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ABSTRACT In recent years, the equipment that makes up smart homes is required not only to be functional,
but also to be integrated with the design and aesthetics of the living space. Among them, interfaces that
directly touch the human eye and hands are the key to maintaining design, but there were many issues in
terms of integration with design and aesthetics of living spaces. In this paper, we propose an interface system
that operates existing furniture by touching it as a new interface that integrates beautifully into the living
space. The proposed system detects user operations with four small vibration sensors attached to hidden
locations of existing furniture and uses deep learning to learn the vibrations when a person touches the
furniture. Using this method, thick materials difficult to achieve with normal capacitive touch sensors can be
utilized. In the experiment, a dining table was used as a representative piece of furniture, and the accuracy
of detecting the direction in which three participants swiped in four directions on the table was verified.
As a result of the experiment, the accuracy was confirmed by Leave-One-Person-Out-Cross-Validation using
3 sessions of swipe data for each individual for 3 participants, and the accuracy was 0.67. Furthermore,
we verified the accuracy of a trained model created by adding only one session of evaluation target data to
each learning dataset used in the Leave-One-Person-Out-Cross-Validation. As a result, the accuracy reached
0.90, achieving practical precision.

INDEX TERMS Touch interface, operation recognition, vibration sensor, deep learning.

I. INTRODUCTION
As housing equipment becomes smarter, smart homes are
becoming more familiar, and various studies are being
conducted not only on smart home appliances but also on
smart furniture [1], [2], [3]. Additionally, smart furniture
is being researched to provide comfort for the elderly [4].
Furthermore, in recent years, smart home appliances and
housing equipment are required not only to be functional
but also to have design features such as beauty and texture
that harmonize with the living space without making people
aware of their presence. The interface, in particular, directly
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links the dweller and the equipment and is the key to
harmony among people, equipment, furniture, and living
space design. Existing input interfaces currently used in smart
homes include remote controls and smartphone applications.
However, various studies have been conducted to realizemore
human-friendly interfaces.

For example, input methods using cameras, infrared rays,
or a combination of both have been studied so that a person
can operate a device such as a remote control without holding
it using the person’s movements, gestures, and so on [5],
[6], [7], [8], [9], [10], [11]. Also, to combine display and
sensor devices for more comfortable operation, research is
being conducted on interfaces that utilize both a highly
expressive Graphical User Interface (GUI) using projection
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mapping and information on human movement captured by
cameras [12], [13], [14]. These methods have the advantage
of being operable without the need to hold the device and
can be combined with GUI to support hierarchical operations
such as menu screens. However, cameras and motion sensors
must be positioned where the sensors can see the target
object. Similarly, projection mapping must be positioned
where people are not in shadow. Thus, cameras, motion
sensors, and projection mapping have occlusion problems
and restrict the furniture arrangement in the home, which
in turn imposes restrictions on the living space design.
Moreover, the visibility of sensors to users poses a challenge.
Even if an intuitive interface is achieved, maintaining the
aesthetic harmony and texture of furniture within the space
due to sensor placement remains a challenge (Issue 1).
In addition to this, privacy concerns exist when cameras
and other image recognition devices are placed indoors
(Issue 2).

On the other hand, interfaces using voice recognition [15]
are also being used. Interfaces using voice recognition
have the advantage of saving installation space and being
easy to introduce. However, there are issues such as the
need to generate voice several times by the adjustment
amount when continuously changing the volume adjustment,
for example, which makes the operation cumbersome and
unintuitive (Issue 3). Additionally, as a method different
from voice recognition, some methods use a microphone to
determine the movement of a person’s operation from an
acoustic signal [16], [17]. Some research extends the input
of more advanced characters using acoustic signals [18],
[19]. However, like cameras, privacy concerns exist when
microphones are installed indoors as smart home controllers.
Therefore, as a sensor device that recognizes human
movement without concern about privacy, a sensor device
using electromagnetic waves is expected, and research is
being conducted. However, themethod using electromagnetic
waves has the problem of lowering the recognition accuracy
due to changes in the radio wave environment caused by the
metal furniture or changes in the layout of the room [20],
[21], [22], [23], [24]. This imposes restrictions not only
on the design of living spaces but also on the materials
used for furniture, leaving issues with the texture, aesthetics,
and design of the materials that people see and touch
(Issue 4).

Meanwhile, in the display interface, an important interface
as well as the input device, research is being conducted on
a hidden interface that emphasizes design and aesthetics and
can be blended into the user’s living space. Olwal et al. [25]
proposed a display interface in which display devices can
be embedded under panels, such as the panels of furniture
or decorative panels of home appliance bodies, and made
invisible by turning off the display devices when not in
use. Hidden interfaces are particularly important in the
home where appearance and design are important, as they
can be made invisible or completely unnoticeable except
when the interface is used, and can also use the texture

of everyday furniture and building materials as they are.
However, since the above study mainly discusses display
devices, the conventional electrostatic method is used for
the input interface. In general, capacitive touch sensors have
extremely low sensitivity under thick materials, and there
are issues, such as the difficulty of using capacitive touch
sensors on furniture made of metal materials. As such,
there is a problem in concealing and installing it while
maintaining the texture of various materials used in existing
furniture.

Based on the discussion so far, for the interface to blend
seamlessly into the user’s living space without compromising
the design and aesthetics of the room, the interface should
be invisible to humans. In addition, it is essential to allow
flexibility in the design of the space where the interface
is used, the furniture’s material, and consider the privacy
issue. To address these requirements, issues 1-4 must be
resolved. However, concerning input interfaces in particular,
there remains a lack of discussion regarding input devices
capable of retaining the materials and textures of devices and
furniture.

In this paper, we propose an input interface that can be
operated by touching the existing furniture and solving the
above issues 1 to 4. We design and develop the input interface
to recognize input operations using only the vibrations
generated when a user swipes the furniture by attaching
four vibration sensors using thin piezoelectric devices to
hidden places on furniture and equipment. Two vibration
sensors are arranged horizontally for the X-axis, and the
other two are arranged vertically for the Y-axis. Hereafter,
we call an output of the sensors as channels or CHs.
The system detects the vibrations generated when a person
touches the furniture with a finger using sensors on each
of the four CHs and classifies the direction in which the
person swipes the furniture into four different types by
learning the signal data obtained from the sensors using
deep learning. These sensors can be used not only by
attaching them to existing furniture but also by embedding
them inside furniture or behind thick wall panels, making
them completely invisible to the user. In addition, unlike
electrostatic touch sensors, this method is less affected by the
thickness of the material. Therefore, the sensor can be placed
behind thicker materials, allowing the operation surface to
use the material’s texture, such as thick wood. Additionally,
it can handle metallic materials, which is difficult to achieve
with electrostatic touch sensors. This capability enables
the realization of an input interface that complements
the design of indoor furniture and building components
made from textured materials without compromising their
aesthetics.

In this study, we chose a table as one of the furniture
to install the interface and studied the recognition of the
4-direction swipe operation (UP, DOWN, RIGHT, LEFT)
by tracing the tabletop with a finger. By devising the
preprocessing in the learning process of data obtained from
sensors and the network structure of deep learning, we were

142612 VOLUME 11, 2023



M. Yoshida et al.: Smatable: A Vibration-Based Sensing Method for Making Ordinary Tables

able to improve the accuracy by more than 15% compared
to the previous study [26]. This improvement in accuracy
has made the system worthy of practical use, although it
requires some processing ingenuity, such as retrying in case
of false detection. Specifically, the following two points were
improved:

• We carefully observed the changes in the fundamentals
and harmonics of the vibration signal during swiping,
and considering that the changes in the harmonic content
are important for swipe direction detection, we modified
the Short Time Fourier Transform (STFT) parameters to
increase the frequency resolution.

• To learn more detailed features during learning,
we increased the number of layers of the deep learning
network (from 5 layers to 7 layers) and introduced a
residual connection.

As a result of the accuracy improvement, in Leave- One-
Person-Out-Cross-Validation (LOPOCV), The accuracy was
improved by approximately 15% when judging the swipe
direction of the participant to be estimated, achieving an
accuracy of 0.67. Furthermore, in addition to the above
conditions, the accuracy of the model trained by adding the
swipe data of an arbitrary estimation target participant to the
learning data for only one session improved the accuracy
by approximately 16%, and the accuracy reached 0.90.
The main contributions of this paper are summarized as
follows:

• First, we have shown that the improvement of the
resolution of the frequency axis and the improvement of
the Convolutional Neural Network (CNN) network lead
to the improvement of the accuracy, and have developed
a new classification algorithm with higher accuracy than
the conventional method.

• Second, we confirmed that a practical level of accuracy
can be achieved by registering data in advance by users
who use the interface. As a result of this improved
accuracy, it is possible to create a furniture interface that
allows users to swipe their fingers across the furniture’s
surface by placing the sensor in an invisible location on
the furniture and using vibration while keeping the same
material.

The remainder of this paper is organized as follows.
Section II introduces related work on in-home interfaces
and discusses its challenges. Section III describes the
requirements that an interface for home use should aim for,
as well as the hardware and algorithms of the proposed
swipe direction detection system. Section IV evaluates our
proposed method. Section V discusses touch sensing using
vibration and improvements. Finally, we conclude our paper
in Section VI.

II. RELATED WORK
In this section, we introduce some existing studies related to
our research, summarize their problems, and then clarify the
research goals of this paper.

A. INPUT INTERFACE USING CAMERA
In recent years, research has been conducted on camera-based
gesture recognition as an interface. Goto et al. [12] used a
pan-tilt camera and projector to project a GUI image on a
table or wall in the home and used video footage of user
actions on the projected image to detect hand gestures as if
it were a touch screen. Simone et al. [13] have constructed an
interface by combining a camera, a projector, and an infrared
laser to realize the recognition of human actions, including
multi-touch, on the projected image.

However, not only are these methods large structures,
but they also present occlusion challenges, and the camera
must be installed so that the projection surface and hands
are within the camera’s angle of view yet unobstructed by
obstructions. As a result, there is a challenge of restricting
the positioning relationship of the furniture. Also, apart from
privacy concerns when the camera is installed in a room,
there are also psychological considerations when the camera
is not in use. This is because the camera is positioned where
it remains clearly visible to the user.

Moreover, considering practical aspects, numerous situa-
tions arise where the home lighting is dimmed, causing a
reduction in the light captured by the image sensor. This
brightness decrease makes it challenging to increase the
frame rate, leading to unclear images and greater difficulty
in identifying moving objects. Additionally, operation-wise,
there is the issue of dealing with substantial information in
the image data, which demands computational expenses for
preprocessing.

B. INPUT INTERFACE USING A MICROPHONE
Braun et al. [27] used multiple contact microphones on a
desk to detect events such as knocks and swipes combined
with machine learning. By using multiple microphones,
it is expandable so that it can be used as a backup in
case of microphone failure, signal synthesis, and external
noise judgment. This study successfully categorizes impact
events involving object hits and swiping events. Nevertheless,
a limitation lies in the failure to detect the direction of the
swipe, posing a challenge to achieving intuitive operation.

Mayank et al. [28] proposed a system for association
and information transfer between multiple devices, such as
smartphones, placed on a mutually shared plane. The system
recognizes various gestures such as swiping, pinching, and
expanding with fingers on a plane shared by multiple
smartphones, using 72 features and the k-nearest neighbor
method, using sensors and contact microphones built into
the smartphones. Furthermore, it is also possible to detect
the direction of the swipe. However, since the surface to be
operated is limited to the plane on which the device is placed,
it is insufficient to be used as a hidden interface system that
is not visible to humans.

C. CAPACITIVE TOUCH SENSOR
Capacitive touch sensors have become widely used as
touch interfaces in smartphones, etc., and various research
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is still being conducted to improve convenience further.
Pourjafarian et al. [29] proposed a capacitive touch sensor
system that runs on a general-purpose microcontroller and
requires no specialized hardware. Parilusyan et al. [30] also
aim to integrate sensors into physical materials and are
developing a modular hardware platform that allows a variety
of materials to be used. However, these methods require
sensors to be spread over the entire operation surface, and
because they use a capacitive method, they have not been
verified when using metal materials or when embedded under
thick materials. For this reason, there are challenges when
sensing while taking advantage of existing furniture designs.
Wu et al. [31] have developed unique touch sensors that
can identify the front and back sides of the touch surface,
respectively. These studies are very good in that soft materials
such as clothing can be used as touch sensors, but because
this method is also a capacitance-based sensor, it is difficult
to place the sensor under thick boards such as furniture.

D. FORCE SENSOR
Lee et al. [32] are developing a physiological signal moni-
toring bed for infants with a load cell sensor, a type of force
sensor, under the plane of the bed. Cheng et al. [33] also used
pressure sensors placed under the legs of a chair to estimate
the activity of a person sitting in the chair. They detected
seven postural states, including leaning back and crossing
one leg over the other knee, with an accuracy of 0.826.
However, the force sensors used in these studies are suited for
detecting slow changes such as heartbeats, weight shifts, and
force-applied movements but have challenges in detecting
light, quick movements with weak force, such as swiping
on a touch screen. On the other hand, the development of
new force sensors with unconventional methods and systems
that utilize these sensors is also being actively pursued.
Liu et al. [34] have developed a unique soft tube-shaped
sensor based on the pneumatic conversion principle as a touch
sensor for smart furniture. This sensor is superior in that it
can be used on soft furniture materials such as beds, but
this method also requires physical deformation of the tube,
making it difficult to embed or affix the sensor to nearly
non-deformable furniture such as tables. Choi et al. [35] have
also developed a force sensor that uses a unique structure to
change capacitance linearly in response to pressing pressure.
This sensor is excellent for 3D touch sensors because of its
high linearity of sensor output in response to applied force.
However, because the sensor must be installed on the surface
of the panel to be touched, there are issues in using the sensor
by hiding it on existing furniture to take advantage of the
texture of the material.

E. VIBRATION SENSOR
Kawakatsu et al. [36] proposed an interface embedded in
kitchens, washstands and bathrooms that can be operated in
wet domestic environments such as kitchens and bathrooms.
As an example, they have sensors built into their bathtubs.

The embedded sensor is placed behind the bathtub so it
cannot be seen from the front. It contains a vibration sensor
using a piezoelectric device and an electrostatic sensor to
recognize operations such as touching or scratching the
bathtub. They distinguish between tapping and scratching by
focusing on the fundamental frequency, F0, of the spectrum
in the vibration signal specific to the scratching sound.
However, they do not consider swiping motions across
the bathtub’s surface or detecting the direction of such
movements.

Yasha et al. [37] are studying an interface using surface
acoustic waves (SAWs) using a Voice Pickup Unit (VPU).
Since surface acoustic waves propagate on the surface of
a material along the boundary between the air and the
surface, they are characterized by being less susceptible to
ambient noise and propagating over long distances. They
have utilized the characteristics of surface acoustic waves
to receive the SAWs generated when a VPU sensor is
installed on the operating plane of a table and a finger
or other object comes into contact with the surface of the
table when a gesture is performed, extract features using an
optimizedMel FrequencyCepstrumCoefficients (MFCC) for
the obtained signal, and classify the type of gesture using
machine learning. They have discriminated against seven
types of gestures, including no operation, with an accuracy
of 95.2%. Also, in an experiment to recognize vibrations
associated with cooking actions, such as the operation of
cooking utensils on the table, 17 types of actions, including
actions that do not operate anything, were classified with a
high accuracy of 99.2%. In addition, using two VPU sensors,
swipe operations in one axis and two directions are achieved
with an accuracy of 99.6%. However, SAWs are constrained
by the boundary line between the surface and air and are
known to decay exponentially in the depth direction, making
it difficult for vibrations to enter the structure. Therefore,
when sensors are installed in hidden locations to blend the
interface into the room, it is not easy to install them in
complex locations not visible from the operating surface,
such as behind decorative panels on furniture.

F. HIDDEN INTERFACE
Olwal et al. [25] are researching a hidden display device
that realizes on-demand interaction and digital display while
using the beauty of familiar materials in furniture and home
appliances. This device secures brightness by performing
parallel rendering that simultaneously activates and displays
the necessary, multiple rows instead of the simple scanning
method that sequentially emits light from the light-emitting
elements used in general displays. By performing such
processing, it is possible to secure 5 to 10 times the brightness
of conventional materials, and by embedding this device
inside furniture and home appliances and emitting light,
characters and symbols can be highlighted on the materials
with high brightness. On the other hand, by turning off the
light when not in use, only the material can be seen, making
it possible to achieve both the beauty and functionality of the
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material, which was difficult in the past. By embedding these
devices in various materials and verifying them, we have
realized a display interface that preserves the texture and
beauty of materials essential for home interior design. They
also conducted a large-scale questionnaire survey considering
the realization of a hidden interface and proposed it as a
display method that matches the adaptation to aesthetics and
user styles. This research is excellent in that it provides new
insight into the importance of design in ambient computing,
but the focus of the paper is on display devices, and the
input interface used in the experiment is a conventional
capacitive touch sensor. Capacitive touch sensors have the
excellent feature of enabling multi-touch, but in principle,
sensitivity decreases in proportion to the distance from the
sensor electrodes to the panel surface, making it difficult to
use thick materials [38]. In addition, it is generally difficult
to use metal materials.

G. SETTING RESEARCH OBJECTIVES VIA EXAMINATION
OF RELEVANT LITERATURE
The various sensing and interface research efforts described
above are diverse, but they are insufficient to solve issues 1-4
described in Section I and to realize an input interface that
blends into the design and aesthetics of the home and the
living space. Therefore, in this paper, we try to address these
issues.

III. PROPOSED SYSTEM
We propose a stem that enables input operations by touching
existing furniture as an input interface that can solve issues
1-4 described in Section I, blends in with the design and
aesthetics of homes and living spaces. For the specific input
operation, we decided to implement a swipe operation on
the furniture’s surface. In this section, we first present the
requirements that the proposed method must meet and then
describe the overall structure of the proposed system. Next,
the basic study and detection algorithm for swipe detection
will be described in detail.

A. REQUIREMENTS
We have identified the following four requirements for
the four issues listed in Section I, and considered their
embodiment:

• Requirement 1: Sensing must be possible with a sensor
placed in a hidden position, out of sight of the user.
(Corresponds to Issue 1)

• Requirement 2: Invasion of privacy must be minimal.
(Corresponds to Issue 2)

• Requirement 3: Must be able to operate intuitively, such
as being able to move or indicate direction in 4 or more
directions. (Corresponds to Issue 3)

• Requirement 4: It is necessary to be able to use textured
materials such as metal materials and thick wood for the
parts that people see and touch. (Corresponds to Issue 4)

As a sensor to realize a system that meets these require-
ments, we focused on vibration sensors using piezoelectric

elements. Unlike optical cameras and infrared sensors,
vibration sensors that use piezoelectric devices are small and
thin and can be placed in hidden and invisible positions
in furniture and equipment, so they fit Requirement 1.
Furthermore, since the sensor captures the vibrations of the
user touching the interface instead of images and sounds,
there are few privacy concerns, so it matches Requirement 2.
Additionally, using deep learning to detect various motions
and vibrations that come into contact with furniture and
equipment allows for intuitive operation, which is consistent
with Requirement 3. Finally, vibrations have the property of
being transmitted even through thick materials and metals.
For this reason, various materials that emphasize texture can
be used for furniture and equipment, and it is possible to
increase the degree of freedom in design, which is consistent
with Requirement 4.

Table 1 compares existing user interface systems. This
table shows that although existing systems can partially
realize the above requirements, they do not fulfill all of them.
Based on the above discussion, we investigate a method of
realizing an input interface that operates existing furniture
using a vibration sensor. An operation is to swipe the
furniture’s surface, and the swipe direction is set to 4 simple
directions (UP, DOWN, RIGHT, LEFT). Figure 1 is an image
of sensors installed on furniture and indoor walls.

B. OVERVIEW OF THE PROPOSED SYSTEM
Firstly, this section provides an overview of the system. In this
study, we chose a table as one of the common pieces of
furniture in the home and experimented. Figure 2 shows a
block diagram showing the outline of the sensor system of
the proposed system, and Figure 3 shows the table used in
the experiment and the state of sensor attachment to the table.
To detect the direction of swiping the table with a finger in
four directions, we thought of capturing the vibration of the
table on two axes, the X-axis and the Y-axis, and installed
four vibration sensors.

Here is an overview of how the sensor system works,
from capturing vibrations on the table to detecting swipes.
First, vibrations generated when a person directly touches
or swipes a piece of furniture are captured as vibration data
using a 4-channel synchronized vibration sensor unit. Each
of the four obtained vibration data is converted into data
showing temporal changes in frequency components using
STFT, and by combining the four data into one array data,
data containing correlation information between sensors can
be obtained. In addition, the data is labeled according to
the swiped direction. Using the data obtained in this way,
a learning model is constructed by deep learning, and the
constructed model estimates the swipe direction for unknown
swipe vibrations. This is followed by a description of the
elements that make up the system.

1) BLOCK DIAGRAM OF HARDWARE
Figure 4 shows a block diagram of the hardware section. The
vibration signals captured by the four sensors are combined
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FIGURE 1. Sensor install image.

TABLE 1. Comparison with existing systems related to our work.

into two channels for the X-axis (CH1, CH2) and two
channels for the Y-axis (CH3, CH4). All channel signals
are time-synchronized and recorded in 16-bit Pulse Code
Modulation (PCM) format with a sample rate of 44.1 kHz.
These synchronized data provide information on how the
signals of each sensor channel change relative to each other
when a person swipes the tabletop.

2) VIBRATION SENSOR UNIT
We have developed a vibration sensor unit for attaching to
furniture. Figure 5 shows the structure of the vibration sensor
unit. The sensor consists of a magnetic material such as
iron as a base, a piezoelectric device (7BB-41-2L0,1 Murata
Manufacturing, Kyoto, Japan), and a magnet placed in the

1https://www.murata.com/en-us/api/pdfdownloadapi?cate=cgsub
Diaphragms&partno=7BB-41-2L0

sensor’s center. Devices can be thin, small, low cost, and
mounted invisibly behind furniture or even thick decorative
panels to capture vibrations from a hidden position. The
sensitivity of the fabricated vibration sensor unit depends
on the mass of the magnet. We adjusted the mass of the
magnet so that it would be sensitive enough to capture a
weak signal from a hand swipe and still be well within
the dynamic range of the amplifier and the recorder’s AD
converter.

The magnetic sheet base of the sensor unit can be attached
to the back side of furniture or structural materials such
as wood using double-sided tape or adhesive. In this study,
to detect swipes in four directions, the system detects the
direction by synchronously recording the vibration signals
from the four sensors and using the relative changes between
channels as features.
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FIGURE 2. System block diagram.

FIGURE 3. Mounting structure of the sensor on a table.

FIGURE 4. Hardware block diagram.

3) SENSOR AMPLIFIER
In a system that captures vibration from the back side of
a material and uses that vibration to determine operation,
vibration attenuation is an issue, especially in thick materials.
In general, it is known that the mechanical vibration of
an object attenuates in proportion to the distance from the
vibration source.When the distance from the vibration source
to the vibration measurement point is r, the amplitude of
general mechanical vibration attenuates in the relation 1/r ,
and furthermore, near the surface, it attenuates in the relation
1/r2. Therefore, the signal level obtained is expected to be
small, and low noise is required for the sensor system.

In addition, the dynamic range of motion data, when a per-
son touches a structure, is wide, ranging from large-amplitude

FIGURE 5. Vibration sensor unit.

FIGURE 6. Amplifier circuit.

signals such as the moment of hand contact to weak signals
such as a swipe operation that strokes the surface, so a
system with a wide dynamic range that can capture these
highly varied signals without failure is required. Therefore,
we designed the amplifier circuit focusing on the following
two points:

• Ensure a high Signal to Noise Ratio (SNR) of the
amplifier by reducing the noise of the circuit

• Ensuring a dynamic range that can capture from minute
to large signals without failure

Figure 6 shows a schematic of the main parts of the
amplifier circuit. Since the output of a piezoelectric device is
generally high impedance, we examined several candidates
for Field Effect Transistor (FET) input operational amplifiers
with low input bias current and noise characteristics.
Furthermore, to achieve a high dynamic range, we designed
a dual power supply circuit. Therefore, we chose a rail-to-
rail op amp (LTC6241,2 Analog Devices Inc., Norwood, MA,
USA) that satisfies the above requirements, supports dual
power supplies, and can swing to the upper limit of the power
supply voltage.

In addition, Equation 1 expresses a noise figure of a
multi-stage amplifier circuit shown in Figure 7, and expresses
the noise figure Fall of the entire amplifier circuit when the
noise figure of the first stage is F1, the second stage is F2,
and the nth stage is Fn. As can be seen from the formula,
especially to reduce noise in the circuit design, the noise in
the first stage of the input section is dominant, so in the first

2https://www.analog.com/media/en/technical-documentation/data-
sheets/624012fe.pdf
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FIGURE 7. Multi-stage amplifier circuit.

stage amplifier circuit of the input section, which is connected
immediately after the output of the vibration sensor unit, two
operational amplifiers are used in parallel to reduce the noise
generated in the amplifier circuit section to 1/

√
2.

Fall = F1 +
F2
G1

+
F3

G1 · G2
+ · · · +

Fn − 1
G1 · G2 · · ·Gn

(1)

The amplifier produced in this research has a three-stage
configuration. Since the quantization bit number of the
PCM recorder is 16 bits, the target SNR for the amplifier
circuit was set to 105dB or more, which is slightly higher
than the ideal SNR of a 16-bit AD converter, which is
approximately 98.08 dB. The configuration of the amplifier
is such that the first-stage amplification circuit is used for
impedance conversion, and the amplification degree can be
adjusted in the second and third stages. The reasons for
the second and third-stage amplification circuits are the
following. At the time of the initial study, it was unclear how
much amplification would be required to detect the vibration
caused by swiping. For this reason, multiple amplification
circuits were installed in series to accommodate a wide range
of amplification levels and to maintain as much negative
feedback per amplifier circuit as possible to ensure SNR. The
amplifier used in this study was designed with a total gain of
approximately 18 dB and a maximum output amplitude of
6 dBV, and the measured SNR was 112.5 dB (with a 30 kHz
Low-Pass Filter).

By implementing these measures, it is possible to reliably
amplify signals from subtle vibrations during swipes to
significant vibrations when touched, all with low noise,
in various devices.

4) ENCLOSURE DESIGN FOR LOW NOISE
In indoor sensing, hum noise from power lines and unneces-
sary radiation from other home appliances become a problem
in practical use, and these noises reduce the S/N ratio of
amplifiers. This system has a particularly low sensor signal
level and uses a circuit with high impedance to handle
piezoelectric devices, so in addition to reducing the noise
of the circuit itself, it is necessary to take countermeasures
against external noise. Therefore, to protect the cables of the
system and the amplifier board from radiated and conducted
noise in the home, an aluminum shield was used for the
housing of the sensor amplifier system, and the cables were
of coaxial construction, as shown in Figure 8. In addition,
by mounting the amps of the channels in which the difference

FIGURE 8. Amplifier system.

FIGURE 9. Mounting position of the sensor.

between the two channels is expected to be important in
one housing, the conditions for the amp circuits of the two
channels are aligned.

C. FEATURES OF SIGNAL WHEN SWIPING
We used the aforementioned system to analyze the data to
see how the sensors could receive vibrations from swiping
on the table. These experiments were conducted to identify
the features used to detect the direction of the swipe on the
table. This section describes what we found. Figure 9 shows
the mounting structure of the sensor on a table, with four
vibration sensors attached to the bottom of the 150 cm table.
The swipe directions are swipe from left to right (Right),
swipe from right to left (Left), swipe from bottom to top (Up),
and swipe from top to bottom (Down). To detect a swipe in
four directions, two vibration sensor units are used for each
of the horizontal X-axis and vertical Y-axis from the swiping
person’s point of view, and a total of four vibration sensor
units are used for each element. The goal was to use vibration
data to determine the direction in which a person swiped.

1) OBSERVATION OF VIBRATION DATA TIME AXIS
WAVEFORMS
Figure 10 shows the signal waveform data when a person
swiped the top board with a finger in the above system.
Initially, we thought it would be possible to easily detect
finger movement from the relative amplitude level difference
between the start and end points of a swipe. For example,
we guessed that moving a finger from near the ch1 sensor to
near the ch2 sensor would initially result in the amplitude of
ch1 being larger than that of ch2, and the amplitude of ch2
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FIGURE 10. Waveform data.

would become larger than that of ch1 gradually. However,
when confirming the actual signal, it was impossible to
confirm the bias in the clear size relationship of the amplitude
for each axis channel going with the movement of the finger
swiping.

2) VIBRATION SOURCE LOCATION AND SENSOR SIGNAL
AMPLITUDE
Based on the above results, we investigated in detail the
position where vibration was applied to the table and
the output amplitude level of each sensor. To investigate
the relationship between the distance from the vibration
source and the output of the vibration sensor in detail,
we experimented using a vibrator that generates vibration,
as shown in Figure 11. As shown in the diagram, straight lines
were drawn dividing the tabletop surface at equal intervals of
130 mm in length and width, and 48 points of intersection
were excited one by one with a vibrator, and the sensor output
level at that time was recorded. The excitation frequency is
a sinusoidal signal of six frequencies ranging from 100 Hz
to 4 kHz.

Figure 12 shows the relationship between the distance
between the sensor and the vibrator and the sensor output
for 400 Hz among the results. The graphs are shown
separately for each channel, CH1 to CH4. As seen from
Figure 12, there is no simple and clear trend that the sensor
output level decreases in proportion to the distance from the
vibrator to the sensor, but rather the amplitude increases in
some cases as the distance from the vibrator.

Next, we checked the characteristics at each signal
frequency. Figure 13 shows the relationship between the
distance between the CH4 sensor and the vibrator out of

the four sensors and the sensor output for each frequency.
No clear trend of decreasing sensor signal level inversely
proportional to distance could be found at any frequency.
Experiments also showed that the sensor output level may
increase rapidly when a specific position is vibrated at a
specific frequency due to table resonance and other effects.
Thus, it was found that it is difficult to identify the position
and movement of the vibration source using only simple
amplitude levels.

3) AUDITORY CONFIRMATION
In the case of sound waves, it is known that the position
and movement of a sound source can be detected by
using information on changes in frequency components and
phase differences between channels in addition to amplitude
information. To ascertain the applicability of a similar
approach to vibration, we used the fact that the frequency
band of the signal of each sensor obtained from the vibration
sensor is the voice band. Specifically, we verified the results
by playing back the PCM data recorded by swiping in four
directions, up, down, left, and right, with a recorder and then
playing it back as audible sounds with headphones.

As shown in Figure 14, the X-axis CH1 was applied to
the left ear and CH2 to the right ear, and the vibration
data was aurally confirmed. Similarly, for the Y axis, CH3
was added to the left ear, and CH4 was added to the
right ear, and the vibration was confirmed as sound aurally.
As a result, we could perceive changes in the frequency
components contained in the audible sound as the finger’s
movement during the swipe operation. Just to be sure, similar
confirmation was performed on several other tables, and the
same results were obtained regarding auditory perception.
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FIGURE 11. Measurement of the sensor signal amplitude at each position of the vibration source.

FIGURE 12. Distance between vibration sensor and vibration source VS sensor output(400Hz).

4) CONFIRMATION USING SPECTROGRAM
Since the direction of finger movement during swiping was
audibly recognizable, the signal obtained was confirmed as
a spectrogram, as shown in Figure 15 to clarify the reason.
(a) to (d) in Figure 15 are spectrograms under the following
conditions:

(a) Swipe from left to right.
(b) Swipe from right to left.
(c) Swipe from bottom to top.
(d) Swipe from top to bottom.

The vertical axis is frequency, the horizontal axis is time,
and the FFT (Fast Fourier Transform) is performed for each
channel so that changes in the distribution of the frequency
components of each channel over time can be confirmed.

In Figure 15(a), for instance, the swipe is made from left
to right, the finger initially starting close to the CH1 sensor
and ending close to the CH2 sensor. In these circumstances,
as indicated by the arrows in the figure, the spectrograms
of CH1, which correspond to the start position, and CH2,
which correspond to the stop position, can be confirmed
as an upward-sloping striped pattern and a downward-
sloping pattern, respectively. When the spectrograms of
Figures 15(b) to (d) were confirmed in the same manner,
the same tendency was observed, although it was difficult
to distinguish the striped pattern in some parts. That is, the
spectrogram of the channel’s signal near the position where
the swipe is started has an upward slope and the signal
near the position where the swipe stops have a downward
slope. It was found that these signal changes are the same as
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FIGURE 13. Distance between vibration sensor and vibration source VS sensor output(6 different
frequencies).

FIGURE 14. Sound confirmation.

changes in ‘‘harmonics’’ composed of the fundamental wave
and harmonics when viewed as temporal changes in acoustic
signals, which is why the human ear can perceive them.

However, the auditory confirmation here is based on the
waveform of the vibration when the hand touches the table,
which is converted into sound. Because it is not a direct
recording of sound waves transmitted through the air like a
microphone, this method is characterized by less concern for
privacy violations.

Based on these results, we studied using deep learning
to learn the vibration signal as a temporal change of the
spectrogram and determine the swipe direction.

D. SWIPE DIRECTION DETECTION USING DEEP LEARNING
In this section, we will explain swipe direction detection
using deep learning together with the preprocessing process.

1) PREPROCESSING
The preprocessing for feature extraction is performed as
follows. Pre-process the data obtained by swiping in the four
directions (Right, Left, Up, and Down) as follows:

(1) Cut out 2 seconds of data, including silence before and
after the swipe, as data for one swipe.

(2) Transform the data of each of the channels CH1-CH4 by
STFT (Short-Time Fourier Transform) (Han window is
used for the window function) and create an array.

(3) Concatenate four channel arrays into one.

TABLE 2. STFT parameters before and after improvement.

(4) labeling the concatenated data in four directions (Right,
Left, Up, Down) to indicate which direction the data was
swiped from.

We had similarly performed the above pre-processing in
our previous study [26] but had set the number of STFT
segments at 1000 in Step 2. However, reconsidering the
evaluation results of the auditory perception experiment
presented in the previous section, it is thought that when
people hear the swipe vibration, they discriminate the swipe
direction as a result of hearing the fine pitch changes in the
fundamental and harmonic components. This suggests that
the frequency component is the most important information
in determining direction, and in this paper, the pre-processing
of the vibration data during swiping was reviewed again, and
the parameters were reconsidered to capture the changes in
the frequency axis in more detail. As a result, the number
of segments was changed from 1000 to 4096, as shown in
Table 2. This change improved the frequency resolution by a
factor of approximately four.

2) SWIPE DIRECTION LEARNING AND DETECTION USING
CNN
In our proposed method, vibration data from four channels
of sensors are each converted into a spectrogram by STFT,
and then the results of the four channels are combined into
a single array to produce data that looks like a single image.
For this reason, we considered using a CNN, commonly used
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FIGURE 15. Spectrogram.

in imaging, for classification. In this study, we implemented
the deep learning model with Keras,3 a deep learning library
for Python. In our previous study [26], we examined learning
and classification with a relatively simple deep learning
model such as Figure 16(a). However, when the data to
be discriminated was the same as the learned person, the
discrimination was highly accurate, exceeding 0.9, but the
classification accuracy was insufficient in the LOPOCV.
Therefore, we tried configurations such as increasing the
number of layers in the CNN and adding new preprocessing
to improve the accuracy further. As a result, as shown in
Figure 16 (b), the number of layers of the CNN used in this
study was set to seven layers, including the convolutional and
all-junction layers, and a residual connection structure was
also introduced.

3) DEEP LEARNING MODELS
The input data to the CNN model configured as shown in
Figure 16 (b) has a size of (4098, 90), which is a composite of
the STFT results for four channels merged into a single 2D
array. The data is input through an input layer tuned to the
number of arrays corresponding to the size. After that, two
convolutional layers of size (3×3) with 64 filters, each using
ReLU as an activation function, are connected, followed by
a max-pooling layer (2×2). Then, two convolution layers of
convolution size (3× 3) with 64 filters are used as a Residual
Connection. Subsequently, calculations are performed using

3 https://keras.io/

FIGURE 16. Layer structure of CNN.

the activation function ReLU, followed by the max-pooling
layer (2×2), and convolution is performed using 512 filters
of convolution size (3×3). Then, perform calculations using
the activation function ReLU, followed by a max-pooling
layer (2×2). Then, after the Flatten process is performed,
fully connected layers, a Dropout layer, and the next set of
fully connected layers are passed, and finally, the softmax
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function is used to output the decision results for the four
directions (UP, DOWN, LEFT, and RIGHT) corresponding to
the direction in which the person swiped. The major changes
compared to previous methods are as follows:
(1) The convolution layers increased from two to five.
(2) A Residual Connection was added to the third and fourth

convolutional layers.
(3) The number of convolution filters in the fifth layer

increased to 512.
He et al. [39] introduced Residual Connections, an archi-

tecture commonly utilized in networks with 20 or more
layers. This architecture was employed in our model because
its effectiveness was verified in initial experiments, in which
the number of layers was gradually increased by one layer.

The learning model using the CNN was created with a
batch size of 10 and 48 learning epochs, using the loss
function ‘categorical cross entropy’ and the optimization
algorithm ‘adam.’

IV. SYSTEM EVALUATION AND RESULTS
This section describes the evaluation results. We used the
proposed method to evaluate the detection accuracy when
swiping a finger in four directions (up, down, left, and right)
on a table using data from three participants. Learning the
swipe direction using CNN and evaluating the accuracy was
performed on a PC with the following specifications:

• CPU: 12th Gen Core i7 (12700H) 2.3GHz
• Memory: 16GB DDR5 4800MHz
• Storage: 1TB
• OS: Windows 11
The evaluation was conducted in two ways: by increasing

the number of STFT segments from 1000 to 4096 (New
method 1) and improving the CNN structure after increasing
the number of STFT segments from 1000 to 4096 (New
method 2).

A. DATASET
Three participants (Participant A, Participant B, and Partic-
ipant C) participated in the study, as shown in Figure 17.
Data for each session were acquired by swiping 10 times
in each of the four directions (up, down, left, and right),
resulting in the collection of nine sessions of data per
person. As a result, a total of 27 sessions of data were
obtained. The experimental environment was conducted in
an office/laboratory environment with people walking nearby
and conversing.

B. LEAVE ONE PERSON OUT CROSS VALIDATION
First, as shown in Figure 18, the evaluation uses LOPOCV,
the data of 2 out of 3 participants as learning data, and the data
of the remaining 1 participant as evaluation data. In order to
create a learning model for evaluating this method under the
same conditions as the previous study [26], three sessions of
data per person were used for the evaluation. This evaluation
allows us to see how well a model trained on data other than

the person using the interface can detect the swiping actions
of a person using the interface.

The results are shown in the ‘‘Leave-One-Person-Out-
Cross-Validation’’ row of Table 3. As shown in the table,
when the frequency resolution was increased by changing the
STFT parameters, the accuracy improved by approximately
4% compared to the previous study [26], resulting in
an accuracy value of 0.56. Furthermore, by devising the
deep learning layer structure, the accuracy improved by
approximately 15%. As a result, the accuracy value improved
to 0.67.

C. CONFIRMING THE ACCURACY WHEN ADDING ONE
SESSION OF THE TARGET PERSON’S DATA TO THE
DATASET USED IN LOPOCV
Furthermore, experiments were conducted assuming the case
where the user tunes the interface with their data in advance.
We confirmed the accuracy of a trained model by creating
it with the addition of only one session of evaluation target
data to each learning dataset used in the LOPOCV, as shown
in Figure 19. The purpose of this experiment was to see if
creating a model with a little additional data on the users
who use the interface would improve accuracy, an experiment
designed for real-world operation.

The results are shown in the ‘‘Adding only one session of
target person data’’ row of Table 3. Looking at the results,
when we added only one session’s worth of swipe data of
the person whose swipe direction was to be estimated when
compared to the previous study [26], changing the STFT
parameters improved the accuracy value by approximately
1% to 0.75. Furthermore, by improving the layer structure of
deep learning, the accuracy value improved by approximately
16%, resulting in an accuracy value of 0.90.

From these results, we obtained sufficient accuracy for
practical use as an interface, especially if the user tunes in
advance. As a result, it is possible to realize an interface that
allows users to touch and operate furniture made of materials
such as thick wood directly, which is difficult to achieve with
an electrostatic touch panel.

V. DISCUSSIONS
A. IMPLEMENTATION OF VIBRATION SENSORS ON
FURNITURE
Vibrations are transmitted through materials. Therefore,
even when vibration sensors are installed in inconspicuous
locations such as behind interior decorative panels, furniture
tops, and walls, they can capture various information in
vibrations caused by human contact and impact. By taking
advantage of this property, a system that uses vibration
sensors hidden in invisible areas of furniture and other
interior components can be constructed to make the most
of the materials without compromising the interior design,
thereby realizing an interface that blends in with daily life.
In addition, vibration sensors do not directly record sound
waves transmitted through the air like microphones do,
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FIGURE 17. Dataset for each person.

TABLE 3. Accuracy of evaluation result.

a feature that reduces concerns about privacy violations.
Furthermore, vibration sensors have the advantage of being
able to sense from the back side of thick materials and metals,
which is difficult with conventional electrostatic sensors.
They are a powerful sensing method when considering
ambient interfaces.

However, unlike sound waves traveling through the air
at a constant speed, vibration waves traveling through
furniture and building materials made up of various members
with different densities are detected as composite waves of
vibrations traveling through multiple paths with different
propagation speeds. Therefore, it is very difficult to estimate
the position and movement of the vibration source by TDoA
(Time Difference of Arrival) using the arrival time of the
vibration or by AoA (Angle of Arrival) using the angle of
arrival.

We overcame this challenge by synchronizing multiple
channels of sensors to capture changes in the frequency
components of vibrations at the start and stop of a swiping
operation by touching an object and using deep learning to
learn and identify the operation. Also, to realize an interface

using vibration, there was a problem in that it had to be able
to capture signals without failure, from large vibrations, such
as the moment a hand touches, to weak vibrations, such as
swiping. In this research, we have developed a dedicated
low-noise amplifier using a positive and negative dual power
supply system to obtain a large dynamic range in response
to this problem. Furthermore, by devising a layered structure
of preprocessing and deep learning, we have improved the
accuracy to 0.90 and built a practical system, although user
tuning is required.

In addition, in the report of this experiment, only a
wooden table was used, but as an additional test, when the
vibration of swiping on the metal material was confirmed
as a sound, a similar change in tone was confirmed.
Therefore, even if the furniture is made of metal, it will
be possible to detect the swipe direction using vibration
data. Such a system for detecting changes in the movement
of objects using vibration contributes to the realization of
design-oriented facilities and equipment that can be operated
by touch, taking advantage of the aesthetics and texture of the
materials.
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FIGURE 18. Leave-one-person-out-cross-validation.

FIGURE 19. Added to one session to training data.

However, detecting vibrations in furniture, such as cush-
ions and sofas that absorb vibrations, is difficult due to the
mechanism of the vibration sensor. To solve this problem,
we think it is necessary to consider a hybrid structure that
combines soft materials, such as providing a non-deformable
solid base member that is integrated with the piezoelectric
device.

B. SYSTEM PROCESSING SPEED AND IN-HOME
IMPLEMENTATION
In this study, vibration data was trained using CNN on a
PC with the specifications described in Section IV, using the
CPU without a GPU. As an example of the time required to
build a training model, the time required to build a training
model by training data for six sessions was approximately
7,611 seconds. We also measured the time directly related
to the response when using the interface. As a result, it took
about 0.015 seconds to extract features using STFT and
about 0.35 seconds to determine the swipe. 0.365 seconds,
which is the added value of these times, is slower than the

response time of a typical touch panel but is adequate for
operating furniture by touching it. However, if a CPU with
lower performance, such as that used in edge computing,
is used, the response is expected to be a little slower, and
further elaboration is needed.

Next, we examined the actual use of this system in the
home. There are two possible ways to implement this research
as a system for actual use with furniture in the home. The
first is to detect the collected vibration data with a small edge
computing device placed near the furniture, such as a table.
We consider it possible to build the training model on an edge
computer due to the small scale of the CNNmodel used in this
study, but if the time required for training is unacceptable,
training could be performed in the cloud via Wi-Fi. In this
case, too, vibration data has the advantage that, unlike camera
video data, the amount of data is small and can be transferred
at high speed. The other method is to wirelessly transmit
vibration data from the sensor unit to the in-home network
and perform learning and swipe direction determination on
the cloud side. Although propagation delay time is an issue,
this method will become feasible as network communication
speeds and delays improve with the development of network
systems.

VI. CONCLUSION
In this paper, we investigated improving detection accuracy
for an input interface system using vibration data during swip-
ing. The research system consists of four time-synchronized
vibration sensor units and a high-dynamic-range, low-noise
amplifier to capture the vibrations when a person swipes
a table. Then, the temporal change in the frequency of the
captured vibration was input as a patterned image-like array
using a spectrogram and was recognized using deep learning.

In the evaluation of the system, accuracy was confirmed
by LOPOCV using Three sessions of swiped data for each
individual for 3 participants, and the accuracy was 0.67,
which is approximately 15% higher than the red previous
study [26]. Furthermore, in order to validate the accuracy
when users pre-tune the interface with their own data,
we examined the accuracy of the model trained by adding
only one session of evaluation target data to each learning
dataset used in the aforementioned LOPOCV. As a result,
the accuracy reached 0.90, demonstrating an approximately
16% improvement in accuracy compared to the previous
study [26], and practical accuracy was achieved.
In the future, we plan to examine ways to improve accuracy

by using more training data, adding operations other than
swiping, and examining methods for retrying false positives
in order to develop the system as a practical one. In addition,
although we focused on tables as furniture this time, we plan
to conduct similar studies on other furniture and walls of
buildings.
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