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ABSTRACT Smartmobility initiatives encompass innovativemethods to support trafficmanagement experts
in decisions for how to improve urban infrastructures and reduce carbon footprint. Accurate and continuous
information about traffic is necessary to implement effectively such decisions. This is not always possible
because of the cost of the information: it is not possible to install sensor devices at large scale because of
financial costs and privacy; employing a plethora of sensors requires significant computational capabilities
to process the generated data. A centralized data analysis can hinder real-time applications, and limit
their practical deployment in traffic management systems. This paper introduces a novel privacy-aware
method for estimating traffic density using edge computing and without over-deploying privacy-intrusive
surveillance technologies such as cameras. The objective is to reduce the cost of collecting data while
providing accurate information to support traffic operators in decision making. We evaluate the proposed
solution using a realistic traffic data of Bologna in Italy. Results shows that it yields a 45% lower average
estimation error compared to standard prediction methods. Virtual traffic monitoring devices are associated
with software agents that collect data from simulated traffic and estimate traffic density measurements
when this information is not available. In our experiments, when we replace 50% of camera devices with
cooperative low-cost edge devices, we obtain an average percentage error of just 22%. This result indicates
that the cooperation between virtual trafficmonitoring devices offers ameans to avoidmassive deployment of
camera surveillance devices using low-cost information provided by connected vehicles. We also compared
the results to those obtained by standard regression techniques.

INDEX TERMS Smart city, traffic monitoring, multi-agent systems, missing information estimation,
Internet of Things, urban sensing.

I. INTRODUCTION
Smart Cities have emerged as a technological means to
address problems of resource optimization, creating better
living conditions, and safeguarding the environment [1].
Implementing the smart city requires monitoring the urban
environment to extract and analyze information that can sup-
port the decision-making process to improve infrastructures
and services for the citizens. One such application in smart
cities is urban traffic monitoring. With accurate information
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about traffic status, urban traffic control operators can
monitor, control and redirect traffic, and apply policies to
reduce traffic congestion.

In this paper, the goal of traffic density estimation is to
calculate traffic density measurements in points where traffic
monitoring devices such as CCTVs are not available. Herein,
we define the traffic density as the number of vehicles situated
in a local region of the environment.

Traffic monitoring is often performed using solutions
based on CCTV cameras. Camera-based methods require an
extensive network of cameras to provide accurate information
about traffic. However, massive instrumentation of the urban
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environment with CCTV raises privacy issues [2], and
also suffers from environmental interferences such as harsh
weather and air pollution [3]. Processing several images
acquired from sensors on a large scale requires significant
computational power and a pertinent infrastructure for
storing, processing, and transferring information. The edge
computing paradigm allows reducing the load on the core
network, especially when considering bandwidth-intensive
applications such as traffic monitoring through camera
devices [4].

This article introduces a novel edge-based method for
estimating urban traffic density in local parts of a phys-
ical environment by aggregating data acquired from IoT-
connected vehicles. The novelty of this paper is a traffic
density estimationmethod based on virtual sensors, software
components associated with low-cost edge devices. Virtual
sensors estimate traffic density by aggregating historical
information, and by cooperating with the available physical
sensors. Virtual sensors cooperate with physical sensors
by exchanging information that can help calculate accurate
traffic density estimates in local parts of the environment.

To evaluate the proposedmethod, we simulate the presence
of physical (CCTV) and virtual sensors in a traffic model
of the city of Bologna. We use the open-source traffic
simulator of SUMO to emulate the dynamics of the real traffic
of Bologna. Using this traffic simulator software, we can
evaluate the performance of the proposed method (that is, the
accuracy of the traffic density estimates) in a realistic traffic
context.

The contributions of this paper are summarized as follows,
together with a brief description of the outcomes:

• A novel technique to pursue privacy-aware, geofenced
estimation of traffic density in points of the environment
where CCTV devices are not available. Thanks to a
cooperative protocol between virtual sensors, we obtain
accurate traffic density estimates that outperform state-
of-the-art regression techniques;

• A method for identifying causal relationships between
different traffic variables. We explore the associations
between traffic density and other types of data to
improve the accuracy of traffic density estimates;

• An experimental procedure to evaluate the accuracy
of the estimation method in the context of an urban
traffic simulation, and a cost-benefit analysis to assess
both economic and privacy advantages of virtual sensors
compared to CCTV cameras.

The remainder of this paper is organized as follows:
Section II discusses state-of-the-art propositions to address
traffic density estimation in urban environments. Section III
introduces the challenges in urban traffic estimation that
we address with our proposal. Section IV presents the key
concepts used to introduce the proposed method. Section V
introduces the proposed technique for estimating traffic
density using virtual sensors. Section VI illustrates the
experimental setup, the results obtained from the agent-based

traffic density estimation method, and a cost-benefit analysis
to motivate the use of our proposal to avoid the massive
deployment of camera-based traffic monitoring devices.
In Section VII we highlight some insight from the results
and the proposed technique. In Section VIII, we conclude our
work and point to future perspectives.

II. RELATED WORK
This section introduces the main state-of-the-art solutions
for traffic monitoring and estimation. The work presented
make use of camera-based technologies, information col-
lected from cellular devices, sensors embedded in vehicles.
We also report some work that implements traffic monitoring
applications on an edge computing infrastructure.

Traffic monitoring is one of the most essential elements
for the planning, management and control of transportation
systems [5]. Existing methods for traffic monitoring rely
on data collected from devices such as loop detectors
and video cameras, processed by centralized computational
infrastructures. If we consider integrating data from personal
IoT-equipped vehicles, the volume of the data to process
can increase exponentially [6]. In this case, computational
methods that rely on centralized infrastructure are not
pertinent because of the elevated latency introduced for data
processing [7].

Balamuralidhar et al. [8] propose a real-time vehicle
detection, tracking, and speed estimation system that can run
on embedded computers mounted on an Unmanned Aerial
Vehicle (UAV). The method employs a neural network for
vehicle detection, an object tracker to maintain object identity
across frame sequences, and a vehicle speed estimation
algorithm. The authors use the YOLO object detection
algorithm to detect vehicles in images collected from UAVs.
Vehicle tracking is achieved using the Minimum Output Sum
of Squared Error (MOSSE) algorithm. The authors consider
two datasets of images collected at different altitudes to vali-
date the proposed method. The first is the Aeroscapes dataset,
including 3269 720p non-sequential aerial images collected
from drones at altitudes ranging from 5 to 50 meters [9]. The
second dataset includes 52 images captured at 30, 60, and
120-meter altitudes with a resolution of 5472 × 3648. The
proposed system achieves vehicle detection and tracking at
29.41 Frames Per Second (FPS) for an input resolution of
512 × 320 pixels, with an accuracy of 88%. At a resolution
of 3072 × 1728 pixels, the method processes frames at a
rate of 3.74 FPS. This method has the following drawbacks:
(i) it is not possible to continuously monitor the traffic
status, due to battery limitation of UAVs; (ii) coordination
of autonomous drones is required for monitoring a large
environment without significant costs for hardware and
specialized human operators [10], [11]; (iii) the use of images
can again raise privacy issues and suffer from environmental
interferences such as harsh weather or air pollution [12], [13].

Li et al. [14] propose a method to detect traffic level
by aggregating data collected from cellular devices in a
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large-scale urban environment. The data include the number
of time a vehicle is detected in a mesh cellular network, the
number of handoff events (a handoff event happens when a
device moves from one cellular network area to another one),
and the time of day. A support vector machine trained with
the collected cellular data is used to detect the traffic status
according to three classes: low, medium, and high traffic. For
this, the authors calculate a relative threshold to class the top
m% traffic volume as high-traffic volume, the lastm%as low-
traffic volume, the rest is considered as medium-traffic.

The authors evaluate the proposal in a simulated scenario,
modeling the traffic during 24 hours, in the city of Taicang,
China, using data acquired from loop detectors as a ground
truth. The simulations were carried out using the VISSIM
simulator. The proposed technique allows obtaining a level
of accuracy in traffic status detection of over 83% compared
to the ground truth data. Although the technique allows com-
bining information acquired from personal devices to detect
traffic status, the authors focus on a generic classification of
traffic status and do not provide a quantitative measure of the
traffic density.

Other studies such as [15] and [16] focus on the use
of sensors embedded in vehicles to estimate traffic density
measures.

Lee et al. [15] estimate traffic density using inter-vehicle
distance measured by probe vehicles equipped with sensors.
First, the authors calculate inter-vehicle distance values using
two vehicles equipped with cameras and radar sensors. The
inter-vehicle distance is defined as the distance from the front
bumper of sensor-equipped vehicle to the rear bumper of
target vehicle. The authors perform the data collection in an
experimental road section that is not public. Then, the authors
perform simulations (using the CORSIM traffic simulation
model), to generate a synthetic data set of inter-vehicle
distance measures. With the ground truth values and the
synthetic inter-vehicle distance values, the authors calculate
traffic density values according to various traffic conditions
such as traffic congestion levels and ratios of probe vehicle
equipped with camera and radar sensor. The main drawback
of this method is related to privacy and environmental factors:
the former is due to the use of images acquired from cameras
mounted on personal vehicles; the latter is due to factors such
as lightness, or fog, that can influence the estimation of inter-
vehicle distance.

Nam et al. [16] propose a technique for estimating
traffic density using data acquired from Connected and
Autonomous Probes (CAPs) equipped with radar sensors to
observe surrounding traffic conditions. The probe vehicle
radar system can detect the surrounding vehicles at real-time,
and trace their trajectories, used to calculate Vehicle Miles
Traveled (VMT) and Vehicle Hours Traveled (VHT). VMT
is defined as the product of traffic volume on a link and the
length of the link. Similarly, VHT is defined as the total time
traveled by all the vehicles on a road link in a specific time
horizon.

To estimate traffic density, authors use Long Short-Term
Memory (LSTM), a particular type of artificial neural
network which provides short-term and long-term memory
components. This type of neural network is typically used
to handle sequential data, where the output of the network
is supposed to be influenced by previous historical data
patterns. LSTMs are composed of a stack of layers of neural
networks (an input gate, an output gate, and a forget gate), and
the weights of each layer are updated by backpropagation.
The LSTM uses multiple features as input variables from
CAPs to estimate traffic density at a given time instant. Such
features include also VMT, VHT, vehicles speed, and the
number of lanes. The authors evaluated the proposed method
by calculating the Root Mean Squared Error (RMSE) of
the traffic density on different sections of a road network.
The LSTM is not a suitable solution for retaining long-term
information: the forget gates tend to remove some patterns
that are not used recurrently. This means that the latest
information dynamics are considered anomalous, leading to
inaccurate estimates of traffic density.

Chen et al. [17] propose a vehicle tracking system based on
deep learning and deployed on edge computing nodes. The
authors combine vehicle detection (YOLOv3) and vehicle
tracking (Deep-SORT) and use a virtual detection line
method to count the number of vehicles passing through
the detection line. To optimize the computation and reach
an almost instantaneous calculation of traffic measures, the
authors deploy the technique in edge devices equipped with
Nvidia Jetson TX2. For validation, the authors use the
UA-DETRAC dataset, featuring 8250 labeled vehicles and
1.21 million target object frames. The dataset includes frames
captured in Beijing and Tianjin, China, shot at a frequency
of 25 FPS with a Canon EOS550D camera. The authors
obtained an average accuracy of vehicle detection of about
94%. However, the accuracy is affected by the quality of the
images: on the edge devices used by the authors, the average
FPS is 7.5, therefore the technique cannot achieve real-time
detection. The main drawback of this technique is related
to the privacy. The authors acknowledge that offloading the
computation to the edge can mitigate privacy issues since the
information is not processed centrally. In this way, the risk
of information leakage is reduced. Nevertheless, no solution
has been identified to protect sensitive information. This
might require additional computation, making the proposed
technique unsuitable for real-time application.

Gia et al. [18] propose an edge-fog-IoT architecture
for traffic management and monitoring applications. The
proposed architecture consists of sensor devices, smart edge
devices (either battery-powered or connected to a power
source) whose goal is to collect, encrypt and remove
noise from data before this is sent to fog gateways via
LoRa, smart LoRa-based gateways with fog computing,
cloud-based services, and end-user terminal applications.
To evaluate the proposed architecture, the authors propose
an edge-based traffic density estimation technique that uses
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TABLE 1. Comparison of state-of-the-art approaches for heterogeneous
data integration and estimation.

real-time image processing of traffic camera feeds. The
traffic estimation method is based on an object detection
technique using a Haar feature-based cascade classifiers
available in the public domain library OpenCV [19]. The
authors compare the latency measured by using the proposed
estimation technique on their edge architecture, and the
latency obtained by using the algorithm available in the
YOLO framework, on the same edge-computing architecture.
Both frame loading and analysis latency measures are low
using the proposed method (respectively 5ms and 144ms),
showing that the proposed edge architecture is pertinent to
avoid the computational bottlenecks of centralized method
in traffic analysis applications. However, a large-scale use of
this method can raise privacy issues due to the extensive use
of image data.

Table 1 lists the illustrated methods along with their
strengths and weaknesses according to the following:

• privacy-awareness: the technique ensures that data is
being anonymized before their use (that is, it is not
possible in any way to trace the identity of citizens);

• operational costs: the technique requires limited com-
putational capabilities and network hardware to operate;

• hardware requirements: the technique requires
low-cost hardware to collect and process data from the
urban environment and can integrate existingmonitoring
infrastructures;

• edge-based method: the technique can be deployed on
an edge-computing infrastructure.

We use two indicators to depict the strengths and weak-
nesses of each described method: (+) the authors discuss and
address the challenge; (−) the authors do not mention (nor
address) the challenge.

Compared to the methods listed in Table 1, our goal is to
address the four challenges described above.

III. CHALLENGES
This section discusses the main challenges that motivate our
proposal.

A. LOCAL, PRIVACY-AWARE, DISTRIBUTED, GEOFENCED
ESTIMATION OF TRAFFIC DENSITY USING
HETEROGENEOUS INFORMATION FROM IoT-CONNECTED
VEHICLES
Challenge: The volume of data generated by personal IoT
continues to grow, causing the cloud to become significantly
overburdened. The traffic estimation may encounter latency
issues due to the amount of data to process for providing

real-time traffic information. The massive amount of infor-
mation collected from an urban environment could cause
network bandwidth to be overburdened, as well as place a
strain on the data center [20].

We propose an edge-based method to decentralize the
traffic density estimation task and reduce the computational
burden of centralized data analysis techniques. The advantage
of our proposal is that citizens become the primary actor of
a traffic monitoring system, as they decide when to share
the information required for the estimation task. In this way,
we tackle the privacy issue generally related with the use of
camera-based devices.

B. FINDING CAUSALITIES IN TRAFFIC AND
ENVIRONMENTAL VARIABLES
Challenge: the goal is to find causal relationships between
different types of information from the environment, and that
provided by IoT-connected vehicles.

Finding causal relationships between human activity and
information collected from the environment is crucial for
traffic management experts to improve urban infrastructures
and ensure good quality of life for citizens. For instance,
verifying a causal relationship between traffic levels and
noise pollution can help determine if it is necessary to install
noise barriers to provide sound insulation.

Our proposal enables finding relationships between differ-
ent types of information collected from the environment.

C. INTEGRATING LOW-COST IOT DEVICES INTO EXISTING
TRAFFIC MONITORING INFRASTRUCTURE TO REPLACE
CAMERAS
Challenge: the goal is to integrate low-cost devices into an
existing traffic monitoring infrastructure.

We assume that using low-cost IoT devices has a twofold
advantage: first, to lower the management costs of a traffic
monitoring infrastructure. Second, to avoid using ‘‘heavy’’
and privacy-sensitive information such as images, requiring
significant computational power to perform traffic analysis
at a large scale.

IV. KEY CONCEPTS
Table 2 summarizes the symbols, and provides a brief
description, of the main concepts used to introduce the
proposed method.

Figure 1 shows the relations between traffic density,
traffic state, data window, and knowledge base, introduced
afterwards.

In the following, we summarize the key concepts that we
use to introduce our proposal in the next section.

A. VEHICLE AGENT
This type of agent is related to any physical instrumentation,
such as IoT-connected vehicles, that can provide informa-
tion such as GPS coordinates, CO2 emissions, or vehicle
speed.
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TABLE 2. Table of symbols.

FIGURE 1. Relationships between traffic state, data window, knowledge
base and sensing agent. The values t depict the time instants at which
each data windows is added into the knowledge base of the sensing
agent.

B. SENSING AGENT
A sensing agent Ai is an autonomous computation unit
that can run on edge devices for pursuing low-latency
transmission and computation of data to achieve real-time
traffic density measurements. Edge devices can range from
low-power Raspberry Pi1 modules to custom Arduino
devices,2 to more computationally powerful nodes (such as
the NVIDIA Jetson Nano3), capable of collecting, processing
data from IoT-connected vehicles and exchange information
to other nodes within the network. A sensing agent can
collect and aggregate data from physical sensors at an
aggregation frequency fi to provide traffic density estimates.
The aggregation frequency fi, measured in seconds, defines
the sensing configuration of a sensing agent. A sensing agent

1www.raspberrypi.com
2www.arduino.cc
3https://www.nvidia.com/en-us/autonomous-machines/embedded-

systems/jetson-nano/

also aggregates data to provide a numeric value for each
traffic variable λ ∈ 3i, where 3i is a set of traffic variables.

C. TRAFFIC VARIABLE
A traffic variable λ is a data type whose value can be
calculated by aggregating data collected by IoT-connected
vehicles. In this study, we consider the following traffic
variables: traffic density (λτ ), average estimation delay (λθ ),
average vehicles proximity (λφ), average vehicles’ speed
(λσ ), average CO2 emissions (λχ ). We provide details about
these variables and how to calculate them in the following
section.

D. TRAFFIC STATE
A traffic state (or simply state) St is a container of traffic
variables, created at time t , that aggregates information
collected during the time horizon [t − fi, t], where fi is the
aggregation frequency of agent Ai. A traffic state represents
a snapshot of the environment state at time t .

E. VORONOI REGION
Given a set of point P, a Voronoi region [21] r is a convex
polygon that includes all points closer to pi ∈ P than to any
other point pk ∈ P, k ̸= i. Each point pi depicts the position of
sensing agent Ai. In typical cellular networks it is necessary
to choose precisely the location of the antennas to obtain a
mesh of regular hexagonal-shaped areas of the same size.
However, it is not always possible to install an antenna at
any point because of physical or environmental constraints.
Conversely, the use of Voronoi tessellation allows relaxing
this constraint: virtual sensors can be installed at arbitrary
points in the environment where antenna cannot be placed.
Figure 6 (Section V) shows how a Voronoi tessellation looks
like.

F. DATA WINDOW
A data window C i

t is a vector of traffic states representing
the traffic dynamics in a discrete time interval [t − n · fi, t],
where n is the number of traffic states in C i

t , and fi is the
aggregation frequency of sensing agent Ai. The data window
C i
t is associated with an index t , that corresponds to the time

instance when the window has been assembled by sensing
agent Ai.

Data windows can be seen as two-dimensional arrays of
size n × k , where n is the number of traffic states within
a data window and k is the number of several types of
information, including the density of the traffic (the other
types of information are described later). In other words, each
row (or slice) of the matrix contains values that refer to a
particular type of information.

G. DISTANCE BETWEEN DATA WINDOWS
The distance between two data windows Ct and Ck is defined
as the absolute difference of the values of the two windows,
divided by the number of states m = |Ct | = |Ck |. The
smaller the difference, the more similar the two windows are.
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The distance between two windows Ct and Ck , considering
an arbitrary traffic variable λ, is defined by the following
formula:

dλ
(
C i
t ,C

i
k

)
=

∑
ℓ∈[1,m] |λ

i,t,ℓ
− λi,k,ℓ|

m
(1)

where i is the index of the agent Ai, λ ∈ 3i is the traffic
variable used to compare the values in the two windows C i

t
andC i

k . The values λi,t,ℓ and λi,k,ℓ are the values of the traffic
variable (λ) in the data windows Ct and Ck respectively, m =
|C i

t | = |C
i
k | is the number of states, ℓ is an index in the range

[1,m].
When a sensing agent compares a data window to another

one considering a specific traffic variable, it selects the row of
the matrix, in the data windows, referring to the same traffic
variable. Then, the agent compares the values of the two slices
using the defined distance metric d .

H. KNOWLEDGE BASE
A knowledge base Ki is a set of data windows assembled
by the sensing agent Ai. A knowledge base is created by the
sensing agent with which it is associated.

V. PROPOSED METHOD
We propose a method to estimate traffic density measures
by aggregating historical data and information from IoT-
connected vehicles. We use the multi-agent approach of
HybridIoT [22] to estimate traffic density values. This
approach allows estimating missing information through
cooperation between sensing agents. Among the advantages,
HybridIoT enables (i) introducing new sensing agents
at run-time without reconfiguring the technique and (ii)
estimating heterogeneous information without configurations
dependent on the data type.

The novelty of our work is as follows:
• a method that can be deployed in an edge infrastructure
to provide traffic analysis capabilities in local parts of
the environment;

• a method to analyze causal relationships between traffic
data to extract insights on traffic and environmental
dynamics.

The proposed technique achieves the following properties:
• generic: our proposal can be implemented in different
urban contexts without any prior knowledge about either
the traffic dynamics or the route network topology;

• unsupervised: the method does not require human
intervention to operate;

• distributed: the analysis and estimation of traffic
measures are carried out autonomously by the sensing
agents in their local part of the environment (their
Voronoi regions).

Figure 2 sketches the functioning of the proposed method.
The arrows indicate the direction of data flow. Data windows
are created as a result of local traffic density estimation.
Following their creation, the data windows are added to the

FIGURE 2. Sketch of the functioning of the proposed method. Traffic
density is estimated by aggregating data from IoT-connected vehicles.

knowledge bases of the sensing agents and used for the
subsequent estimation of the traffic density.

The estimation procedure is executed autonomously from
each agentified device (that is, a device associated with a
sensing agent); this makes it possible to deploy our proposal
on the edge to address low latency and support real-time
traffic monitoring.

Before introducing the estimation method, we distinguish
between the expected (v) and actual traffic density value (v):
the expected traffic density is the number of information
provided by IoT-connected vehicles; their aggregation out-
puts an estimate of the local traffic density. If a vehicle sends
more than one data record when situated in each Voronoi
region, the amount of data from that vehicle is counted as one
within one aggregation time period. We refer to this value as
the expected traffic density because the vehicles that provide
data may no longer be in the same Voronoi region when
a sensing agent calculates the estimate (v̂), or because the
sensing agent does not receive information from the vehicles
due to problems in network communication. Contrarily, the
actual traffic density value at time t is the number of
vehicles (IoT-connected and not) that are situated in the
Voronoi region of a sensing agent at time t . The actual traffic
density values are only used to assess the accuracy of the
proposed estimation method. For the sake of description,
we recall that estimated traffic density is a numerical
quantity that approximates the expected number of vehicles
that are located in the region of a sensing agent at a
given time instant. The difference between the expected and
estimated traffic density is that the latter is calculated by
HybridIoT, using historical information and those obtained
by cooperation between sensing agents.

A. TRAFFIC DENSITY ESTIMATION
Figure 3 sketches the main steps of the estimation technique.
The computation is done by the sensing agents in their
Voronoi region.

Let Ai be the sensing agent that must estimate a traffic
density measure at time t . First, it chooses the top n most
similar data windows to pursue the estimation process. For
this example, we set a priori the value n = 3, so Ai uses
these three data windows to estimate traffic density values.
The estimation process can be divided into two phases: a
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FIGURE 3. Example of data estimation using HybridIoT. For the sake of
simplicity, the data windows (observed in distinct time instances) are
shown as sequences of traffic density values. Also, we omit the index of
the sensing agent, the type of variable (here we use only traffic density
data), and wt is the estimation weight.

pattern matching phase (steps (1)-(2)) and a regression
phase (steps(3)-(4)).
Let τ be the traffic density variable. In the former phase

(step (1)-(2)), Ai evaluates a set X τ,i
t−1 of data windows,

defined as follows:

X τ,i
t−1 = {C

i
k ∈ K

i
: dτ (C i

t−1,C
i
k ) < th} (2)

whereKi is the knowledge base of sensing agent Ai. The data
windows in X τ,i

t−1 are sorted by their distance dτ (C i
t−1,C

i
k )

(Equation 1), considering the values of traffic density (τ ) in
the data windows, th is the distance between Ct−1 and the
k-th data window in Ki. The value th depends on the size
of X τ,i

t−1; for the sake of example, if we configure sensing
agents so that the estimation is pursued using the top-3 similar
data windows, then th is the value that allows selecting
the top-3 most similar data windows. Herein, the number
and the size of data windows, required to estimate traffic

density values, are determined a priori. The size of the data
windows must be chosen according to the resolution of the
data perceived by the edge devices. In future works, we will
consider using hyperparameter tuning techniques to evaluate
themost pertinent value for this variable. On the one hand, if a
device collects information at a low frequency and the size of
data windows is small, then the estimation process will not
be effective. In this case, the data windows do not present
distinctive patterns that would enable the sensing agents to
discriminate windows, and thus environmental dynamics,
to provide accurate traffic estimates. A solution to this issue
is to increase the size of the data windows. This is generally
related to underfitting, as the agents cannot assess the
dominant trend within the data, resulting in poor performance
of the estimation method. On the other hand, if the size of
the data windows is too high, then the data windows contain
too specific information. The sensing agents are unable to
provide accurate estimates based on the information they
have. This is generally related to overfitting, as the data
windows contain too many features, making agents unable
to generalize well to new data.

The number of data windows to use for estimating missing
information is a parameter that depends on the traffic
dynamics. Because of the unpredictability of the traffic, it is
not possible to know in advance how many windows are
needed to provide, at a specific time instance, an accurate
traffic density estimate: too many windows may introduce
noise into the traffic estimate, few windows may not suffice
to provide an accurate estimate.

The regression phase follows (steps (3)-(4)). In step (3),
the sensing agent Ai calculates an estimation weight wτ,i

t . The
idea behind the calculation of wτ,i

t is the following: the data
windows in the set X τ,i

t−1 are similar to C i
t−1 (the similarity

is calculated using the Equation (1)). Consequently, as the
dynamics of the windows are similar, we can argue that the
slope between the last two pieces of information in each data
window in X τ,i

t−1 should be similar to the slope between the
data at t−1 and t , that is, the slope between the last perceived
value at t − 1 and the value to estimate at t . The value wτ,i

t
represents the slope between the data at t − 1 and t , and is
calculated as follows:

wτ,i
t =

∑
C ik∈X

τ,i
t−1

((
λi,k,ℓτ − λi,k,ℓ−1τ

)
·
(
1− dτ (C i

t−1,C
i
k )

))
∑

C ik∈X
τ,i
t−1

(
1− dτ

(
C i
t−1,C

i
k

))
(3)

where t is the current time instant, τ indicates the traffic
density variable,

(
λi,k,ℓτ − λi,k,ℓ−1τ

)
is the difference between

the last two values of the data window C i
k , referring to traffic

density variable τ , ℓ = |Ck | is the index of the last traffic state
in Ck . Before calculating w

τ,i
t , the distance values calculated

for all data windows are normalized in [0, 1].
Finally, the traffic density estimate v̂τt is calculated as

follows:

v̂τ,it = λi,t−1,ℓτ + wτ,i
t (4)
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where λi,t−1,ℓτ , with ℓ = |Ct−1|, is the last traffic density
value available in Ct−1 and sensed by Ai, w

τ,i
t is the estimated

slope between traffic density measure at t − 1 and t . The
symbol τ indicates that the data windows used to calculate
the estimate (in X τ,i

t−1) have been obtained by comparing the
traffic density values in the data windows of the knowledge
base Ki.
The output of the estimation procedure is an endogenous

estimate. We calculate traffic density estimates by using
historical traffic density values in the knowledge base of
the sensing agents. In other words, endogenous estimation
outputs estimate measures using historical data of the same
type and unit.

The sensing agent Ai adds the estimate v̂τt into a new
traffic state St . Then, Ai uses the collected information from
IoT-connected vehicles to provide a value for each supported
traffic variable. These values are also added to the same traffic
state St . Finally, the agent inserts the traffic state St into a
temporary data window. If this has size m (the size being
decided a priori), this is added into the knowledge base Ki

of the agent. When so, the temporary data window is cleared
for assembling the next data window.

1) COOPERATIVE ENDOGENOUS ESTIMATION
In endogenous estimation, a sensing agent chooses a set of
data windows from its knowledge base and calculates one
traffic density estimate at each time instance. Due to the
possible presence of noise or errors in data windows, we can-
not ensure that the estimate will be accurate. To achieve
accuracy, sensing agents could estimate traffic density using
different, disjoint sets of data windows. However, the number
of data windows can grow significantly, making this solution
unsuitable for a great quantity of traffic data. Another
possibility is to use error correction mechanisms to improve
the quality of the knowledge base. However, this can be a
computationally intensive task because the number of data
windows can grow significantly over time.

To tackle this issue, we have defined a simple cooperation
model in which the burden of evaluating several combinations
of data windows to estimate traffic density is distributed
among the available sensing agents, resulting in an aug-
mented quantity of data that can help to sense agents in
providing accurate estimates. Let Ai be the agent that must
estimate traffic density at t . The cooperative estimation works
as follows: Ai provides the last observed data window C i

t−1
to the other available sensing agents. A cooperative agent
Ak then estimates a traffic density value using C i

t−1: first,
it compares this to the data windows in its knowledge base,
then calculates an estimate and provides this to Ai. Finally, Ai
chooses the traffic density estimate (among those provided by
the other sensing agents) that minimizes the distance from the
expected traffic density value. Herein, agents use the expected
value to discriminate the values received cooperatively from
other agents. However, we assume that other methods can
be used to choose or weigh the values received from agents
(e.g., the weighted median of values considering the distance

between sensors). In this final choice, Ai also considers its
estimate, that is, the one calculated by the non-cooperative
method described in the previous section.

In this work, agents do not use any specific criteria
to determine the subset of sensing agents with which to
cooperate: a sensing agent simply cooperates with all the
other available agents. These criteria can be, for instance, the
sensors’ proximity, the network topology, or the similarity
between observed traffic data.

2) COOPERATIVE EXOGENOUS ESTIMATION
In endogenous estimation, sensing agents use only infor-
mation of the same type (traffic density). The cooperative
endogenous approach exploit traffic density values from
a multitude of agents to output accurate traffic estimates.
Conversely, in exogenous estimation, sensing agents use
different traffic variables as predictors for estimating traffic
density. The benefit of the exogenousmethod is twofold: first,
sensing agents can estimate traffic density using simultane-
ously information of different type (unit, scale); second, it is
possible to analyze the correlation between heterogeneous
information about traffic. For instance, analyze the traffic
density as a function of the pollution or the noise level.
This can be useful for traffic management experts to improve
infrastructures and ensure good quality of life for citizens.

We consider the following traffic variables (in addition to
traffic density):
• Vehicles proximity: the average of all pairwise dis-
tances between vehicles situated in a local region of a
sensing agent. To calculate the value of this variable,
we make use of the standard Euclidean distance. Herein,
the vehicles’ position is in XY coordinates on a
Cartesian plane. Therefore, this information is measured
in number of pixels.

• Vehicles speed: the average speed of vehicles in a local
region of the environment. This information is measured
in meters per second (m/s).

• CO2 emissions: the average CO2 emissions of vehicles.
This information is measured in milligrams per second
(mg/s).

• Estimation delay: the average of differences between
the time instances when the sensing agent receives the
information and the aggregation time. First, we calculate
the difference t − ti, where t is the time instant when
the sensing agent estimates the traffic density, and ti
is the time instant when a vehicle provides a piece of
information to the agent (ti < t). If a vehicle sends
multiple data when passing through the same region,
the sensing agent considers only the last one received.
The result is calculated as the average of all temporal
differences. This information is measured in seconds (s).

Algorithm 1 shows the steps performed by a sensing agent
Ai to estimate a traffic density measure at time t using
the cooperative exogenous method. For the sake of clarity,
we specify at each line the agent that pursues the operation.
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Algorithm 1 Exogenous Cooperative Estimation (Ai)

Require: vτ,it ← expected traffic density at time t by the
agent Ai

1: [Ai] Let S ← ∅ be the set of estimates received
cooperatively from each agent Aℓ, with ℓ ̸= i

2: [Ai] Provide Cit−1 to the other sensing agents
{—cooperative estimation—}

3: for all sensing agent Aℓ, with ℓ ̸= i do
4: for all traffic variable λ ∈ 3ℓ do
5: [Aℓ] Xλ,ℓ

t−1 ⊂ K
ℓ
←←← set of data windows of Aℓ that

minimize the distance to C i
t−1 considering λ

6: [Aℓ] v̂
λ,ℓ
t ←←← estimate the traffic density using the

data windows in Kℓ

7: [Aℓ] provide v̂
λ,ℓ
t to Ai

8: [Ai] S←←← S ∪ v̂λ,ℓ
t

9: end for
10: end for

{—end of cooperative estimation—}
11: [Ai] choose v̂

λ,k
t ∈ S such that min

k

(∣∣∣v̂λ,k
t − v

τ,i
t

∣∣∣)
12: return v̂λ,k

t

First, the sensing agent Ai creates an empty set S
that is used to keep all traffic density estimates provided
cooperatively by the other agents (line 1). Then, Ai provides
the last observed data window C i

t−1 to the other available
sensing agents (line 2). This step follows the cooperative
exogenous estimation (lines 3- 10), where the cooperative
agents provide Ai with a traffic density estimate calculated
using exogenous traffic variables.

The cooperative sensing agent Aℓ evaluates a set Xλ,ℓ
t−1 of

data windows for each supported traffic variable λ (line 5).
To obtain such a set of data windows, Aℓ selects the slices
of the data windows (in its knowledge base) that are related
to the traffic variable λ, then compares the windows C i

t−1 by
using the Equation 1. Then, the cooperating agent Aℓ selects
the data windows in its knowledge base that minimize the
distance to C i

t−1 considering the variable λ. The cooperating
agent Aℓ calculates an estimate of the traffic density measure
using the data windows inXλ,ℓ

t−1 (line 6). At line 7,Aℓ provides
the traffic density estimate to the sensing agent Ai. The steps
in lines 3- 10 are repeated for each sensing agent and each
traffic variable.

Algorithm 1 results in a set S of traffic density values, each
one provided by cooperative sensing agents. Each estimate
is calculated using a unique set of data windows (one per
sensing agent and traffic variable). Finally, Ai selects the
estimate from the set S that minimizes the distance to the
expected traffic density value vτ,it (line 11).

VI. EXPERIMENTAL RESULTS
This section presents the results obtained by using HybridIoT
for estimating traffic density values by aggregating informa-
tion from IoT-connected vehicles. This section is composed

FIGURE 4. Experimental procedure used to evaluate our proposal.

as follows: first, we present the traffic scenario used to model
realistic traffic dynamics via the SUMO simulator, then we
present the results obtained by the HybridIoT technique.
Finally, we present a cost-benefit analysis to assess the
advantages of using sensing agents to avoid the deployment
of a high number of camera-based devices.

Figure 4 shows the steps of the experimental procedure
used to evaluate our proposal. The validation of k for cross-
validation, the number and size of context windows, and the
results of endogenous estimation are in Appendix A.

A. TRAFFIC MODEL
For this research, we simulated the traffic of the city
of Bologna (Italy) using SUMO, an open-source traffic
simulator [23]. SUMO allows simulating the dynamics of
traffic, such as stop-and-go effects and traffic lights. The
scenario is publicly available4 and models the area around
the ‘‘Andrea Costa’’ road in Bologna (Figure 5).
The available data is based on traffic measurements

collected from induction loops. The city administration
of Bologna provided the vehicle counts for three days

4https://github.com/DLR-TS/sumo-scenarios/tree/main/bologna/; Last
visited: August 18, 2023
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FIGURE 5. Street network of the bologna scenario (highlighted in blue)
located at approximately 44.494554, 11.314393 (latitude/longitude)
obtained through OpenStreetMap [24].

(11 to 13 November 2008). In addition to vehicular traffic,
the scenario includes public transport, bus stops, and special
lanes. The authors use raw data from detectors, sensed hourly,
to create a simulation that replicates the typical traffic patterns
during the 8 AM–9 AM rush hour [25].

The scenario includes models of vehicle types such as
hatchbacks, sedans, wagons, vans, and buses. The vehicles
belong to CO2 emission classes Euro 1 to Euro 4, according
to the classification in the Handbook Emission Factors for
Road Transport (HBEFA) [26]. SUMO simulates vehicles’
CO2 emissions according to their class.

We run different simulations with SUMO on the scenario
of Bologna. In each simulation, the traffic dynamics in
SUMO are randomized according to the following parame-
ters:

• Random departure offset: each vehicle is added in the
simulation with a delay between 0 and 5 seconds with
respect to the insertion time (defined by the scenario).

• Vehicle type distribution: when a new vehicle is inserted
in the simulation, SUMO decides the type of the vehicle
according to a probability p associated with each class;

• Speed deviation: the desired driving speed among the
vehicle of a fleet;

• Reaction time: the time required by a driver to react to
their surroundings in every simulation step;

• tau: measures the traffic safety level for the vehicle,
in case a vehicle in front suddenly decelerates or brakes.

The values for the previous parameters are chosen ran-
domly at the beginning of the simulation. Adding randomness
in the traffic model enables evaluating the accuracy of the
estimates in different and unpredictable traffic conditions.

We chose the location of the sensing agents in correspon-
dencewith themain intersections and roundabouts (Figure 6).
During a simulation, the IoT-connected vehicles send

information to the nearest sensing agent. Then, the sensing
agent aggregates the information collected to estimate the
local traffic density.

FIGURE 6. Placement of the sensing agents and the related Voronoi
regions. Best seen in color.

To simulate the lack of data from IoT-connected vehicles
(because of missing sensors, or citizens who do not share
information) we specify, for each simulation in SUMO,
the percentage of IoT-connected vehicles providing data to
the sensing agents. For instance, if we use a percentage
of 25%, then at each time instance only 25% of the
vehicles in the simulation send information to the nearest
sensing agent. We consider the following percentages of IoT-
connected vehicles: 25%, 50%, 75%, and 100%. For each
percentage, we run 100 simulations using SUMO. To assess
that 100 simulations are sufficient to obtain statistically
significant results, we calculate the cumulative mean of
the traffic density estimation error among all simulations
and for each sensing agent. The plots of the cumulative
average traffic density estimation errors are available in
Figure 20, 21 and 22 of the Appendix D. The cumulative
mean estimation error converges to a stable mean after
about 50 simulations, confirming that the chosen number of
simulations is appropriate.

We use a time series cross-validation technique to evaluate
the accuracy of the estimation results. Let y = {y1, . . . , yn}
be a time series. In time series cross-validation, samples from
y1 to yt−1, with 1 ≤ t − 1 < n are used as a training set for
estimating yt . Contrarily to standard cross-validation, we do
not consider the time series future at t . Since it is not possible
to obtain a reliable forecast based on a small training set, the
earliest observations are not considered as test sets [27].

To evaluate the accuracy of the results obtained by our
proposal, we use the following error measures:

• Absolute traffic density estimation error: the Mean
Absolute Error (MAE) is calculated as the difference
between the estimate and the actual traffic density. This
value represents the number of vehicles that a sensing
agent misses to estimate. The lower the value, the better
the result.

• Traffic density estimation error percentage: theMean
Absolute Percentage Error (MAPE), calculated as the
difference between the estimate and actual traffic
density, divided by the actual traffic density. This value
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FIGURE 7. Sensing agents, represented as a vertex, cooperate with those
that support the same frequency. For the sake of simplicity, not all the
edges are shown. Best seen in color.

represents the percentage of vehicles that a sensing agent
misses to estimate. The lower the percentage, the better
the result.

B. AGGREGATION FREQUENCY ANALYSIS
In HybridIoT, it is possible to specify the aggregation
frequency of each sensing agent. This parameter affects the
estimation of traffic density, as the information collected
(and estimated) by sensing agents has a different resolution
depending on the aggregation frequency.

In cooperative estimation (both endogenous and exoge-
nous), sensing agents cooperate only with others having the
same aggregation frequency. By doing so, agents cooperate
by exchanging data windows having information at the same
resolution.

Figure 7 shows the cooperation relationships between
agents.We represent each agent as a set of three vertices. Each
vertex indicates a specific aggregation frequency of an agent.
When an agent aggregates information at a frequency f , it can
only cooperate with other agents having the same aggregation
frequency f . In Figure 7, this cooperation mechanism is
represented by the edges between vertices having the same
color (same aggregation frequency). This results in different
complete graphs, one for each aggregation frequency. We say
that the graphs are complete because we assume that each
sensing agent can cooperate with all the other available agents
with the same frequency.

In Appendix E, we report the best aggregation frequencies
for all the percentages of missing vehicles and estimation
methods (non-cooperative, cooperative endogenous, and
cooperative exogenous).

The best aggregation frequency is the one that yields the
lowest estimation error (MAPE). The optimal value for the
aggregation frequency depends on the location of the sensing
agents and therefore the typical traffic flow in the observed
regions.

A high aggregation frequency generally requires a signif-
icant amount of data windows that accurately describe the

FIGURE 8. Comparison of average absolute traffic density estimation
percentage error (MAPE) obtained from HybridIoT.

traffic dynamics. Contrarily, using low frequencies provides
data windows that describe information less accurately
because they lack fine-grained details about variations in
traffic dynamics. Using low frequencies is reasonable when
sensing agents do not have much information to calculate
traffic estimates.

In the following sections, we present the results obtained
by HybridIoT using the best aggregation frequency for each
sensing agent. The best aggregation frequency for a sensing
agent is the one that allows minimizing the traffic density
estimation error.

C. TRAFFIC DENSITY ESTIMATION RESULTS
This section presents the results collected by using the
HybridIoT for estimating traffic density measures. We com-
pare the results to those obtained through state-of-the-art
regression techniques.

The goal is to show that the cooperative method out-
puts accurate traffic density estimates, and the cooperative
exogenous estimation allows for further improvement in
the results over the cooperative endogenous method. For
this, we report the results obtained from the cooperative
estimation method, whereas the results obtained from the
non-cooperative estimation are in Appendix C.

The key result of this work is shown in Figure 8, that
compares the MAPE obtained from non-cooperative, coop-
erative endogenous, and cooperative exogenous estimation
techniques.

The results in Figure 8 show that cooperation between
sensing agents outputs accurate traffic density estimates. The
cooperation provides a way for agents to tackle the lack of
data in their knowledge base.

1) COOPERATIVE ENDOGENOUS TRAFFIC DENSITY
ESTIMATION
Figure 9 shows the average estimation error (MAE) obtained
from HybridIoT, using the cooperative endogenous estima-
tion.

The average MAE is 3.95 vehicles, and the standard
deviation 1.72.
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FIGURE 9. Cooperative endogenous estimation method assessment.
Average absolute traffic density estimation error (MAE).

FIGURE 10. Cooperative endogenous estimation method assessment.
Average absolute traffic density estimation percentage error (MAPE).

The trend of the error varies almost uniformly because of
the size of the sample studied. Using larger sample sizes,
which means a higher percentage of connected vehicles,
results in a more accurate representation of the population.
However, this also results in a higher magnitude of the error.

Figure 10 shows the average estimation percentage error
(MAPE) obtained by using the cooperative endogenous
estimation.

We note that the MAPE follows a different trend compared
to MAE. More specifically, we remark that the error does
not increase linearly with the percentage of IoT-connected
vehicles. When the number of connected vehicles increases,
the information provided by sensing agents reflects more
accurately the traffic dynamics, as the number of detected
vehicles is closer to the actual one. Using this information
in a cooperative estimation context enables agents to achieve
a more precise assessment of the traffic state. This results in
a lower percentage error, as shown in Figure 10.

2) COOPERATIVE EXOGENOUS TRAFFIC DENSITY
ESTIMATION
In exogenous estimation, cooperative agents calculate traffic
density estimates using different variables as predictors.
In this study, we consider the average vehicle proximity,
average estimation delay, average vehicle speed, and average

FIGURE 11. Cooperative exogenous estimation method assessment.
Average absolute traffic density estimation error (MAE).

FIGURE 12. Cooperative exogenous estimation method assessment.
Average traffic density estimation error percentage (MAPE).

CO2 emissions. The estimated values calculated using these
variables are provided to the agent that must estimate the
traffic density. This agent outputs the traffic density value
(among those received cooperatively) that minimizes the
distance to the expected traffic density measure.

Figure 11 shows the estimation error (MAE) obtained
by using the cooperative exogenous technique, Figure 12
shows the estimation accuracy (MAPE) obtained by using the
exogenous estimation technique.

The cooperative exogenous estimation allows obtaining
a lower estimation error compared to cooperative endoge-
nous estimation (considering the MAPE, 39% using the
cooperative endogenous method, 11% using the cooperative
exogenous method). The magnitude of error in the MAE
increases linearly with the number of connected vehicles.
Conversely, the MAPE decreases as the number of connected
vehicles increases. In this case, we argue that this is because
the system is capable of providing accurate estimates even if
there are a large number of IoT-connected vehicles, thanks to
the use of heterogeneous data.

When using the exogenous estimation, a sensing agent
assembles several sets of data windows, one per traffic
variable. The agent selects the traffic variable associated with
the set of data windows that allows for obtaining the most
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TABLE 3. Cooperative exogenous estimation method assessment. Each
cell contains the number of times a traffic variable is chosen to estimate
traffic density. The values are normalized in the range [0,1].

accurate estimate. This is done each time a sensing agent must
estimate a missing traffic density value.

Table 3 lists the number of times a traffic variable is
chosen by the sensing agents. We average the values of
all agents among the 100 simulations and the percentages
of IoT-connected vehicles (25% to 100%). The results are
normalized in [0, 1].
The results show that the most used variable as a predictor

for estimating traffic density is the average vehicle speed,
whereas the least used is the CO2 emissions.

This information is relevant because it proves that the
dynamics of the two pieces of information are related.
Therefore, it is possible to explain the traffic density
estimation error as a function of the average vehicle speed.

Table 4 shows the number of cooperative involvements
between sensing agents. Each value in the table is calculated
as follows. Let Ai be the agent to calculate the traffic density
estimate.WhenAi chooses the estimation value from an agent
Ai, with k ∈ [0, |A|], i excluded, then the value (i, k) in the
table is incremented by 1.

The diagonal is zero because, in exogenous cooperative
estimation, we assume that the estimate of the traffic density
value is obtained only from the values of cooperative agents.
By doing so, we avoid the selfish behavior of sensing agents
that could lead these to choose only their data windows. Also,
we assume that by using the values from cooperative agents it
is easier to group agents that exhibit more similar dynamics.

3) COMPARISON TO STATE-OF-THE-ART
We compare the results obtained from HybridIoT to those
obtained by state-of-the-art regression techniques.

We use different regressors available in the library Skfore-
cast.5 We use the default parameters for all the regressors.
These parameters include the number of forward steps to
estimate and the size of the training set.

Figure 13 compares the estimation error (MAE) obtained
from the standard regression techniques in Skforecast and
HybridIoT.

HybridIoT outperforms standard regression techniques
for traffic density estimation. The cooperative endogenous
method outperforms 2/3 of the standard techniques, while
the exogenous estimation outperforms all methods. The
exogenous estimation technique yields estimation errors
that are on average 45% lower than the standard methods.

5https://joaquinamatrodrigo.github.io/skforecast/0.11.0/index.html; Last
visited: December 12, 2023

TABLE 4. Cooperative exogenous estimation method assessment.
Number of times the estimate of agent j is selected by agent i as the
closest to the expected traffic density value observed by Ai .

FIGURE 13. Average absolute traffic density estimation error (MAE)
obtained from state-of-art regression techniques in Skforecast (in blue),
and HybridIoT (in orange). The percentages indicate the percentage of
connected vehicles sending information to sensing agents at each time
instant.

Cooperation brings a benefit in estimation, as each sensing
agent can access information that would miss otherwise.
Moreover, the result obtained from cooperative exogenous
estimation indicates that using different traffic variables can
provide insight into traffic dynamics. This proves to be
beneficial for providing accurate traffic density estimates.

D. COST-BENEFIT ANALYSIS
We refer to data acquired from trafficmonitoring devices such
as cameras as ‘‘expensive’’ mainly due to the computational
cost (to extract traffic information from images) and privacy
cost. A way to reduce the cost of camera-based devices is to
use sensing devices that are privacy-preserving by design.

For this experiment, we configure some sensing agents to
provide the actual traffic density, not the estimate. In this
way, the sensing agents simulate the behavior of real traffic
monitoring devices that provide accurate measurements.

We run 100 simulations in SUMO using a specific
configuration (Table 5), and a cooperative estimation method
(endogenous and exogenous). We refer to ‘‘system con-
figuration’’ as the placement of both sensing agents and
CCTVs in the environment. The output of this experiment is a
quantitative indication of the stability of the estimation results
obtained by the sensing agents in different configurations and
environmental contexts.
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TABLE 5. The parameters used for cost-benefit analysis.

FIGURE 14. Cost-benefit analysis assessment. Traffic density estimation
error percentage obtained from cooperative endogenous (14a) and
exogenous (14b) estimation techniques, using different percentages of
CCTVs (simulated) and sensing agents.

If a given percentage of sensing agents provides accurate
estimates independently of the number of agents (either
sensing agents or CCTVs) with which it cooperates, then we
can argue that using a CCTV at that point of the environment
is not necessary. This information can be used by traffic
management experts to decide if it is suitable to sacrifice the
accuracy of the traffic density measurement while ensuring
both privacy and economic gain.

Each row of Table 5 identifies a group of four experiments,
one per each percentage of IoT-connected vehicles (25-50-
75-100). For each configuration, we perform 100 simulations
using random traffic dynamics, as in previous experiments.
We use both cooperative estimation methods (endogenous
and exogenous).

Figure 14 shows the plot of the accuracy of estimates
obtained from cooperative endogenous (Figure 14a) and
exogenous estimation (Figure 14b), and considering different
percentages of CCTVs.

The accuracy of the estimation method increases with the
number of camera-based devices. The average percentage of
error obtained through the endogenous estimation technique,

when using 50%of sensing agents (and 50%of CCTV), is just
22%. This information proves the cost-effectiveness of the
proposed method: the accuracy of traffic density estimation
depends linearly on the amount of sensing agents in the
system.

We consider the work by Matczak et al. [2] as a case study
to assess the cost savings induced by using HybridIoT for
traffic monitoring. The authors pursue a cost-effectiveness
analysis of CCTV surveillance systems in eight Polish cities:
Poznan, Gdansk, Katowice, Kielce, Lublin, Lodz, Poznan,
Warsaw, andWroclaw. They consider two categories of costs:
the cost of installing cameras during the 2005–2014 period,
the maintenance costs, and the personnel costs. The costs are
aggregated. These are provided by the administrative bodies
of the cities.

Table 6 lists the installation cost, the personnel cost,
and the technical maintenance per camera. We consider,
as a reference, the aggregated costs for the CCTV system
in the city of Poznan over the period 2010-2012 [2].
We also report the hypothetical costs related to the use of
different percentages of sensing agents. We say that these
results are hypothetical because they are meant to show
how much sensing agents, when integrated with an existing
CCTV system, enable saving money on traffic monitoring
infrastructure.

From these results, we can assess that using sensing
agents can bring a twofold advantage to a traffic monitoring
system. The first is economic because the use of low-cost
devices associated with sensing agents allows municipalities
to save on installation, maintenance, and personnel costs.
Second, the use of sensing agents makes it possible to
estimate traffic density information in a privacy-aware
manner, ensuring accurate estimates even when a limited
quantity of information is available from citizens’ devices or
IoT-connected vehicles. To determine the best percentage of
sensing agents, it is necessary to determine a solution that
minimizes the costs while maximizing the accuracy (Pareto
optimal solution). This is not possible in this cost-benefit
example, since we only have the costs and not the estimation
accuracy.

The cost of sensing agents must be considered when
implementing an hybrid trafficmonitoring infrastructure (that
is, including physical devices and sensing agents). Generally,
commercial solutions like Arduino (about 30$ in December
2023, board only)6 or Tulip (from 120$ to 600$ in December
2023)7 can be employed to implement such an infrastructure.

VII. DISCUSSION
A key factor for the decisions of traffic operators is the
availability of data from the urban environment. The use of
CCTV-based monitoring infrastructures can be an obstacle
in this regard, as cameras cannot be placed everywhere in
an urban environment, consequently limiting the amount

6https://www.arduino.cc; Last visited: December 12, 2023
7https://tulip.co/products/edge-devices/; Last visited: December 12, 2023
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TABLE 6. Yearly installation, personnel, and technical maintenance costs (in USD) per camera. We report the estimated economic savings due to the use
of different percentages of sensing agents (from 10 to 90%). The baseline costs (0% sensing agents) are the baseline, taken from [2].

of data that can be collected from the environment. The
use of data collected from IoT-connected vehicles may
represent a trade-off between the high operating costs of
camera-based infrastructure and privacy. However, citizens
must become primary actors in the decision-making process
and are involved in data collection activities: would they be
willing to provide information such as location, commuting,
and usual routes to avoid the installation of CCTV cameras
in the city? We argue that answering this question requires an
extensive analysis of acceptance by the citizens, as this can
influence where to install sensing agents.

VIII. CONCLUSION AND FUTURE WORKS
This paper proposes a novel method for estimating urban
traffic density. We use the HybridIoT estimation technique to
pursue traffic estimation at a large scale. Our proposal enables
estimating traffic density measures by aggregating data from
IoT-connected vehicles and addressing privacy awareness,
operational costs, and hardware requirements challenges. Our
proposal can integrate existing sensing infrastructures to limit
the deployment of additional sensor devices. The sensing
agents provide accurate estimates using the information
collected from the environment and cooperation with other
available sensing devices.

We carried out experimentations using the traffic simulator
SUMO with a realistic scenario from the city of Bologna,
Italy. We compared the results of traffic density estimation
to those obtained by state-of-the-art regression technique and
compared endogenous and exogenous results, and cooper-
ative and non-cooperative results from sensing agents. The
results obtained by the cooperative estimation of HybridIoT
outperform the state-of-the-art methods.

The key benefit of the proposed technique stems from
leveraging cost-effective information. Our proposal aggre-
gates FCD and other data collected from environmental
sensors to calculate traffic estimates. The use of such
information offers economic advantages, as there is no
need for costly surveillance cameras or high-performance
computing modules to achieve real-time traffic monitoring
at the edge. Also, our proposal ensures privacy by avoiding
the use of confidential data such as images: this type of data
may not be accessible at every point, requires eliminating any
personal information (such as the license plate of each vehicle
detected by the camera), and significant computational
resources to detect traffic.

In the context of the TORRES project8 we will apply
the same estimation technique on a traffic simulation model
of the city of Brussels, Belgium. The project TORRES
aims at enriching knowledge about the dynamics of urban
mobility in the Brussels region through the integration of real
data, collected from existing monitoring infrastructures and
opportunely anonymized, and synthetic data created through
data augmentation methods. In the context of this project,
we will develop new AI-based methods for interpolating
mobility data considering the uncertainties and unpredictable
dynamics of the physical environment.

In future work, we will also investigate methods that
enable the sensing agent to determine autonomously the most
pertinent aggregation frequency. Also, we will focus on the
use of traffic variables to infer the status of traffic. This
includes, for instance, predicting anomalies such as accidents
on roads by aggregating heterogeneous traffic variables,
but also extracting city semantics from data collected from

8https://mlg.ulb.ac.be/wordpress/portfolio_page/torres/; Last visited:
August 17, 2023
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FIGURE 15. Average absolute traffic density estimation error obtained
from using different values of k in time-series cross-validation.

vehicles. Further future work concerns the use of HybridIoT
for traffic planning [28] using prototyping toolkits such as
TRAPP [29] and implementingHybridIoT in edge computing
testbeds such as SMOTEC [30].

APPENDIX A
ESTIMATION MODEL CALIBRATION
A. K-FOLD TIME SERIES CROSS-VALIDATION
Let us suppose ℓ is the temporal horizon of the simulation.
Consequently, each agent observes or estimates ℓ values at
the end of the simulation. When a sensing agent estimates
or perceives information at time t , it verifies that the amount
of data observed is equal to the size of the partitions (ℓ/k).
To do so, we use a simple counter that measures the quantity
of data that each sensing agent observes. This counter is reset
to zero every time the amount of data is equal to the size of
the partitions. If the counter is reset to zero at time t , then all
the data windows assembled before t are used as a training
set to estimate the next traffic information.

We now verify the most pertinent value for k to be
used for time series cross-validation. For best, we mean the
value that enables minimizing the average traffic density
estimation error. We evaluated the following k values (chosen
arbitrarily): 5, 10, 15, 20, 25. For this validation, we do not
use any source of randomness in SUMO; the reason is that
we want to find the best value of k under the same traffic
condition.

Figure 15 resumes the results obtained from estimating
traffic density measurements using different values of k . In all
experiments, we use time-series cross-validation.

Under the same traffic condition (no source of randomness
in traffic), the most pertinent value of k is 25. This value will
be used in all subsequent experiments.

B. NUMBER OF SENSING AGENTS
The number and location of each sensing agent depend on
the urban context in which the MAS operates; traffic man-
agement operators may decide the configuration of sensing
agents in points of the urban environment where traffic
density measurements are required, and camera devices
cannot be installed. Herein, the configuration includes the
location of the sensing agents or the frequency at which they
provide aggregated counts of the vehicles. The information

FIGURE 16. Average absolute traffic density estimation error obtained
from using different parameters related to context windows. The orange
bar indicates the error related to the chosen combination of parameters
used to perform simulations.

collected from the sensing agents is used to estimate traffic
density measurements.

C. CONTEXT WINDOWS CONFIGURATION
The goal of this validation is to find the most pertinent values
for the following parameters, related to context windows:

• Number of context windows: the number of context
windows that each sensing agent uses when estimating a
traffic density measure. We evaluated all values in range
[2, 30] at step of 2 for this parameter;

• Size of context windows: the exact size of each
context window in sensing agents’ knowledge base.
We evaluated the following values: 4, 6, 8, 10.

We evaluated all combinations of previous values. We con-
sider the most pertinent combination of parameters as the
one that allows for minimizing the traffic density estimation
error. In this validation, we do not consider any source
of randomness in traffic simulations. Figure 16 shows the
average absolute traffic density estimation error obtained
using different combinations of context windows size and the
number of context windows. These parameters are used by all
sensing agents when estimating traffic density measures.

From the plot in Figure 16, we observe that the estimation
error decreases as we consider a higher number of context
windows in the estimation process. Many context windows
enable the sensing agents to calibrate the traffic estimation
response. The motivation is intrinsic to the estimation
technique: where the most similar context windows receive
higher weights than the others. If few context windows are
used, having noisy or incorrect values, these windows receive
a high score in the calculation of the weight w, resulting in
inaccurate traffic density estimates. In other words, a small
number of context windows makes sensing agents unable to
well discriminate between different traffic dynamics, leading
to high estimation error.

There is no specific rule for finding the minimum number
of context windows to be used for obtaining accurate
estimates. This value depends on the environmental context
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in which sensing agents operate. In some regions, the traffic
dynamics can vary unpredictably so that at a specific time
instant, a variable quantity of context windows would be
needed to estimate traffic density measures. For example,
if few context windows contain information whose dynamics
are similar to those observed by the sensing agent, then
adding further context windows in the estimation process
could add noise to the traffic estimate, resulting in a high
estimation error. This is a consequence of the way the sensing
agents chose context windows according to the distance d : the
more context windows are chosen, themore likely the sensing
agent chooses context windows that have a higher distance
from the reference context. However, this also depends on the
quantity of data in knowledge bases and the noise in context
windows.

APPENDIX B
COMPUTATIONAL TIME
All experiments have been carried out on a server machine
equipped with Intel Xeon Gold 6242 processors, and Linux
operating system (kernel version 4.15). For the sake of
comparison, here we also report the performance of the
proposed method on a desktop machine equipped with an
Intel i5-8279U processor and Windows 11 operating system.

For both configurations, we profiled the execution of
the proposed method using the ‘‘cProfile’’ tool for Python.
We report, for both configurations, the following metrics:

• Per call time: the amount of time spent on a single
function call. This is measured in seconds.

• Cumulative time: is the cumulative time spent on this
and all sub-functions (from invocation until exit). This
figure is accurate even for recursive functions. This is
measured in seconds.

The following tables report the time (in seconds) required
to perform the main steps of the proposed method, for both
machine configurations. Specifically, we report the time for
the following steps:

• Agent cycle: the amount of time required for a
sensing agent to complete its nominal behavior. This
includes aggregating data, estimating traffic density, and
operations on context windows;

• Traffic density estimation: the amount of time required
to estimate a traffic density measure;

• Context windows retrieval: the amount of time
required to obtain the set of most similar context
windows needed to estimate the traffic densitymeasures;

• Traffic variables evaluation: the amount of time
required to evaluate the values of the traffic variables.

Table 7 reports the cumulative time for themain steps of the
proposed method, obtained from profiling the execution of a
single simulation on the server machine (with Xeon CPU).

Table 8 reports the Per Call time for the main steps of the
proposed method, obtained from profiling the execution of a
single simulation on the server machine (with Xeon CPU).

TABLE 7. Cumulative time (in seconds) obtained by profiling one
simulation with SUMO, and using different traffic density estimation
techniques. These results relate to the machine equipped with a Xeon
CPU. Colors indicate the time required (from blue, less time, to red, more
time).

TABLE 8. Per call time (in seconds) obtained by profiling one simulation
with SUMO and using different traffic density estimation techniques.
These results relate to the machine equipped with a Xeon CPU. Colors
indicate the time required (from blue, less time, to red, more time).

TABLE 9. Cumulative time (in seconds) obtained by profiling one
simulation with SUMO, and using different traffic density estimation
techniques. These results relate to the machine equipped with an i5 CPU.
Colors indicate the time required (from blue, less time, to red, more time).

TABLE 10. Per call time (in seconds) obtained by profiling one simulation
with SUMO and using different traffic density estimation techniques.
These results relate to the machine equipped with an i5 CPU. Colors
indicate the time required (from blue, less time, to red, more time).

Table 9 reports the cumulative time for the main steps of
the proposed method, obtained from profiling the execution
of a single simulation on the server machine (with i5 CPU).

Table 10 reports the Per Call time for the main steps of the
proposed method, obtained from profiling the execution of a
single simulation on the server machine (with i5 CPU).

Figure 17 shows the average cycle time among all
sensing agents, and the average number of context windows.
We calculated the results using a moving average over the
data with a window of size 50.

From the figure, we can see that the time required to com-
plete an agent cycle time initially increases significantly with
the number of context windows, and then slowly converges
in the case of non-cooperative and cooperative endogenous
estimation. In the case of the exogenous estimation, the time
required to complete an agent cycle is on average more
than twice as long as the endogenous estimation (either
cooperative or non-cooperative). In exogenous estimation,
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FIGURE 17. Average number of context windows (left axe) and average
agent cycle time (right axe) obtained by HybridIoT.

FIGURE 18. Non-cooperative estimation method assessment. Average
absolute traffic density estimation error (MAE) obtained from HybridIoT.

FIGURE 19. Non-cooperative estimation method assessment. Average
traffic density estimation error percentage (MAPE) obtained from
HybridIoT.

the sensing agents estimate one traffic density measure
for each set of context windows, one per traffic variable.
However, the time required to complete an agent cycle is
limited, considering the average number of agent context
windows.

APPENDIX C
NON-COOPERATIVE ENDOGENOUS TRAFFIC DENSITY
ESTIMATION
In this appendix, we present the results obtained from
the estimation technique HybridIoT, using non-cooperative

TABLE 11. Best aggregation frequency (in seconds) obtained by the
non-cooperative estimation method.

estimation. Herein, the sensing agents use only their historical
data to provide an estimate of the traffic density.

We run 100 simulations with SUMO, using the scenario
from Bologna, for each percentage of IoT-connected vehicles
(from 25% to 100%). Figure 18 shows the MAE obtained for
each sensing agent and each percentage (25% to 100%) of
IoT-connected vehicles.

The average traffic density estimation error (MAE) is
38.43 vehicles, the standard deviation is 22.95.

When considering the MAE, the lower the error, the better
the model performs in the task of estimating traffic density.
However, it is not possible to assess the quality of the
results based only on this error measure. For this, we also
measure the MAPE for the estimation error generated by the
non-cooperative method in HybridIoT (Figure 19).
Considering the MAPE, the non-cooperative method

output a significantly high error. The high error is mainly
due to the cold start problem: agents have few data windows
when they start estimating data, thus leading to high
errors. When the agents start their functioning, the amount
of data windows can be insufficient to ensure accurate
estimates. Consequently, the estimation error produced by the
agents propagates in their data windows and the subsequent
estimates, leading to high errors.

APPENDIX D
STABILITY OF THE ESTIMATION ERROR
In this experiment, we verify that the chosen number of
simulations (100 for each percentage of IoT-connected vehi-
cles) is sufficient to obtain a statistically significant sample.
Because traffic behavior is variable among simulations, it is
important to validate the proposed technique on a sufficient
number of simulations to assess the accuracy of the estimation
results compared to state-of-the-art techniques. Herein we
calculate the cumulativemean of the traffic density estimation
error among sensing agents, for all simulations. Despite the
random behavior of the traffic, after a certain number of
simulations, the cumulative mean estimation error should
converge to a stable result. In other words, after a certain
number of simulations, two subsequent cumulative mean
results vary by an irrelevant quantity. If so, we can argue that
the number of simulations performed is sufficient to obtain a
statistically significant sample.
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FIGURE 20. Cumulative mean stability calculated from the traffic density estimation error, using non-cooperative estimation
technique. Each plot refers to a specific percentage of IoT-connected vehicles (25%, 50%, 75% and 100%).

FIGURE 21. Cumulative mean stability calculated from the traffic density estimation error, using cooperative endogenous
estimation technique. Each plot refers to a specific percentage of IoT-connected vehicles (25%, 50%, 75% and 100%).
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FIGURE 22. Cumulative mean stability calculated from the traffic density estimation error, using cooperative exogenous estimation
technique. Each plot refers to a specific percentage of IoT-connected vehicles (25%, 50%, 75% and 100%).

TABLE 12. Best aggregation frequency (in seconds) obtained by the
cooperative endogenous estimation method.

Figure 20 shows the plots of the cumulative average
estimation error obtained from the non-cooperative estima-
tion technique. The plots show that the cumulative mean
converges towards a stable result even when a limited
percentage of vehicles provide data to sensing agents.

Figure 21 shows the plots of the cumulative average
estimation error obtained from the non-cooperative estima-
tion technique. The plots show that the cumulative mean
converges towards a stable result even when a limited
percentage of vehicles provide data to sensing agents.

Figure 22 shows the plots of the cumulative average
estimation error obtained from the non-cooperative estima-
tion technique. The plots show that the cumulative mean

TABLE 13. Best aggregation frequency (in seconds) obtained by the
cooperative exogenous estimation method.

converges towards a stable result even when a limited
percentage of vehicles provide data to sensing agents.

APPENDIX E
BEST AGGREGATION FREQUENCY FOR SENSING AGENTS
Tables 11, 12, 13 list the best aggregation frequencies
obtained from non-cooperative, cooperative endogenous and
cooperative exogenous estimation methods in HybridIoT.
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