
The low-voltage distribution system, which may serve con-
sumers’ needs for direct power delivery, is the last link in
the distribution network’s chain for transmitting electrical
energy. Distribution lines’ stability and efficiency have an
impact on the quality of the power supply [1]. However,
the lengthy queue and electric equipment in the circuit from
the power supply station to the user’s home will inevitably
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result in the consumption of electricity, leading to the gen-
eration of transmission losses. Resistance in power lines,
equipment, and other components leads to higher power
losses and energy waste, ultimately harming power users’
experience, as well as the profitability of power providers,
and hindering societal productivity [2]. Statistical analyses
of the data show that China’s distribution network has a low
line loss ratio (LLR) in high-voltage power transmission of
35kV and above, which is equal to the international level [3].
Line loss in low voltage distribution of 10 kV and below,
however, is higher than the international standard of 6% due
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to the wide disparity between urban and rural areas, the
complicated structure of the power grid, the variety of loads,
and the relative concentration of time of energy consumption.
The low-voltage distribution network in China, according to
statistics, is responsible for close to 50% of the line loss in
the whole power system. Particularly at 10kV, line loss is
a serious problem that needs to be addressed [4], [5]. The
administration of China’s low-voltage distribution network
is currently plagued by a number of issues, such as the
variety of power supply characteristics in the station area,
which makes line loss computation (LLC) challenging and
results in manual labour taking longer to complete and line
loss data with lower accuracy. Big data technology provides
rich data for distribution network LLC analysis and provides
a new direction for distribution network LLC. The study
proposes the design of a low voltage station (LVS) LLR
calculation method based on the Levenberg-Marquard back-
propagation neural network (GA-LMBP)model optimized by
genetic algorithm (GA), and conducts research in two aspects,
namely, station clustering (SC) and machine learning-based
LLR computation, with the goal of enhancing the level of
station line lossmanagement. The study is broken up into four
sections: an overview of the clustering and neural network
research; the design of the Low-Voltage Station Area Line
Loss Rate (LVSA-LLR) calculationmethod based on the GA-
LMBP neural network model; the analysis of the application
of the LLR calculation method; and the study summary.

II. RELATED WORKS
Cluster analysis, commonly referred to as cluster analy-
sis, is a crucial algorithm for data mining and a statistical
analytic technique for classification issues. The K-means
technique uses distance as a gauge of similarity between
data objects. It is a division-based clustering algorithm.
For interpolated separable fractional density fitting, Qin’s
research team developed a machine-learning K-means clus-
tering algorithm, and the findings indicated that the approach
was 10 times faster than the Fock exchange calculation [6].
It was demonstrated experimentally that Chen et al.’s adap-
tive orthogonal decomposition agent model, built using the
K-means algorithm, classified blade shapes using a clustering
algorithm, and created experimental samples using perturba-
tions in blade control parameters in less time than 1/360th
of the computational hydrodynamic time [7]. Krleza’s team
proposed a statistical hierarchical clustering algorithm to
reduce the complexity of traditional clustering algorithms,
which accomplished data prediction by tracking population
evolution and data flow analysis [8].Yang’s research team
proposed a path-based node similarity measure that com-
bined a new initial clustering centre and an adaptive heuristic
clustering algorithm to find the most influential population.
Experiments on real datasets showed that the accuracy of the
method can reach 86% [9]. A zoning optimization design
method was put forth by Li’s team that combines K-means
and GA, clusters the multi-energy model of the building

zoning, and assesses resource availability by combining the
clustering of resource data. The experimental results showed
that the method was effective [10].

In station LLC, artificial neural network models (NNM)
can usually be used for calculation and prediction, mod-
elling neurons in the human brain in order to complete the
processing, learning and prediction of information. In order
to process line loss data, Hassanpour’s research team used
artificial NNM for predictive control, along with analysis
of principal components to ensure the model’s validity and
autoencoder-based strategies to calculate the setpoints. The
results showed that the artificial neural network increased
the model’s predictive control’s efficiency by 59% [11]. The
results showed that the model’s prediction accuracy could
reach 96% [12]. Hu’s scientific research team for the pre-
diction of electric power radiation proposed a ground-based
cloud motion prediction method, using GAs to optimize the
BP neural network’s parameters in conjunction with data
training to create a new ultra-short-term prediction model.
Lilienkamp et al. constructed a deep-learning based ground
surface motion model for energy parameter prediction using
U-Net neural network, and experimental data showed that the
data prediction time of this method was 1s [13]. Jeantet’s
research team utilized machine learning to obtain recognition
behaviors and presented a fully convolutional neural network
for image segmentation. Results from experiments conducted
on the labeled data set indicate that the model achieved an
88% score on the predicted AUC evaluation metric [14].
Kin’s team proposed four different types of integrated models
for the integrated prediction model of energy consumption,
based on the way of combining layers and classification
features [15].

In summary, many researchers have done different studies
and designs for clustering algorithms and neural network
prediction models, but the applicability of these methods still
needs to be improved. Therefore, the study uses multi-feature
volume weighted SC algorithm and decision tree model to
classify and segment the data, and proposes LVSA-LLR
based on GA-LMBP NNM, which is expected to improve the
efficiency of LLC.

III. DESIGN OF LVSA-LLR BASED ON GA-LMBP NNM
In this chapter, LVSA-LLR is constructed using clustering
algorithm and NNM, the first section of this chapter is the
design of station line loss feature identification method and
the second section of this chapter is the design of station LLC
method.

A. DESIGN OF LINE LOSS CHARACTERISTICS
RECOGNITION METHOD FOR TERRACE AREA
Different clustering algorithms are used in different sce-
narios, and the clustering model that integrates the actual
working requirements of power supply is the prerequisite
for the implementation of the LLC method in low-voltage
distribution networks [16]. For precise clustering analysis of
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FIGURE 1. A technical model for precise identification of line loss features in low-voltage substations.

samples from low-voltage (LV) stations, this study integrates
a standard clustering algorithm with a multi-feature weighted
SC improvement algorithm. This combination effectively
extracts information regarding line loss patterns, leading
to the development of a technical model for the precise
identification of line loss characteristics in LV stations,
as demonstrated in Figure 1.

The basic framework of multi-feature weighted SC
improvement algorithm is K-means algorithm, which inte-
grates the needs of power grid clustering application to design
a multi-feature quantity weighted clustering method suit-
able for station class division. The weights in the clustering
delineation process need to be decided by combining the
importance of each feature quantity to achieve the station
class level [17].The objective function of K-means optimiza-
tion is shown in Equation (1).

min
U ,Z

L(U ,Z ) =

k∑
p=1

n∑
i=1

m∑
j=1

uip(xij − zpj)2,

s.t. uip = {0, 1},
k∑

p=1

uip = 1 (1)

In Equation (1), the objective function to be optimized by
the algorithm is min

U ,Z
L(U ,Z ), the cluster assignment matrix

U and the cluster centre matrix Z are the independent vari-
ables, the number of clustering clusters in the dataset is k ,
the number of data points in the target dataset to be clus-
tered is n, and the eigenvector dimensions are m. the sample
clusters are classified as uip. The optimization problem is
shown in Equation (2) when the cluster assignment matrix is
fixed.

min
Z
L(U t ,Z ) =

k∑
p=1

n∑
i=1

m∑
j=1

utip(xij − zpj)2 (2)

In Equation (2), the optimization objective function after
fixing is min

Z
L(U t ,Z ) and the allocation matrix is fixed as

U t .The extreme value of the cluster centre matrix variable

is solved to obtain the cluster centre position as shown in
Equation (3).

zt+1
pj =

n∑
i=1

utipxij

n∑
i=1

utip

(3)

In Equation (3), the cluster centre zt+1
pj at moment t + 1 is

the position of the cluster centre of mass at moment t . When
the cluster centre matrix is fixed, the optimization problem
contains only variable U . The result of the optimization
problem for the sample data is shown in Equation (4).

ut+1
ip =


1,

m∑
j=1

(xij − zpj)2 ≤

m∑
j=1

(xij − zsj), 1 ≤ s ≤ k

0,
m∑
j=1

(xij − zpj)2 >

m∑
j=1

(xij − zsj), others

(4)

In Equation (4), when sample i is assigned to p clusters,
ut+1
ip takes the value of 1. The study suggests an improved
k-clustering algorithm (KCA) based on weighting of line loss
features in the station based on the K-means algorithm. This
algorithm introduces dynamic weight coefficients matrices
in the loss function as the independent variables, and its
importance reference weight matrix as input parameters. The
improved objective function is shown in Equation (5).

min
U ,W ,Z

L(U ,W ,Z ) =

k∑
p=1

n∑
i=1

uip
m∑
j=1

ω
β
j (xij − zpj)2

+ λ

m∑
j=1

∥∥∥ωj − ω0
j

∥∥∥2 (5)

In Equation (5), the improved objective function is
min
U ,W ,Z

L(U ,W ,Z ), the matrix of dynamic weight coefficients

is W = [ω1, ω2, · · · , ωm], the matrix of reference weights
for the importance of each dimension of the sample data is
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FIGURE 2. Improved K-clustering algorithm process based on weighted
line loss features in substation areas.

W 0
= [ω0

1, ω
0
2, · · · , ω0

m], and the penalty factor is B. The
constraints are shown in Equation (6).

k∑
p=1

uip = 1, 1 ≤ i ≤ n

uip ∈ {0, 1}, 1 ≤ i ≤ n, 1 ≤ p ≤ k
m∑
j=1

ωj = 1, 0 ≤ ωj ≤ 1

(6)

In Equation (6), the cluster division judgement of the sample
is affected by the value and range [18]. The independent
variables of the improved KCA based on the weighting of
station line loss characteristics are updated using alternating
direction multipliers. Additionally, as stated in Equation (7),
the iterative equation for the minimal value of the goal func-
tion is derived by iteration.

uip =


1,

m∑
j=1

ω
β
j (xij − zpj)2 ≤

m∑
j=1

ω
β
j (xij − zsj), 1 ≤ s ≤ k

0,
m∑
j=1

ω
β
j (xij − zpj)2 >

m∑
j=1

ω
β
j (xij − zsj), others

(7)

In Equation (7), the cluster class division iteration is uip. The
iterative values of the cluster centre matrix and weight matrix
are obtained in the same way, and the dynamic weight matrix
can be solved by the augmented Lagrangianmethod. The flow
of the improved KCA based on the weighting of station line
loss features is shown in Figure 2.

Firstly, the first sample cluster centre needs to be randomly
selected in the dataset, and then the remaining cluster cen-
ters are selected using the roulette wheel method to obtain
the cluster initial centre vectors. After the weight matrix is
randomly initialized, the reference weight matrix and penalty
factor are input into the model. The objective function is
iterated to get the minimum value, the matrix is judged to be
updated and the clustering results are obtained. The iteration
of the cluster centre matrix gets the new cluster centre matrix

and the same method gets the new weight matrix.Entropy
weight method and mutual information method are com-
monly used assignment methods, and the study combines the
advantages of both of them to determine the final weights
by combining the assignment. The reference weights of the
electrical feature quantities are shown in Equation (8).

ω0
j =

ξjγj
M∑
j

ξjγj

, j = 1, 2 · · ·M (8)

In Equation (8), the weight of each electrical feature quan-
tity obtained by the entropy weighting method is ξj, and
the weight of each electrical feature quantity obtained
by the mutual information method is γj. The work employs
the decision tree model to design the classifier in order to
more clearly explain the laws of the clustering structure and
to provide straightforward and understandable classification
rules to categorize incoming data [19]. The training set of
clustering results based on the improved KCA weighted by
station line loss features is carried out using a decision tree
model, where the Gini index is chosen for the model loss
function, and in order to avoid over-fitting, leaves with a sam-
ple size of less than 5 are pruned, and in this way, a method
for determining the data category is constructed. The Gini
impurity coefficient corresponding to the nodes is calculated
as shown in Equation (9).

gini =
k1∑
i=1

pi(1 − pi) = 1 −

k1∑
i=1

p2i = 1 −

k1∑
i=1

n2i

(
k1∑
i=1

ni)2
(9)

In Equation (9), the Gini impurity coefficient corresponding
to the node is gini to measure the purity of the node or
leaf, the number of sample types in the data set is k1, the
percentage of the number of samples of category i in the node
or leaf is pi, and the number of samples of category i in the
node or leaf is ni.The study concludes from the analyses that
the LLR data obeys the normal distribution, and unbiased
estimation of the overall variance is calculated as shown in
Equation (10).

σ 2
=

n∑
i=1

(xi − x̄)2

n− 1
(10)

In Equation (10), the sample variance is σ , the sample LLR
data is xi, the sample LLR mean is x̄, and the number of class
samples is n. The study makes a judgement on line loss data
outliers based on Lajda’s criterion, i.e., where the distance
from the overall mean is greater than three times the sample
variance, a kernel of data points is required and data culling
is considered.

B. DESIGN OF STATION LLC METHOD BASED ON GA
ALGORITHM OPTIMIZATION
Station theoretical LLC provides an effective basis for loss
reduction programme development, line loss assessment and
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FIGURE 3. Optimization of LMBP neural network process using GA.

distribution planning, which helps to improve the economy of
distribution network operation [20]. Traditional LLC meth-
ods have low accuracy, incomplete access to input data, and
high manual dependency, while deep NNM will be used
as a new generation of artificial intelligence technology to
calculate line losses [21].By analyzing the fundamental prin-
ciples and optimization algorithms of neural networks, this
study utilizes a backpropagation (BP) neural network as the
underlying model of LLC. The neural network iteration is
optimized through the Levenberg-Marquard (LM) algorithm,
and parameter optimization of the neural network is achieved
by GA in conjunction with the clustering model to construct
the complete LLC model. The core of the GA is to con-
sider the iterative optimization of candidate solutions as an
evolutionary process, combining natural selection and popu-
lation fitness, and finally obtaining the optimal solution for
a specific environment.GA has three main characteristics: it
is a general search algorithm because it is independent of
the problem’s specific domain and data gradient information.
It is not dependent on the display of the function form, which
increases its applicability and capacity for self-learning; and
it iterates with the population as a whole, which has a wider
search coverage and boosts search efficiency [22]. Figure 3
depicts the GA optimization procedure for the LMBP neural
network.

During population initialization, the LMBP neural net-
work structure is used to determine the number of model
parameters. Random generation generates the initial parame-
ters, while real number coding is used to perform individual
weights and bias coding, resulting in individual chromosomes
and the formation of the initial population. After the LMBP
NNM is established, the weights and bias are used as the
model parameters, and the output values of the line loss are
obtained from the inputs of the training samples and the
amount of features. The GA fitness function is the inverse
of the mean square error of the output of the NNM, as shown

in Equation (11).

fi =
1

l∑
k=1

(dk − ok )2 + ζ

(11)

In Equation (11), the adaptation value of the i th individual
in the GA is fi, the actual station line loss of the kth station
is dk , and the neural network calculates the result as ok , and
the smaller constant in the denominator, ζ , is to avoid the case
where the denominator is zero. The core of the selection oper-
ation is the roulette selection while method, combined with
the individual fitness to determine the probability of genetic
inheritance, the resulting offspring have excellent genes, the
genetic probability is calculated as shown in Equation (12).

Ci =
fi
S∑
i=1

fi

, i = 1, 2 . . . , S (12)

In Equation (12), the probability of the inheritance of the
ith individual is Ci, and the population size is S. two-by-two
crossover recombination of the genes of the parent generation
under a certain probability is the crossover operation, and the
study used the real crossover method to construct a new off-
spring individual. The crossover operation equation is shown
in Equation (13).{

χ ′
im = χim(1 − α) + χjm

χ ′
jm = χjm(1 − α) + χim

(13)

In Equation (13), the m th allele of the paternal chromo-
somes i and j are χim and χjm, respectively, and the genes
after crossover recombination are χ ′

im and χ ′
jm. The random

crossover probability is α, which takes the range [0, 1].
An important aspect of biological evolution is genetic varia-
tion, and population diversity and optimal search space can be
increased by the variation operator. The mutation operation
changes the genes in the chromosome of the new individual
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FIGURE 4. Improved K-clustering algorithm based on weighted characteristics of substation line loss and GA-LMBP neural network for
substation line loss calculation process.

by a small probability on the basis of the offspring. To prevent
the algorithm from falling into a local optimum and converg-
ing prematurely, the mutation probability is usually chosen
to be an appropriate value in the range of 0.0001 to 0.5. The
population undergoes mutation to complete one evolution,
then returns to fitness computation and continues to optimize
until the end conditions are met, and then the optimal weights
and biases are obtained by decoding the genetic informa-
tion. Deep learning provides a new direction for LV station
area LLC without the limitation of traditional mathematical
models. Figure 4 depicts the station LLC process based on
enhanced KCA and GA-LMBP neural networks weighted by
station line loss attributes.

The study proposes that the LLC method consists of
two steps, classification and calculation, and the data need
to be pre-processed before line loss analysis, cleaning and
standardization of the electrical index data, and screening
the system of line loss characteristic quantity of the station
combined with the correlation degree [23].After data pre-
processing, the sample type of station is classified by the
improved KCA based on the weighting of line loss features of
the station, followed by the training of the GA-LMBP NNM
as a way to get the calculated value of the LLR of the station,
and finally, the results of the LLC are subjected to an error
analysis. The nonlinear component of the neural nodes is
introduced through the activation function, which is the key to
approximate the nonlinear function of the BP neural network.
ReLU is a universal activation function, and Equation (14),
which depicts the activation function, shows that the network
is more sparse when there are neuron outputs of zero.

ReLU (x) = max(0, x) (14)

In Equation (14), the activation function is ReLU (x), which
indicates that the modified linear unit takes the maximum
value between 0 and x. However, the ReLU activation func-
tion also causes dead neurons, two variant forms PRelu and
Selu can solve such problems.The Sigmoida function is a bio-
logical S-curve that is commonly used as a threshold function
for neural nodes, and the Sigmoida function expression is

shown in Equation (15).

f (x) =
1

1 + ex
(15)

In Equation (15), the Sigmoida function is f (x). The interval
mapping of the input data can be done by Tanh activation
function which is shown in Equation (16).

tanh =
ex − e−x

ex + e−x
(16)

In Equation (16), the Tanh activation function is tanh.
The Sigmoid activation function and the Tanh activation
function lead to higher computational intensity during back-
propagation of errors, resulting in phenomena like gradient
vanishing. The Sigmoid function and its combined form,
however, produce better results for the classifier. Therefore,
the study uses the ReLU activation function and its variant
forms as the activation function for the input and hidden
layers.

IV. ANALYSIS OF LVSA-LLR APPLICATION BASED ON
GA-LMBP NNM
This chapter examines the use of the LVSA-LLR based on
the GA-LMBP NNM. It is divided into two sections, the first
of which examines the use of the station line loss feature
identification method and the second of which examines the
use of the station LLC method.

A. APPLICATION ANALYSIS OF LINE LOSS
CHARACTERISTICS IDENTIFICATION METHODS IN
TERRACE AREAS
For the line loss feature identification method proposed by
the study, the study uses the historical data of 710 stations
of a power supply company for analysis, and the traditional
clustering algorithm as a comparison, and the feature quantity
of station LLR is selected as the gray correlation analysis
results.SC before the need to determine the reference weight
penalty factor and k value of each feature quantity, and the
combination of weighting method to obtain the reference
weight of the feature quantity is demonstrated in Table 1.
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TABLE 1. Reference weight of feature quantity obtained by combination weighting method.

FIGURE 5. Change curve of model clustering indicators.

FIGURE 6. Bias weight test results.

In Table 1, the weights obtained by entropy weighting
method and mutual information method are given respec-
tively, and the final weights are obtained according to the
combined assignment method. To obtain the optimal clus-
tering model, the total profile coefficient and the model
convergence time are used to determine the setting of the
penalty factor and the number of clusters k value of the
data set clustering clusters. The change curve of the model
clustering index is given in Figure 5.
Figure 5(a) shows the change of contour coefficient with

the value of k. It can be seen that the model contour coef-
ficient shows a general trend of decreasing as the value of
k increases, and the model contour coefficient index is the
highest when the penalty factor λ is taken as 10. At the

same time, when k = 4, the maximum value of the model
contour coefficient index can reach 0.448, indicating that the
clustering effect at this time is the best. Figure 5(b) indicates
the change of model time complexity with the value of k.
As k-value increases, the model complexity rises gradually,
and at the same time, the larger the value of λ , the faster
the convergence of clustering, and the stronger the stability
of the algorithm. Under comprehensive analysis, the penalty
factor λ is taken as 10 and k value is taken as 4 as the optimal
parameters of the model. To better understand how the value
of k impacts the number of clusters in clustering, this study
employedbias-weight trade-off to show case model fitting.
The results of the bias weight test are presented in Figure 6.
Figure 6 shows that when k= 4, the deviation variance is at

its minimum, and the model fits best at this point. Tooptimize
the model parameters, this study utilized bias weight balanc-
ing and time complexity analysis methods. In summary, it is
essential to use appropriate methods to determine the optimal
parameters of the model. The results indicate that as k-values
increased, the model complexity also increased, resulting in
faster clustering convergence and stronger algorithm stability.
Therefore, when the value of k is high, the model’s fitting
leads to over-fitting, and it becomes necessary to decrease the
k value to avoid this issue.Conversely, when the value of k is
low, the model’s fitting is inadequate, and it becomes nec-
essary to increase the k value to enhance the model’s fitting
ability. In conclusion, it is found that the greatest model fitting
effect is achieved when the penalty factor is set to 10 and
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TABLE 2. District cluster center feature quantity.

FIGURE 7. Visualization relationship between various feature quantities and line loss rate.

the k-value is set to 4. When the value of k is sizable, the
model experiences over-fitting, while small values of k result
in insufficient fitting of the model.Compared to the density-
based spatial clustering of noisy applications (DBSCAN)
algorithm, the contour coefficient metrics of the multi-feature
volume weighted SC algorithm proposed in the study are
improved by 0.05, and the average consumption time of the
algorithm is reduced by 75%. The SC central feature quantity
is shown in Table 2 when the penalty factor λ is taken as
10 and k value is taken as 4.

In Table 2, it is seen that the SC central feature quantity
line length is in the range of 300-1700m, station capacity is
in the range of 200-400, total number of subscribers is in
the range of 80-200, load factor is in the range of 18-60%,
LLR is in the range of 1.9%-4.5%. The revised KCAmodel’s
visualization of the correlation between each feature quantity

and LLR based on the weighting of station line loss features
is depicted in Figure7.

Figure7 shows the visualization of the clustering results
for line length, station capacity, total number of users and
load factor, respectively, versus LLR. The length of the line,
its load factor, and the total number of users for category
1 stations are 375.9395 meters, 18.7409%, and 84.4151,
respectively. These are small characteristic values, and the
station has a capacity of 400 KVA. Additionally, it has a
simpler electricity consumption structure with the lowest
average LLR of 1.9680%. The same analysis shows that
category 2 has the highest average LLR of 4.3741% because
of the smaller capacity of the station and the larger line
length and total number of users.The average LLR of cate-
gory 3 and 4 stations is 2.9755% and 4.3252% respectively,
which is greater than the LLR of category 1 stations and less
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FIGURE 8. Normal distribution of sample data.

than the LLR of category 2 stations.Numerical descriptions
of the LLR data were examined for statistical conformity to
the normal distribution, with results indicating its adherence
to the distribution curve. Sample data was also found to be
normally distributed, as illustrated in Figure 8.

Figure 8 shows that the two distributions likely belong
to the same overall based on the results of the KS test
(P=0.2604) obtained through simulation analysis. Afterward,
the classification model trains the clustering results, and the
15 sub-classifications are obtained by subdividing the four
main station area sample categories. Some sample data are
not ideal for normal distribution fitting, so LLR is used to
reasonably estimate the interval. The results of the 15 sub-
classification intervals are presented in Figure 9.
In Figure9, each of the 15 subcategories is labeled with

A-O. The maximum and minimum values of the LLR data
within the sample categories provide reliable estimation inter-
vals, and the significant category it falls under typically
adheres to a normal distribution, with 95% of data symmet-
rically distributed around the mean. If the data falls outside
of the normal intervals, it is deemed anomalous, and the cor-
responding intervals are the anomalous intervals. Locations
exceeding the reasonable estimation interval but not reaching
the abnormal interval are regarded as hazardous intervals,
where outliersmay occur and further verification of the data is
required. In summary, the combination of improved KCA and
decision tree classification based on the weighting of line loss
characteristics of the station area, completes the classification
of low-voltage stations and the refinement of the judgement
of the line loss characteristics, which provides the basis for
the identification of line loss characteristics.

B. ANALYSIS OF THE APPLICATION OF LLC METHODS IN
TERRACE AREAS
To verify the application effect of the station LLC method,
the study still uses 710 low-voltage station data of a power
supply company to conduct experiments, and evaluates the
model’s calculation accuracy and algorithm operation speed

in two aspects, respectively.To confirm the effectiveness of
the LMBP algorithm proposed in the research, the experi-
ment conducted a comparison with three algorithms: standard
BP, adaptive BP, and elastic BP. Table 3 compares the time
requirements of various optimization strategies.

In Table 3, when the training error is 0.01, all four algo-
rithms can converge, and the average time consumed by the
LMBP algorithm is 3.242s, which is reduced by 17.494s
compared to the standard BP.When the training error is 0.001,
the standard BP algorithm is not convergent, and the average
time consumed by the LMBP algorithm is 6.326s, which is
reduced by 9.592s compared to the adaptive BP.When the
training error is 0.0001, the adaptive BP algorithm is not con-
vergent and the average time taken by the LMBP algorithm is
10.422s, which is reduced by 7.799s compared to the elastic
BP.The comprehensive analysis shows that the computational
accuracy and convergence time of the LMBP algorithm are
better than the heuristic algorithm. The reasonable selection
of training batch and neurons helps the model performance,
and the error comparison of GA-LMBPmodel under different
training batch and number of neurons is shown in Figure 10.

The average absolute percentage error Mape metric is
used in Figure 10 to evaluate the model effect. Figure 10(a)
illustrates a comparison of the error in the GA-LMBP model
across various training batches. It becomes apparent that the
error trend decreases with an increase in training batches.
Nevertheless, once the training batch exceeds 60, there is
no noticeable change in the Mape indicator, and increasing
the batch size results in prolonged convergence time. Conse-
quently, it is preferable to establish the training batch at 60.
Figure 10(b) displays the error comparison of the model with
different numbers of neurons and the number of training set
to 200; for example, N128-128 denotes that the number of
neurons is 128 and that the number of neurons in the hidden
layer is 128.In this figure, a single hidden layer’s sparse
structure limits its ability to fit data; therefore, the study
uses a two-layer N128-32 neuron model that trains under
various activation functions. There are two hidden layers,
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FIGURE 9. 15 sub classification interval results.

TABLE 3. Comparison of time consumption of different optimization algorithms.

FIGURE 10. Comparison of errors in the GA-LMBP model under different training batches and number of neurons.

128 input neurons, and 32 neurons in the hidden layer. The
Mape index for this configuration is 1.429%, and at this point,
the error is the smallest. Table 4 displays the time-consuming
comparison.

Table 4 shows that when ReLU is used as the activation
function for all layers, the Mape metric is reduced to 1.326%,
and when Sigmoid is used as the activation function for the

output layer, the gradient vanishes. The study uses ReLU as
the activation function for the entire NNM because the results
of ReLU activation function are superior to those of PRelu
and Selu activation functions. The standard BP, LMBP, and
GA-LMBP networks were trained and tested in the study,
and the computational errors of various network algorithms
are reported in Table 5. The study separated the data from
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TABLE 4. Comparison of training time for N128-32 neuron model under different activation functions.

TABLE 5. Calculation errors of different network algorithms.

FIGURE 11. Comparison of generalization ability and fitting degree of different models.

the 710 station regions into training and testing sets in a ratio
of 4:1.

In Table 5, the percentage of GA-LMBP neural network
LLC errors less than 5% in the test data of the four categories
of station samples are 68.75%, 63.64%, 68.42%, and 65.63%,
respectively, which are higher than the standard BP and
LMBP NNM. Compared to the standard BP neural network,
theGA-LMBPneural network combination optimization pro-
posed in this study decreases the average error of the LLR
calculation for the station samples of the four categories by
9.62%, 6.72%, 8.59%, and 10.01%, respectively. As a result,
the computational accuracy is higher and closer to the realistic
situation.Figure 11 compares the generalization capacity and
degree of fitting of several models.

Figure11(a) shows the comparison of the generalization
ability of different models, and the GA-LMBP NNM has

the smallest RMS error for the same number of iterations.
Compared to the LMBP NNM, the GA-LMBP NNM reduces
the root mean square error of the LLR computation for the
four station samples by 72%, 55%, 53%, and 37%, and
the model has a higher computational accuracy. Figure11(b)
shows the comparison of the fitting degree of different mod-
els, and a larger value of R2 indicates a better fitting effect.
Compared with the LMBP NNM, the GA-LMBP NNM
improves the value of R2 by 8.72%, 13.59%, 7.91% and
11.69% in the calculation results of the four station sam-
ples, respectively. The comprehensive analysis shows that
the GA-LMBP NNM has the best performance under the
generalization ability and degree of fit indicators. The rel-
ative error of LLR calculation for 4 types of station data
when the number of model iterations is 200 is shown in
Figure 12.

144404 VOLUME 11, 2023



Z. Jiang et al.: Design of Line Loss Rate Calculation Method for Low-Voltage Desk Area

FIGURE 12. The relative error of the model in calculating the line loss rate of data in four types of stations.

TABLE 6. Verification of abnormal sample data.

In Figure12, the GA-LMBP NNM is generally close to the
real value of the LLR calculation curve for the station area.
And most of the relative errors of the LLR calculation for
the four types of stations are in the range of 0%-10%, with
a good overall fitting effect. At the same time, there will be
a situation where the relative error of some sample data is

large. At this time, the anomalous data need to be verified.
The anomalous data contains data from a total of 8 station
areas, including data from 2 station areas in class 1 station
areas, 4 station areas in class 3 station areas, and 2 station
areas in class 4 station areas. The verification of the anomaly
sample data is demonstrated in Table 6.
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Based on the analysis of power theory, it is established that
the capacity of the station area has a negative correlation with
LLR. On the other hand, Table 6 shows that the line length,
total subscribers, and load factor have a positive correlation
with LLR. Using this as a basis for checking the data where
the GA-LMBP NNM calculates the outliers, the true LLR for
the eight stations is obtained as 0.97%, 1.23%, 1.87%, 2.51%,
1.26%, 1.43%, 1.88% and 2.73%, respectively.

V. CONCLUSION
Datamining in big data technology offers new technical assis-
tance for LLC and distribution network management. The
study develops the station feature clustering approach with
K-means clustering algorithm as the baseline, combines with
the decision tree classification method to subdivide the data
types, and presents LVSA-LLR based on GA-LMBPNNM to
increase LLC efficiency. The experiment exhibited that the
optimal parameter of the model was assumed to be with a
penalty factor λ of 10 and k value of 4.When compared to
the DBSCAN algorithm, the multi-feature quantity weighted
SC algorithm proposed in the study had a contour coefficient
index that was 0.05 better and an average algorithm consump-
tion time that was 75% shorter. The improved KCA, which
weighted line loss features of station areas, and the decision
tree classification method were combined to classify low-
voltage station areas and accurately assess line loss features.
This method served as the foundation for identifying line loss
features.The study’s GA-LMBP neural network combination
optimization reduced the mean error of LLR calculation for
the four categories of station samples by 9.62%, 6.72%,
8.59%, and 10.01% compared to the standard BP neural
network, which was much more accurate and closer to the
real situation. The GA-LMBP NNM demonstrated superior
generalization ability and fitting degree when compared to
the LMBP NNM. It reduced the root-mean-square errors
of LLR calculation for all four station samples by 72%,
55%, 53%, and 37% while also increasing the R2 values by
8.72%, 13.59%, 7.91%, and 11.69% respectively, in contrast
to the LMBP NNM. The LLR calculation curve for stations
in the GA-LMBP NNM was generally close to the real
value, and the relative LLR calculation errors for the four
types of stations were primarily in the 0%–10% range, with
a better overall fitting effect. This methodological support
provided for the lean management of stations. The study’s
findings demonstrated that the combined BP neural network
optimization model’s LLR calculation accuracy and efficacy
are high, which has both theoretical and practical implica-
tions.Although this study has achieved the ideal experimental
results, the model calculation effect can be further enhanced
through the mining of the depth of the influencing factors.
This study’s shortcoming is that the mining of the influencing
factors of line loss in the station area is not sufficiently deep.
The effectiveness of the model can be further enhanced by
future research that combines laboratory and field work to
expand the indications and data of line loss in the station area.
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