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ABSTRACT Intelligent reflecting surface (IRS), equipped with multiple reflective elements, is an important
technology for improving the achievable rate and energy efficiency of communications. Meanwhile, rate-
splitting (RS) is an approach that reduces the detrimental effect of multi-user interference in the system
by splitting users’ messages into private and common parts. In this work, we use the RS method in an
IRS-aided massive multiple-input multiple-output (mMIMO) system. We assume each user is equipped with
multiple antennas and then design the transceiver, which include the precoder and the combiner. We analyze
the performance of the achievable sum-rate when the base station (BS) and users know perfect channel
state information (CSI) or only statistical CSI. We use a projected gradient descent method (PGDM) to
optimize the IRS phase shifts by minimizing the mean-squared error (MSE) for data estimates when the
system has mixed CSI. The performance of combiner and precoder quantization, as well as the limited
feedback has also been investigated in simulations in terms of the achievable sum-rate by using the iterative
chordal distance (ICD) method.

INDEX TERMS Rate-splitting, IRS, massive MIMO, 6G communications.

I. INTRODUCTION
Intelligent reflecting surface (IRS) is a novel technology
in beyond fifth generation (5G) wireless communications,
which is deployed with multiple passive elements. The phase
shifts of incoming signals can be adjusted by a controller
at each IRS element. In [1], [2], [3], and [4], authors have
confirmed that equipping an IRS in massive multiple-input
multiple-output (mMIMO) systems can improve transmis-
sion throughput and reduce pilot contamination by reflecting
beams in a suitable direction. Given the evident advantages
of IRS in mMIMO systems, it becomes crucial to accurately
model and analyze the performance under different channel
conditions. While authors in [5] and [6] took the approach
of assuming Rayleigh fading channels for their performance
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analysis, it is essential to note that a Rician fading channel
offers a more comprehensive model, especially when con-
sidering the line-of-sight (LoS) component as highlighted
in [7] and [8]. Moreover, in works [9], [10], [11], [12],
authors considered IRS-aided systems when the users and
the base station (BS) have full knowledge of channel state
information (CSI), a scenario that may not always be realistic
in practical deployments. In fact, users may not be able to
obtain the exact CSI because of various reasons, such as
hardware impairments and pilot contamination. Given these
challenges, authors in [13], [14], and [15] have shown their
attention to the application of statistical CSI in IRS-assisted
systems. Based on these insights, our study engages in a
comprehensive analysis of both perfect and statistical CSI.
An integral part of this analysis lies in understanding how
various CSI knowledge levels influence system performance.
Consequently, to maximize performance and show the full
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potential of IRS systems under different CSI conditions,
designing precoders and combiners becomes important [16],
[17]. In this work, we offer innovative methodologies with
the iterative process for such designs, ensuring that system
performance is optimized regardless of the specific channel
knowledge scenario.

In IRS-aided systems, effectively allocating the same
frequency band to multiple users to minimize interference
remains a complex challenge [18]. While non-orthogonal
multiple access (NOMA) serves multiple users within one
resource block via superposition coding, its dependency
on successive interference cancellation can guide in error
propagation with imperfect CSI [19]. Space division multiple
access (SDMA) provides a spatial approach to this issue [20].
While traditional broadcasting (BC) excels at transmitting to
multiple users simultaneously, it falls short when catering to
personalized data delivery. In parallel, rate-splitting (RS) has
emerged as a workable strategy in mMIMO systems, aiming
to mitigate the adverse effects of multi-user interference by
splitting users’ messages into distinct private and common
segments. It has confirmed that a system with the RS strategy
can improve the achievable sum-rate compared with the
conventional BC [21], [22], [23], [24], [25], [26] and other
multiple access methods as NOMA, SDMA [20], [27], [28],
[29]. The RS approach has been used in IRS-aided systems
such as [25], [30], and [31]. Besides, authors in [19] discussed
the weighted sum-rate performance of RS in MIMO BC
followed by the sum-degree of freedom (DoF) performance.
The work [32] concluded that the sum-rate of an RS
system with adaptive power allocation outperforms RS and
conventional multi-userMIMO systems under imperfect CSI.
However, authors inmost works only employ a single antenna
on each user to reduce complexity and cost. In fact, equipping
multiple antennas on users can improve the spectral efficiency
(SE) because spatial multiplexing can be exploited, which
allows for the transmission of multiple data streams through
the same frequency band simultaneously [33]. Unlike the
minimum mean-squared error (MMSE) based transceiver
designs in [33], [34], and [35], our work integrates multiple
receiver antennas with matrix-formulated precoders and
combiners, enhancing signal diversity and reception quality.
We innovate further by combining MMSE with the Lagrange
multiplier method, as per [36] and [37], optimizing for
the lowest total mean-squared error (MSE). This hybrid
strategy shows measurable improvements in achievable sum-
rate, positioning our design as a more effective solution in
high-demand communication environments.

Building on the foundation and recognizing the potential
for further optimization, we propose a projected gradient
descent method (PGDM) algorithm to minimize the data
estimation MSE. A similar method as a projected gradient
ascent method (PGAM) algorithm has been used in IRS-aided
systems to maximum the achievable sum-rate such as [38],
[39], and [40], but authors optimized the phase in the
form of elements, which leads to low efficiency in the
optimization. In [41], authors expressed the phase in a

vector-wise expression to improve the efficiency and derived
different analytical expressions regarding the achievable rate.
However, the PGDM algorithm has not been used in the
system with the RS strategy to minimize the MSE for data
estimates, especially when users are equipped with multiple
antennas. This focus on precise feedback and algorithmic
design naturally leads us to consider the broader parameters
of system feedback.

In general, the design of the precoder and the combiner
is based on unquantized feedback. Although the unquantized
system can improve the system performance, this method
requires very high bandwidth and has low latency. Also,
the CSI feedback from the receiver to the transmitter
becomes complex. Hence, authors in [42], [43], and [44]
used quantized feedback to improve this issue. Although
the process concerns only the limited feedback and reduces
the achievable rate, the complexity can be reduced. In order
to improve the transmission throughput, the appropriate
quantization object needs to be selected. In [42] and [45],
authors used channel feedback, and the code vectors were
chosen from a given codebook. However, the authors in [33],
[34], [46], [47], and [48] confirmed that the channel feedback
needs larger codebook for the quantization compared to
the precoder feedback and leads to lower transmission
throughput. The selection of the codebook is based on
comparing the chordal distance (CD) between the direction
of the unquantized precoder and the code vectors from the
codebook. In the work [33], [48], authors used an iterative
chordal distance (ICD) method to select the code vector in the
precoder feedback and improved the throughput. In our work,
we investigate the performance of the combiner feedback
because it needs smaller codebook size for quantized
feedback than the precoder and channel feedback and can
improve the SE.

A. CONTRIBUTIONS
Our system introduces a downlink IRS-aided mMIMO
system in Rician fading conditions with featuring multiple
antennas on all users. We have undertaken a comprehensive
analysis of the BS and users under both perfect and
statistical CSI assumptions. By using the RS approach, our
system effectively mitigates the adverse effects of multi-
user interference. For both CSI scenarios, we have designed
the precoder and combiner using the MMSE method. Our
system also apply a PGDM algorithm for optimizing the IRS
effectively, when the BS and users have knowledge of perfect
and statistical CSI respectively. Moreover, the impact of
quantized feedback is thoroughly explored and demonstrated
through our simulation results by using the ICD method. The
main contributions are:
• We apply the RS method to split user messages
into common and private parts, significantly reducing
multi-user interference in our system. This method,
when compared with the conventional broadcasting
and NOMA/SDMA approaches in our simulations,
demonstrates a notable improvement in the achievable

VOLUME 11, 2023 142163



H. Ge et al.: Transceiver Design for IRS-Aided Massive MIMO Networks With Rate-Splitting

sum-rate. Notably, the ability of the RS method to
mitigate multi-user interference highlights its potential
as a large improvement in complex communication
systems.

• In our proposed system, all users are equipped with
multiple antennas, and we show the impact of different
number of user antennas in our simulations. Our results
show that multiple antennas on users can improve
the transmission throughput within a certain range
because spatial multiplexing is exploited to transmit
multiple data streams through the same frequency band
simultaneously. However, when more user antennas are
equipped, the sum-rate may decrease because of the
interference among antennas and the complexity in
signal management.

• We analyze the performance of perfect and statistical
CSI, and design the precoder and the combiner in
both cases by using the MMSE method. The choice of
MMSE is justified by its ability to mitigate interference
and optimize signal quality. Our results show that
statistical CSI leads to a lower achievable sum-rate
than perfect CSI, because in the case of statistical
CSI, the channel information is less accurate and
more uncertain. For our designed algorithm, when the
number of iterations increases, the achievable sum-rate
increases. This happens because we keep improving the
precoder and combiner through iterations, making the
signals align better and leading to higher sum-rates.
However, for both CSI cases, we eventually reach a point
where the sum-rate converges, indicating that the system
has achieved its maximum efficiency under the given
conditions.

• We propose a PGDM algorithm to optimize the IRS
phase shifts. We write the phase in a vector-wise
expression rather than in an element-wise expression.
This vector-wise approach offers a more efficient opti-
mization compared to traditional element-wise methods.
We design the IRS by minimizing the MSE for data
estimates when the BS is aware of perfect CSI but
users only know statistical CSI, where we call this
mixed CSI [49], because this mixed CSI model meets
real conditions, where perfect CSI at users is often
impractical. Our simulation results have confirmed that
our PGDM algorithm can improve the SE compared to
the case that all IRS elements have the same phases.
This result effectively confirms the reliability of using
gradient descent to find the minimum MSE in such
scenarios.

• We analyze the performance of the quantized feedback.
We choose the code vector from the codebook using the
ICD algorithm. We compare the combiner feedback and
precoder feedback (for only the common part or both
RS parts). The results show that combiner quantization
and feedback significantly improve achievable sum-rate
due to lower feedback bits. This improvement happens
because lower feedback bits reduce the overhead in

the system, with increasing the efficiency of data
transmission. Additionally, our simulations compare
unquantized and quantized scenarios, offering a under-
standing of feedback impacts in reducing the system
performance.

The rest of the paper is organized as follows. Section II
introduces the system model of the downlink IRS-aided
mMIMO system. We also introduce the RS strategy and
the conventional BC method. In Section III, we design the
precoder and the combiner using the MMSE for perfect CSI.
Section IV presents the precoder and combiner designs for
statistical CSI. In Section V, the PGDM has been applied
to optimize the phase shifts and minimize the MSE for data
estimates when users only know statistical CSI. The analysis
of the combiner quantization and feedback has been shown in
Section VI. Our simulation results are given in Section VII.
In Section VIII, the conclusion and our future work are
presented.

B. NOTATIONS
Lowercase, lowercase boldface, and uppercase boldface
letters represent scalars, vectors, and matrices, respectively.
The Hermitian, transpose, and trace operators are denoted by
(.)H , (.)T , and tr(.), respectively. The conjugate of a complex
number is given as (.)∗. The l2 norm is denoted by ∥.∥. Also,
the frobenius norm is denoted by ∥.∥F . The notation diag(a)
denotes a matrix whose elements are equal to the diagonal
elements of a. The expectation operator is represented by
E{.}. The notation ⊙ is the element-wise Hadamard product,
while cov(A) means calculating the covariance of matrix A.

II. SYSTEM MODEL
We consider a downlink IRS-aided mMIMO systems with
one BS with M antennas. There are K users in the system
and each user is equipped with N receiver antennas. The
IRS panel comprises Q = QH × QV passive elements,
with QH and QV denoting the number of elements in the
horizontal and vertical directions, respectively. dH and dV
denote the horizontal and vertical dimensions of each IRS
element, respectively. In this system, the kth user is connected
to the BS via a direct link, while an indirect link is established
between the BS and the kth user through the IRS. Fig. 1
illustrates the structure of the downlink IRS-aided mMIMO
system.

A. CHANNEL MODEL
We assume that the aggregated channel is Hk ∈ CM×N ,
which consists of the direct channel from the BS to the users
Hd,k ∈ CM×N , as well as the indirect channels from the BS to
the IRSE ∈ CM×Q, and from the IRS to the usersTk ∈ CQ×N

[1], [39]. The channel Hk can be given as

Hk = Hd,k + E8Tk , (1)

where 8 = diag(φ1, . . . , φQ) ∈ CQ×Q is the phase shift
matrix of the IRS and φq is the phase shift coefficent of qth
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FIGURE 1. Structure of downlink IRS-aided mMIMO systems.

IRS element with |φq| = 1,∀q. We assume that Hd,k and Tk
are based on Rician fading, which can be expressed as

Hd,k =
√

βd,k (Hd,k +Wk ⊙ H̃d,k ), (2)

Tk =
√

βT ,k (Tk + Ak ⊙ T̃k ), (3)

where the means ofHd,k (m, n) and Tk (m, n) are non-zero and
denoted by Hd,k (m, n) and T k (m, n), respectively. βd,k and
βT ,k are the path-losses ofHd,k andTk . Matrices H̃d,k and T̃k
are constructed with independent and identically distributed
(i.i.d.) elements that have a zero mean and unit variance.
Wk and Ak represent collections of non-negative variances
associated with Hd,k and Tk , respectively. The specific
variances within these matrices are denoted by Wk (m, n)
and Ak (m, n). Additionally, we make the assumption that the
elements of the aggregated channel can be represented as
Hk (m, n) ∼ CN (H k (m, n),Bk (m, n)), where Hk = Hd,k +

E8Tk and Bk (m, n) denotes the non-negative variance ofHk .
Also, the channel E is a deterministic matrix, which can be
given as

[E]m,q =
√

βEexp
(
j
2π
λ0

(m− 1)dBS sinθ1,q sinφ1,q

+ (q− 1)dIRS sinθ2,m sinφ2,m

)
, (4)

where λ0 represents the carrier wavelength. βE is the
path-loss of the channel E. Also, dBS and dIRS refer to
the inter-antenna separation at the BS and the inter-element
separation at the IRS, respectively. The parameters θ1,q and
φ1,q denote the elevation and azimuth angles of departure
(AoD) at the BS with respect to the IRS element q, while θ2,m
and φ2,m represent the elevation and azimuth angles of arrival
(AoA) at the IRS panel [38].

B. RS SYMBOL
We split the users’ symbol to reduce the negative effect of
the multi-user interference. The transmitted RS symbol can
be written as [22], [23]

x = Vcsc +
∑
k

Vksk , (5)

where the precoder matrices for the common and private parts
are denoted as Vc and Vk , respectively. The messages for the
common and private portions are represented by sc and sk ,
respectively.We create thematricesVk = [Vc,Vk ] ∈ CM×2d

and sTk = [sTc , sTk ] ∈ C1×2d , where d represents the number
of data streams with the properties E{sj} = 0, E{sjsHj } =
Id , and E{sjsHi } = 0 for j ̸= i. We assume that the power
constraint is tr(J) ≤ P0, where J = E{xxH } = VcVH

c +∑K
j=1VjVH

j . For the traditional BC method, the transmitted
symbol can be written as xbc =

∑
k Vksk . Similarly, we have

Jbc = E{xbcxHbc} =
∑K

j=1VjVH
j .

III. TRANSCEIVER DESIGN WITH PERFECT CSI
In this section, we derive the signal and interference power
and the sum-rate equations. Also, we use the MMSE method
to design the combiner and the precoder when the BS and
users are aware of full knowledge of CSI, or perfect CSI.

A. RECEIVED SIGNAL AT USERS
Our system includes a downlink IRS-aided mMIMO archi-
tecture, where the received signal at the kth user yk can be
expressed as

UH
k yk = UH

k H
H
k x+ UH

k nk

= UH
k H

H
k Vksk + UH

k H
H
k

∑
j̸=k

Vjsj + UH
k nk ,

= UH
k H

H
k Vcsc + UH

k H
H
k Vksk︸ ︷︷ ︸

desired signal

+UH
k H

H
k

∑
j̸=k

Vjsj︸ ︷︷ ︸
interference

+ UH
k nk︸ ︷︷ ︸
noise

(6)

where the receiver combiner can be given as Uk ∈ CN×2d .
Also, nk ∼ CN (0, σ 2IN ) ∈ CN×1 represents the Gaussian
noise vector with variance σ 2.

B. ACHIEVABLE SUM-RATE FOR PERFECT CSI
The total achievable rate of a wireless communication system
is partitioned into two parts: the common rate and the private
rate. For the common rate, we can write as

Rc,k = log

∣∣∣∣I2d + UH
k H

H
k VcVH

c HkUk

[
UH
k

(
HH
k

K∑
j=1

VjVH
j Hk

+ σ 2IN

)
Uk

]−1∣∣∣∣. (7)

If we assume that common part is perfectly decoded and
canceled, then the rate for private part can be written as

Rk = log

∣∣∣∣I2d + UH
k H

H
k VkVH

k HkUk

[
UH
k

(
HH
k

∑
j̸=k

VjVH
j Hk

+ σ 2IN

)
Uk

]−1∣∣∣∣. (8)
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Hence, to make sure that sc is successfully decoded by all
users, the achievable sum-rate for all users can be written as
R = min

k
{Rc,k} +

∑
k Rk [21].1

C. OPTIMIZATION PROBLEM
In this work, we aim to minimize the total MSE for data
estimates by jointly optimizing the transceiver and the IRS
phase shifts. Accordingly, the problem is formulated as

P1 : min
Vk ,Uk ,8

∑
k

ϵk ,

subject to |φq| = 1, q = 1, . . . ,Q

∥Vc∥
2
F +

∑
k

∥Vk∥
2
F ≤ P0. (9)

Then, P1 can be divided into two sub-problems to design
transceivers and the phase matrix. However, it is important
to note that this optimization involves a joint optimiza-
tion problem, including both transceiver design and IRS
phase optimization using the PGDM. Given the inherent
non-convex nature of problem P1, achieving a global
optimum is often impractical. Our approach, therefore,
represents one of the most effective solutions within the area
of feasible options, striking a balance between computational
practicality and optimization efficiency.

D. MMSE COMBINER
When designing the receiver combiner based on P1, our
objective is to minimize the MSE of the kth user. This
is important because the MSE significantly influences the
quality of data estimation for each user. Specifically, theMSE
for the kth user ϵk can be expressed as

ϵk = E{∥UH
k yk − sk∥22}

= E{∥(UH
k H

H
k Vk − I2d )sk∥22} + E{∥UH

k H
H
k

∑
j̸=k

Vjsj∥22}

+ E{∥UH
k nk∥

2
2}

= ∥UH
k H

H
k Vk − I2d∥22 +

∑
j̸=k

∥UH
k H

H
k Vj∥

2
2 + σ 2

∥Uk∥
2
2,

(10)

where we have used E{sjsHj } = Id in the above equation.
Then, to design the combiner, we minimize the MSE,
by calculating the derivative for Uk as

∂ϵk

∂Uk
= −2HH

k Zk + 2HH
k JHkUk + 2σ 2Uk . (11)

If we make (11) equal to zero, the designed combiner can
be written as

Uk = (HH
k JHk + σ 2IN )−1HH

k Vk . (12)

1Other methods, such as distributing the common rate among users
for efficient resource allocation [50], [51], could be considered for future
enhancements and comparative studies.

E. MMSE PRECODER
In the context of precoder design within problem P1,
a critical objective is to minimize the aggregate MSE across
all users. In the precoder design, summing the MSE of all
users is a strategic decision. This method reflects the overall
reception quality for the entire network. Also, the designmust
comply with a power constraint to maintain efficiency and
system feasibility. This constraint is formally represented as
∥Vc∥

2
F +

∑
k ∥Vk∥

2
F ≤ P0. Hence, the design problem can

be written as

P2 :min
Vk

∑
k

ϵk ,

subject to ∥Vc∥
2
F +

∑
k

∥Vk∥
2
F ≤ P0. (13)

The total MSE for all users can be written as∑
k

ϵk =
∑
k

∥UH
k H

H
k Vk − I2d∥22 +

∑
k

∑
j̸=k

∥UH
k H

H
k Vj∥

2
2

+ σ 2
∑
k

∥Uk∥
2
2 =

∑
k

∥UH
k H

H
k Vc∥

2
2

− 2
∑
k

trR(VH
c HkUk1 + VH

k HkUk2)

+

∑
k,j

tr(VH
j HkUkUH

k H
H
k Vj)

+ σ 2
∑
k

∥Uk∥
2
2 + 2Kd . (14)

In (14), we have that Uk1,Uk2 ∈ CN×d are the combiner
for the common and the private part, respectively. Also,
they are components of Uk , with Uk = [Uk1,Uk2]. The
summation of j in equation (14) can be disregarded because
only Vj has the specific value and different users are
uncorrelated. The Lagrangian equation can be used to solve
the problem P1 as

L = (
∑
k

ϵk − σ 2
∑
k

∥Uk∥
2
2 − 2Kd)+ λ(∥Zc∥2F

+

∑
k

∥Zk∥2F − P0), (15)

where λ is a Lagrange multiplier, which is a scalar quantity
that is introduced into the Lagrangian to enforce constraints
on the system. The Karush-Kuhn-Tucker (KKT) conditions
can be written by calculating the derivative of (15) forVc and
Vj as

L′Vc =
∑
k

HkUkUH
k H

H
k Vc −

∑
k

HkUk1 + λVc = 0,

(16a)

L′Vj =
∑
k

HkUkUH
k H

H
k Vj −HjUj1 + λVj = 0, (16b)

λ ≥ 0, ∥Vc∥
2
F +

∑
k

∥Vk∥
2
F ≤ P0. (16c)
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Then, we can derive the precoder matrices as

Vc = Q−1λ

∑
k

HkUk1, (17)

Vj = Q−1λ HjUj2. (18)

IV. TRANSCEIVER DESIGN WITH STATISTICAL CSI
In this section, we design the precoder and the combiner when
users and BS are only aware of statistical CSI. The channel
can be written with only the LoS part as E{Hk} = Hk . The
MMSE method is also used to design the transceivers in this
section.

A. RECEIVED SIGNAL
In the case of statistical CSI, our analysis often encompasses
terms that capture the average behavior of the chan-
nel. Specifically, we introduce the term UH

s,kE{H
H
k }Vs,ksk .

By taking the expectation over Hk as E{Hk}, we aim to
elucidate the mean or statistical impact of the channel across
prolonged durations or multiple instances. However, the
combiner Us,k and the precoder Vs,k often represent fixed or
semi-fixed strategies. These strategies are typically tailored
based on the statistical properties of the channel or other
specific criteria [16], [17]. Hence, the received signal can be
written as

UH
s,kyk = UH

s,kH
H
k x+ UH

s,knk
= UH

s,kE{H
H
k }Vs,ksk + UH

s,kH
H
k x− UH

s,kE{H
H
k }Vs,ksk

+ UH
s,knk

= UH
s,kE{H

H
k }Vs,ksk︸ ︷︷ ︸

desired signal

+UH
s,k [H

H
k Vs,k − E{HH

k }Vs,k ]sk︸ ︷︷ ︸
self-interference

+ UH
s,kE{H

H
k }

∑
j̸=k

Vs,jsj︸ ︷︷ ︸
cross-interference

+UH
s,knk︸ ︷︷ ︸
noise

, (19)

where Us,k ∈ CN×2d and Vs,k = [Vs,c,Vs,k ] ∈
CM×2d are the combiner and the precoder for statistical
CSI.

B. ACHIEVABLE SUM-RATE FOR STATISTICAL CSI
From (19), the achievable rate for statistical CSI can also
be written separately as the common and the private parts.
The rate equation of the common part can be expressed
as

Rc,k,s

= log

∣∣∣∣I2d + UH
s,kE{H

H
k }Vs,cVH

s,cE{Hk}Us,k

[
UH
s,k

×

(
1H
k Vs,kV

H
s,k1k +HH

k

K∑
j=1

Vs,jVH
s,jHk+σ 2IN

)
Us,k

]−1∣∣∣∣.
(20)

Similarly, we assume that the common part is perfectly
decoded and canceled when we analyze statistical CSI. Then,

the private rate can be written as

Rk,s

= log

∣∣∣∣I2d + UH
s,kE{H

H
k }Vs,kVH

s,kE{Hk}Us,k

[
UH
s,k

×

(
1H
k Vs,kVH

s,k1k+HH
k

∑
j̸=k

Vs,jVH
s,jHk+σ 2IN

)
Us,k

]−1∣∣∣∣,
(21)

where 1k = Hk − E{Hk}. Similarly, to ensure that sc can be
decoded by all users. The achievable sum-rate for statistical
CSI isRs = min

k
{Rc,k,s} +

∑
k Rs,k .

C. MMSE COMBINER
To design the combiner for statistical CSI, we can still use the
same method to minimize the MSE and improve the quality
of the received signal. The MSE for data estimates at the kth
user as

ϵs,k = E{∥UH
s,kyk − sk∥22}

= E{∥(UH
s,kH

H
k Vs,k − I2d )sk∥22} + E{∥UH

s,knk∥
2
2}

+ E{∥UH
s,kH

H
k

∑
j̸=k

Vs,jsj∥22}

= tr(I2d )− 2trRUH
s,kE{H

H
k }Vs,k + σ 2

∥Us,k∥
2
2

+ trUH
s,kE{H

H
k JsHk}Us,k , (22)

where Js = Vs,cVH
s,c +

∑K
j=1Vs,jVH

s,j with tr(Js) ≤ Ps,0, and
Ps,0 is the total transmission power for statistical CSI. If we
make (22) equal to zero, the combiner for statistical CSI can
be designed as

Us,k = (E{HH
k JsHk} + σ 2IN )−1E{HH

k }Vs,k . (23)

For the calculation of the first term of (23), we denote
a(n, p) = [E{HH

k JsHk}]n,p, which can be written in the form
of elements as

a(n, p) =
∑
m,l

{
Bk (m, n)Js(m, l), (m, n) = (l, p)
H
∗

k (m, n)Js(m, l)H k (l, p), (m, n) ̸= (l, p).

(24)

D. MMSE PRECODER DESIGN
In scenarios with statistical CSI, the optimization problem
for precoder design, noted as P3, focuses on minimizing the
aggregate MSE

∑
k ϵs,k across all users. This approach is

balanced with a power constraint to ensure efficiency. The
power constraint limits the total power of both the common
and individual signal componentsVs,c andVs,k , respectively)
to a threshold Ps,0. The formal optimization problem under
statistical CSI can be represented as

P3 :min
Vs,k

∑
k

ϵs,k ,

subject to ∥Vs,c∥
2
F +

∑
k

∥Vs,k∥
2
F ≤ Ps,0 (25)
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where the total MSE for all users can be expressed as∑
k

ϵs,k = −2
∑
k

trRUH
s,kE{H

H
k }Vs,k

+

∑
k

∥UH
s,kE{H

H
k JsHk}

1
2 ∥

2
2

+

∑
k

σ 2
∥Us,k∥

2
2 + 2Kd . (26)

The Lagrangian equation can be used as

Ls = −2
∑
k

trRUH
s,kE{H

H
k }Vs,k + λ(∥Vs,c∥

2
F

+

∑
k

∥Vs,k∥
2
F − Ps,0)+

∑
k

∥UH
s,kE{H

H
k JHk}

1
2 ∥

2
F

=

∑
k

EH{tr(VH
s,cHkUs,kUH

s,kH
H
k Vs,c

+

∑
j

VH
s,jHkUs,kUH

s,kH
H
k Vs,j)}

− 2
∑
k

trRUH
s,kE{H

H
k }Vs,k

+ λ(∥Vs,c∥
2
F +

∑
k

∥Vs,k∥
2
F − Ps,0), (27)

where EH is the expectation for Hk . We calculate the
derivative of the precoder for the common part as

L′Vs,c =
∑
k

EH{HkUs,kUH
s,kH

H
k }Vc −

∑
k

E{Hk}Us,k1

+ λVs,c = 0. (28)

The derivative for the private part can be calculated as

L′Vs,j =
∑
k

EH{HkUs,kUH
s,kH

H
k }Zs,j − E{Hj}Us,j2

+ λZs,j = 0. (29)

We set the values of (28) and (29) to zero. Then, we can get
the minimum MSE. Also, we get the precoder matrices as

Vs,c = Q−1λ,2

∑
k

E{Hk}Us,k1, (30)

Vs,j = Q−1λ,2E{Hj}Us,j2, (31)

where we have Q−1λ,2 =
∑

k EH{HkUkUH
k H

H
k } + λIM , and

a2(n, p) = [EH{HkUkUH
k H

H
k }]n,p, which can also be given

in the form of elements as

a2(n, p) =
∑
m,l

{
B∗k (n,m)F(m, l), (m, n) = (l, p)
H k (n,m)F(m, l)H

∗

k (p, l), (m, n) ̸= (l, p),

(32)

where F(m, l) =
∑

jU (m, j)U∗(l, j).

E. ITERATIVE ALGORITHM WITH COMPLEXITY ANALYSIS
From our analysis of perfect and statistical CSI, we can find
that the precoders and combiners interact with each other to
influence the overall system performance. To get a converged
sum-rate, we can design the transceivers using an iterative
algorithm like Algorithm 1, where max_iter is the largest
number of iterations. By the iterative process, the achievable
sum-rate will converge at the end. Also, for perfect CSI,
we can still use the same method as Algorithm 1 with the
use of perfect combiners and precoders.

In terms of the complexity of Algorithm 1, we need
to consider the precoder and the combiner computations
from steps 5 − 7. In the first stage, each computation
of the combiner necessitates a computational complexity
of O(N 3), because matrix inversion in (12) requires the
largest complexity whose value is O(N 3). Similarly, the
second stage, which focuses on precoder design, demands a
complexity ofO(M3) flops. If we assume that the two stages
are iterated for NI iterations with K users, the total cost of
Algorithm 1 should be KNIO(M3

+ N 3).

Algorithm 1 Iterative Algorithm for the Combiner and
Precoder Design (Statistical CSI)
1: Initialisation: Make matrices Us,k = [Us,k1,Us,k2] and

Vs,k = [Vs,c,Vs,k ] as random matrices
2: Make matrices as Js = Vs,cVH

s,c +
∑K

j=1Vs,jVH
s,j, and

Q−1λ,2 =
∑

k EH{HkUkUH
k H

H
k } + λIM

3: for i = 1, . . . ,max_iter do
4: for k = 1, . . . ,K do
5: Us,k ← (E{HH

k JsHk} + σ 2IN )−1E{HH
k }Vs,k ,

6: Vs,c← Q−1λ,2

∑
k E{Hk}Us,k1,

7: Vs,j← Q−1λ,2E{Hj}Us,j2,
8: update Vs,k = [Vs,c,Vs,k ]
9: end for

10: end for

V. IRS OPTIMIZATION WITH MIXED CSI
In this section, we describe the process of the IRS phase
shifts optimization by minimizing the MSE for data esti-
mates using the PGDM method. In III and IV, we have
designed transceivers under both perfect and statistical
CSI conditions. The purpose of this approach was to
comprehensively understand how the system performance
varies under different levels of channel knowledge. In the
scenario of perfect CSI, we assume that the BS and users have
precise information about the entire system, representing an
idealized upper bound of system performance. Conversely,
under statistical CSI conditions, we consider the scenario
where the BS and users only have access to the statistical
channel conditions. Through the analysis of these two
extreme cases, we have gained insights into how varying
levels of CSI affect system design and performance. In this
section, we introduce a mixed CSI model, which meets real
conditions.
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A. PGDM ALGORITHM AND MIXED CSI
In practice, we can assume that the BS knows all CSI
but users only know statistical CSI. The BS knows perfect
CSI because it exploits channel reciprocity, has advanced
signal processing capabilities, and can handle computational
complexity. Users, on the other hand, only know statistical
CSI to reduce feedback overhead because of their limited
processing capabilities. We can describe that our proposed
system has mixed CSI [49]. The precoder, related to the
BS, optimizes the transmitted signal for multiple users
by leveraging perfect CSI, while the combiner, related
to the users, decodes the received signal using statistical
CSI to balance performance and complexity. Hence, in the
reality, the precoder should be perfect and the combiner
should be statistical. These transceivers have been designed
as (17), (18), (23) in Sections III and IV. Also, because the
BS knows perfect CSI, we assume that the channel is also
perfect. The optimization problem of P1 can be rewritten as
P4

P4 :min
8

ϵ = min
8

∑
k

ϵk (8|Vk ,Us,k ;Hk ),

subject to |φq| = 1, q = 1, . . . ,Q

∥Vc∥
2
F +

∑
k

∥Vk∥
2
F ≤ P0. (33)

To solve the optimization problem P3, we can write the
MSE of data estimates as

ϵ =
∑
k

∥UH
s,kH

H
k Vc∥

2
2 − 2

∑
k

trR(VH
c HkUs,k1

+ VH
k HkUs,k2)+

∑
k,j

tr(VH
j HkUs,kUH

s,kH
H
k Vj)

+ σ 2
∑
k

∥Us,k∥
2
2 + 2Kd (34a)

= ϵ1 + ϵ2 + ϵ3 + σ 2
∑
k

∥Us,k∥
2
2 + 2Kd, (34b)

Algorithm 2 Projected Gradient Descent Algorithm for the
IRS Design

1: Initialisation: 80 = diag(exp(jπ/2)1Q), ϵ0 = f (80),
δ > 0, 80 = diag(w0);

2: Iteration l: for l = 0, 1, . . . , do;
3: make zl = ∂ϵ

∂w∗l
;

4: Find µ by backtrack line search (f (80), zl,wl);
5: w̃l+1 = wl − µzl;
6: wl+1 = exp(jarg(w̃l+1)), 8l+1 = diag(wl+1);
7: ϵl+1 = f (8l+1);
8: Until ∥ϵl+1 − ϵl∥2 < δ;Obtain8∗ = 8l+1;

9: end for

where (33) is non-convex with respect to 8 but it is also
subject to a unit-modulus constraint regarding to φq. Also,
ϵ1 to ϵ3 represent the first three terms of (34a). A local
optimum solution of P4 can be obtained by using the PGDM

as Algorithm 2 until converging to a stationary point. This
involves projecting the solution onto the closest feasible point
that satisfies the unit-modulus constraint at every step l.
Specifically, at step l, the phases are included in the vectors
wl = [φl,1, . . . , φl,Q]T . The next step of the iteration towards
convergence decreases ϵ, and it can be expressed as

w̃l+1 = wl − µzl, (35)

where µ describes the step size.
Proposition 1: zl represents the descent direction at step l,

which can be expressed as

zl =
∂ϵ

∂w∗l
=

∂ϵ1 + ϵ2 + ϵ3

∂w∗l
=

∂ϵ1

∂w∗l
+

∂ϵ2

∂w∗l
+

∂ϵ3

∂w∗l
. (36)

Proof: Please see Appendix A.

B. COMPLEXITY AND CONVERGENCE ANALYSIS OF
PGDM
In order to analyze the complexity of Algorithm 2, we need
to get the complexity of (34b) and find the term that has the
largest complexity. It is clear that we can get the maximum
complexity when we calculate UH

s,kH
H
k Vc. For the first step,

we known that the dimensions of UH
s,k and HH

k are 2d ×
N and N × M respectively, resulting in a complexity of
O(2dNM ). Subsequently, this product, a 2d × M matrix,
is multiplied byVc (with the dimensionM×d), leading to an
additional complexity of O(2dMd). The overall complexity
of the expression UH

s,kH
H
k Vc thus includes both terms,

O(2dNM + 2dMd). Hence, when we consider the iterative
process with NI iterations, Algorithm 2 has complexity
KNIO(2dM (N + d)).

Algorithm 3 Joint Optimization of the Transceivers and the
IRS (Statistical CSI)
1: Initialisation: Make matrices Us,k = [Us,k1,Us,k2] and

Vs,k = [Vs,c,Vs,k ] as random matrices
2: Build matrices Js and Q−1λ,2 as Algorithm 1
3: for i = 1, . . . ,max_iter do
4: for k = 1, . . . ,K do
5: follow the same steps as (5)− (8) of Algorithm 1
6: optimize 8 as Algorithm 2
7: end for
8: end for

The derivative ∂ϵ
∂w∗l

is Lipschitz continuous over the
feasible set, where Lwl is the Lipschitz constant. We define
the function with the minimum value of ϵ as f (x), where x is
non-complex valued, and then it can be rewritten as

f (x) ≤ f (wl)+ ⟨
∂ϵ

∂w∗l
, x− wl⟩ −

1
Lwl
∥x− wl∥

2
2

(37)

where the line search procedure steps 4 − 8 in Algorithm 2
terminates in finite iterations because the condition in
Step 8 must be satisfied µ < Lwl . The sequence of
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objectives are decreased because of the line search, such as
f (wl+1) < f (wl). f (wl) converges since the θ is compacted.
The algorithm only converges to a stationary point of P2,
which is not optimal because P2 is non-convex.

C. JOINT OPTIMIZATION OF THE TRANSCEIVERS AND THE
IRS
Algorithms 1 and 2, presented earlier separately, deal
with the design of transceivers and phases, respectively.
While each algorithm provides an efficient solution for
its respective element, they do not capture the intricate
relationship between these two processes. When the precoder
and combiner are designed, it is essential to note that these
phase shifts have a significant influence on the overall
beamforming design process. Hence, Algorithms 1 and 2
need to be combined as a joint algorithm, which can be given
as Algorithm 3. Algorithm 3 considers the real complexities
associated with the beamforming design, particularly the
influence of phase shifts on combiners and precoders.

For Algorithm 3, the overall complexity is derived by
summing the complexities of the transceiver design and
IRS optimization. We have known that the complexities
for Algorithm 1 and 2 are KNIO((M3

+ N 3)) and
KNIO(2dM (N + d)). Hence, after the joint optimization,
the total complexity of Algorithm 3 is KNIO(M3

+ N 3
+

2dM (N + d)).

VI. COMBINER QUANTIZATION FEEDBACK
In wireless communication systems that utilize multiple
antennas at both the transmitter and receiver, precoders
and combiners are used to optimize signal transmission
and reception. However, as these matrices are often
complex-valued and high-dimensional, it can be challenging
to provide precise feedback from the receiver to the
transmitter. To address this issue, quantized feedback is
frequently used. In general, original channels or transceivers
have large complexity, which leads to low latency. The
quantization process decreases the achievable rate, but we can
choose a suitable quantized object to reduce the rate loss.
We have derived the precoder and combiner equations for
perfect and statistical CSI and used an iterative algorithm to
optimize both kinds of transceivers. However, these designs
are based on the unquantized method. Previous works, such
as [46] and [47], have compared channel feedback and
precoder feedback with the number of feedback bits, B. In our
work, if we use the same method, the channel quantization
codebook size is MN × 2B, and the precoder quantization
codebook size is 2Md × 2B. The codebook sizes for the
two types of quantization are quite large. Thus, we employ
combiner quantization, which can effectively reduce the
codebook size (2Nd × 2B), where the number of antennas
at the users is lower than that at the BS.

A. CHORDAL DISTANCE
A distance metric is used to determine the closest quantized
matrix to the true matrix. The chordal distance is a popular

FIGURE 2. Process of ICD algorithm.

choice for this metric because it is easy to compute and
provides a good approximation of the true distance between
two matrices. We define that the chordal distance for U1 and
U2 for different users k can be given as [33]

d2c (U1,U2) =
1
2
∥U1UH

1 − U2UH
2 ∥

2
F = 2d − ∥UH

1 U2∥
2
F ,

(38)

whereU1 andU2 are two orthonormalmatrices withUH
1 U2 =

I2d . The number of feedback bits for each user is b =
[b1, b2, . . . , bK ]T . The combiner codebook of size 2bk is
C(bk ) = {C1(bk ), . . . ,C2bk (bk )}, where each entry Ci(bk )
is a M × 2d orthonormal matrix such that CH

i (bk )Ci(bk ) =
2d . The combiner matrix index (CMI) vector is denoted as
a = [a1, . . . , ak ]T , where each ak represents an index from
the codebook. The block diagonal matrix comprising of the
combiner matrices for a given CMI vector can be given as
Ua(b) = D(Ca1 (b1), . . . ,CaK (bK )) ∈ C(b), where C(b) is
the product codebook.

B. ITERATIVE CHORDAL DISTANCE QUANTIZATION
In order to improve the sum-rate for the quantization and
limited feedback, authors in [33] used an iterative method
and derived the maximum achievable sum-rate for all users.
Unfortunately, this method has not been used in a system
with the RS strategy. For iterative chordal distance based
quantization, we let each of the combiners be quantized by
using the chordal distance metric. aCD is the CMI vector
obtained using quantization based on chordal distance. The
kth index of aCD can be written as

aCD,k = arg min
CI∈C

d2c (Us,k ,Ci), (39)

where the equation (39) needs to be utilized in the iterative
algorithm. Hence, we write Algorithm 4 to describe the
iterative chordal distance quantization method, where Uq,s,k
is the quantized combiner for statistical CSI. Also, this

Algorithm 4 Iterative Chordal Distance Quantization
1: Initialize ak and Us,k = Cak ,∀k;
2: for iter ← 1 to max_iter do
3: Compute Us,k from (23),∀k
4: Uq,s,k ← argminC∈Ck (bk ) d

2
c (Us,k ,C)

5: end for
6: OutputQuantized combiner Uq,s,k ;
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result can be regarded as Algorithm 1 plus an additional
chordal distance-based quantization step. Algorithm 1 is
an unquantized method that ultimately yields a converged
combiner. After quantization, we can similarly achieve a
converged quantized combiner as Algorithm 4. The whole
process of ICD is given in Fig. 2. We can also use the
ICD method in the statistical case. We only need to add the
quantization step in Algorithm 1.

C. ACHIEVABLE RATE FOR COMBINER QUANTIZATION
Given that the BS knows perfect CSI and users only know
statistical CSI, as well as we carry out the quantization for
the combiner, we can write the achievable rate expressions
for the common and private parts as

Rc,k (Uq,s,k ,Vk ;Hk )

= log

∣∣∣∣I2d + UH
q,s,kH

H
k VcVH

c HkUq,s,k

×

[
UH
q,s,k

(
HH
k

K∑
j=1

VjVH
j Hk + σ 2IN

)
Uq,s,k

]−1∣∣∣∣. (40)

Similarly, we assume that the common part is perfectly
decoded and canceled when the quantized feedback has been
applied. Then the rate for private part can be given as

Rk (Uq,s,k ,Vk ;Hk )

= log

∣∣∣∣I2d + UH
q,s,kH

H
k VkVH

k HkUq,s,k

×

[
UH
q,s,k

(
HH
k

∑
j̸=k

VjVH
j Hk + σ 2IN

)
Uq,s,k

]−1∣∣∣∣, (41)

where the achievable sum-rate after the combiner quantiza-
tion is R(Uq,s,k ,Vk ;Hk ) = min

k
{Rc,k (Uq,s,k ,Vk ;Hk )} +∑

k Rk (Uq,s,k ,Vk ;Hk ).

D. QUANTIZATION OF OTHER TRANSCEIVERS
Except for the combiner quantization, we can also apply the
quantization at the precoder. In the IRS-aided systemwith the
RS approach, we can decide to quantize the whole precoder
Vk or only the common partVc. If we use the chordal distance
method, we can write kth indexes as

aCD,k,Vk = arg min
CI∈C

d2c (Vk ,Ci), (42)

aCD,k,Vc = arg min
CI∈C

d2c (Vc,Ci), (43)

where aCD,k,Vk and aCD,k,Vc are the CMI vectors obtained by
using quantization based on chordal distance for the whole
precoder and the common precoder, respectively. Algorithm 4
can be used to carry out the iterative process and the
quantization.

VII. SIMULATION RESULTS
In this section, we illustrate the simulation outcomes for the
achievable sum-rate and data estimates of the MSE in our

FIGURE 3. Achievable sum-rate for the system with perfect and statistical
CSI (M = 64, K = 4, Q = 100, d = 2).

proposed downlink IRS-assisted mMIMO system with the
RS approach. The base station possesses M = 64 antennas,
while the IRS panel consists of Q = 100 passive elements
arranged in a 10×10 planar array. Users are evenly dispersed
in a two-dimensional region and are equipped with multiple
antennas. The carrier frequency is 2.5 GHz, corresponding to
a wavelength of λ0 = 0.12 meters. Each IRS element has the
horizontal and vertical dimensions dH = dV = λ0/4. The
number of data symbols is d = 2. We employ the MMSE
approach to obtain the perfect and statistical precoders and
combiners using an iterative algorithm as Algorithm 1. The
maximum number of iterations is set to max_iter = 100.
We have the path-losses βE =

C1
dα
1

and βT ,k =
C2
dα
2
,

where C1 = 19 dB, C2 = 21 dB with d1 = 8 m and
d2 = 10 m being the distances of the BS-IRS and IRS-
users links, respectively. Also, we assume that α = 2.2. The
value of the path-loss βd,k for the direct link is the same
as βT ,k . Compared with the work in [33], [46], and [48],
we simultaneously employ IRS and theRSmethod to enhance
the achievable sum-rate and minimize multi-user interference
with the PGDM optimization method. Additionally, we com-
pare the performance of combiner, precoder, and common
precoder quantizations, confirming combiner quantization as
a superior method, as opposed to solely choosing the precoder
design.

A. PERFECT CSI VERSUS STATISTICAL CSI
We compare the achievable sum-rate for two cases: onewhere
the BS and users (with multiple antennas) have perfect CSI,
and another where they have statistical CSI, as shown in
Fig. 3. The IRS has random phases in our proposed case. The
results show that statistical CSI performs worse than perfect
CSI by up to 57%. This is because perfect CSI provides
accurate information about the channel, enabling optimized
strategies such as beamforming, precoding, and resource
allocation. On the other hand, statistical CSI only allows the
transmitter to adapt based on average channel conditions,
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FIGURE 4. Performance comparison of joint optimization with only
transceiver design cases with mixed CSI (M = 64, K = 4, Q = 100, d = 2).

whichmay not be optimal for the current conditions, resulting
in poorer performance. Additionally, we demonstrate that
the RS method outperforms the traditional BS method due
to its more efficient utilization of available bandwidth and
improved reliability. In our chosen case, the achievable
sum-rate increases firstly as users are equipped with more
antennas because enhances spatial freedom and spectrum
utilization. However, when the number of user antennas
increases to N = 8, the sum-rate decreases. This happens
because having more antennas causes a lot of interference.
With each extra antenna, the system has to deal with more
signals overlapping, which makes it hard to keep them
separate. Also, managing a higher number of antennas
adds complexity. It becomes harder to control and align
these signals properly. Hence, the benefits of having more
antennas get reduced by these challenges, leading to a lower
sum-rate.

B. JOINT OPTIMIZATION VERSUS ONLY TRANSCEIVER
DESIGN CASE
In Fig. 4, we compare the sum-rate when the joint optimiza-
tion presented as Algorithm 3 is used.We compare the system
performance of IRS when employing joint optimization
(which includes phase design using the PGDM method and
simultaneous transceiver design) with the case where only
transceiver design is implemented. The results show that
our proposed joint optimization algorithm can improve the
transmission throughput.We also compare the sum-rate when
users have N = 4, 6, 8 antennas. It is evident that the
gap between the two scenario widens when using N =

4, 6 user antennas. This is because the IRS can reflect
and redirect signals from multiple paths, requiring finding
optimal reflection coefficients for each path. However, for
N = 8, when a large number of user antennas are used,
the performance of PGDM will become affected because
of the interference. This can be attributed to the enhanced

FIGURE 5. Running time versus number of iterations
(M = 64, N = 4, K = 4, Q = 100, d = 2).

FIGURE 6. Data estimation MSE for different number of users
(M = 64, Q = 100, N = 4, d = 2).

interference outweighing the benefits of increased antenna
number. Based on the complexity expression of Algorithm 3
as KNIO((M3

+ N 3
+ 2dM (N + d))). and Algorithm 1

as KNIO((M3
+ N 3)), a graph plotting NI on the x−axis

against running time on the y−axis is expected to show a
near-linear increase in running time with the increase in NI .
The running time for Algorithm 3 tends to be higher than
that of Algorithm 1, yet both algorithms demonstrate similar
growth rates. This similarity in their rate of increase is likely
due to both algorithms having complexity components that
scale in a comparable manner, even though Algorithm 3 has
an additional computational aspect because of the PGDM
method.

C. MSE FOR DATA ESTIMATES WITH DIFFERENT NUMBER
OF USERS
We depict the MSE for data estimates, as shown in Fig. 6,
against the number of iterations. In this case, we assume

142172 VOLUME 11, 2023



H. Ge et al.: Transceiver Design for IRS-Aided Massive MIMO Networks With Rate-Splitting

FIGURE 7. Different numbers of BS antennas versus sum-rate with mixed
CSI (K = 4, N = 4, max_iter = 70, d = 2).

FIGURE 8. Different numbers of IRS elements versus sum-rate with mixed
CSI (K = 4, N = 4, max_iter = 70, d = 2).

that the BS has perfect CSI while users have statistical
CSI to meet the realistic due to the frequent movement and
changing surroundings of users, getting perfect CSI reliably
becomes difficult. As the number of iterations increases, the
data estimation MSE steadily decreases, indicating that the
algorithm becomes more accurate in predicting or estimating
the true data. This suggests that while optimizing the sum-
rate, the algorithm also focuses on reducing data estimation
errors. Besides, we compare the MSE differences when
employing different numbers of users. If the system has
more users, the MSE for data estimates increases due to
the increased pilot reuse and interference among users. Fur-
thermore, allocating appropriate communication resources to
each user becomes more complex with an increasing number
of users. This complexity may lead to a reduced accuracy
in data estimation, resulting in an increased MSE to some
extent.

FIGURE 9. Perfromance comparison of different multiple access methods
(K = 4, N = 12, d = 2).

FIGURE 10. Performance of the ICD method for different transceivers with
the RS approach and mixed CSI (M = 64, K = 4, N = 12, Q = 100, d = 2).

D. SUM-RATE COMPARISON WITH DIFFERENT NUMBERS
OF BS ANTENNAS AND IRS ELEMENTS
In Fig. 7 and 8, we compare the achievable sum-rate when
the numbers of BS antennas and IRS passive elements.
Also, we assume mixed CSI for the BS and users in
this system. As the number of BS antennas increases, the
sum-rate also increases due to the enhanced spatial resolution.
The system can achieve spatial multiplexing, allowing for
the simultaneous transmission of multiple data streams
using the same frequency band. Furthermore, if the IRS is
equipped with more passive elements, the throughput can be
further improved. This is because additional beams can be
reflected in suitable directions, enabling better utilization of
the available resources.

E. COMPARISON WITH NOMA AND SDMA
In Fig. 9, we have compared the RS and BC with NOMA
and SDMA methods. In the communication system, we use
SDMA and NOMA techniques to improve performance. The
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SDMA precoder design is important for separating users and
increasing throughput. It aligns data symbols with channel
directions. On the other hand, the NOMA strategy separates
users by varying power levels by reallocating the power of the
BC to different users as PN ,k = [1.5, 1.2, 0.9, 0.4], enabling
simultaneous multi-user transmission and improving the
achievable sum-rate. During the simulations, it is clear that
our RS strategy performs better than NOMA (26%) and
SDMA (90%). The higher throughput with the RS compared
to NOMA and SDMA highlights its importance. RS splits
signals in a way that handles different channel conditions
and user interference better, leading to a better throughput.
NOMA, although it is good at using power levels to serve
multiple users, does not always manage interference so
effectively. SDMA, which separates users by space, performs
worse than the RS, especially when users are not well
separated spatially. Hence, RS performs better than other
multiple access methods.

F. QUANTIZATION AND LIMITED FEEDBACK
We use the ICD method as Algorithm 4 to quantize the
transceivers and reduce the feedback complexity. Because of
the quantization process can degrade the system performance,
we need to choose the better quantization object. Also,
we assume that N = 12 and M = 64 with B =

4 feedback bits. For the combiner and the precoder for
IRS-aided systems with the RS method, the codebook sizes
are 2Nd × 24 = 48 × 24 and 2Md × 24 = 256 × 24. It is
evident that the codebook size for the quantized combiner is
much smaller compared to the quantized precoder. Therefore,
quantizing the combiner can lead to improvements in spectral
efficiency. In Fig. 10, we observe that the achievable sum-rate
increases when quantizing the combiner instead of the
precoder. Since our proposed system utilizes the RS strategy,
we also investigate the performance of quantized precoders
(only the common part) with the codebook size Md ×
24 = 128 × 24. The results indicate that the performance
of quantized common precoders falls between that of the
quantized combiner and quantized precoder. However, the
system with quantized feedback exhibits poorer performance
compared to the unquantized system.

VIII. CONCLUSION
This paper proposed the RS method in downlink IRS-aided
mMIMO systems when users are equipped with multiple
antennas. We used the MMSE method to design the
precoders and the combiners under perfect and statistical
CSI assumptions. An iterative algorithm was used to make
the achievable sum-rate converge. We proposed a PGDM
method to optimize the IRS phase shifts by minimizing the
MSE for data estimates when the BS knows perfect CSI
but users only know statistical CSI. The quantization and
limited feedback were investigated in this work to reduce the
feedback complexity. We compared the quantized feedback
for different kinds of transceivers. We confirmed that the
quantization for the combiner can improve the transmission
throughput effectively.

In future work, we will investigate the performance of
imperfect CSI and design transceivers in simultaneously
transmitting and reflecting IRS (STAR-IRS)-aided systems.

A. DERIVATIVE OF THE DATA ESTIMATION MSE
For the first term of (34b), we have

ϵ1 =
∑
k

∥UH
s,kH

H
k Vc∥

2
2
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It is clear that only the last three terms in the above equation
is related to 8. Hence, the derivative can be written as
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The second term of (34b) can be rewritten as
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∑
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Only the second and the fourth terms are related to 8. The
derivative of ϵ2 can be given as
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We calculate the derivative for the third term of (34b), the
result can be obtained by using the same method as (45)
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The summation of j in (48) can be ignored because only
Vj has this specific value and the uncorrelated relationship
between different users. Because we have f (8) = ϵ = ϵ1 +

ϵ2 + ϵ3, the derivative of MSE for data estimates ϵ can be
given as

zl =
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Hence, this concludes the proof for (36).
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