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ABSTRACT The conventional Prony algorithm, which is the most prominent power system ring-downmode
identification method, fails if the test signal is noisy [with a signal-to-noise ratio (SNR) below 20 dB]. The
performance of Prony algorithm can be improved through singular value decomposition (SVD)-based rank
reduction of the data matrix. Principal eigenvector (PE)-Prony and total least squares (TLS)-Prony are two
known formulations of SVD-augmented Prony algorithms. In both PE-Prony and TLS-Prony algorithms,
the Toeplitz structure of the linear prediction data matrix is lost upon SVD-based noise filtering. On the
other hand, structured total least squares (STLS)-Prony algorithm retains the Toeplitz structure even after
SVD-based filtering and is hence expected to perform better. But a formulation of STLS-Prony algorithm for
power systems is not available in the literature. Hence, the same is developed successfully in this paper. As a
prelude to the formulation of STLS-Prony algorithm, PE-Prony and TLS-Prony analyses of power system
signals are discussed in detail, bringing out their nuances. Further, case studies are carried out on some
benchmark power systems to demonstrate that all the three algorithms work successfully even at an SNR of
1 dB when the test signal has only inter-area modes. It is also shown that the performance of STLS-Prony
algorithm is superior when the test signal has a highly damped local mode. Further, it is illustrated that by
virtue of structure-preserving property, STLS-Prony algorithm is endowed with a unique filtering attribute
although it has a longer execution time.

INDEX TERMS Principal eigenvector (PE)-Prony, total least squares (TLS)-Prony, structured total least
squares (STLS)-Prony algorithm, power system ring-down mode identification.

I. INTRODUCTION
The ever-increasing demand for electric power has resulted
in heavy loading of the tie-lines between different areas of
the power grid, and this has led to a rise in occurrence of
inter-area oscillations. These oscillations have the potential
to disrupt a large portion of the synchronized grid and hence
must be detected in the incipient stage. This was not possible
with the conventional power system monitoring apparatus,
namely, supervisory control and data acquisition (SCADA)
system, which was designed basically for monitoring steady-
state parameters. The inter-area oscillations have a frequency
of up to 1 Hz and hence to visualize these, the data acquisition
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rate has to be more than 2 samples/s as per Nyquist/Shannon
sampling theorem whereas the typical data acquisition rate
of the SCADA system is only 1 sample/s [1]. In such
cases, to detect the onset of the oscillations, one has to
resort to detailed small-signal stability analysis, which is
a time-consuming process and hence is not useful in real-
time control. Moreover, the efficacy of small-signal stability
analysis depends on the accuracy of the parametric data
and adequacy of the modeling details of different power
system components such as synchronous machines, network
elements, controllers and loads. The parameters of the system
components change with age, and if these are not updated
regularly, then simulation results may not correspond to
prevalent power system condition. Further, it is primarily the
controllers that produce negative damping [2]. Hence if the
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controllers are not modeled with adequate details, analytical
studies may fail to indicate the presence of an unstable
mode, as observed during the simulation study carried out
for the investigation of western systems coordinating council
(WSCC) failure of August 10, 1996 [3].

It is in this context that the recent advent of wide
area measurement systems (WAMS) has proved to be a
game-changer. The basic building block of the WAMS is
phasor measurement unit (PMU), which has satellite-based
precise time stamping and reports the phasor frames at
a much higher rate of 10 − 120 frames/s to the control
center [4]. Thus, WAMS is endowed with the unique ability
to visualize the power system oscillations directly. Being
dependent only on measurements, this does not require
the modeling details of the system, and being available
online, this is useful for real-time control. However, these
oscillatory signals often have multiple modal components,
and hence their frequency and decrement factor cannot be
determined bymere visual inspection. In fact, if an oscillatory
signal has two components – one slightly positively damped
and the other slightly negatively damped, it may not be
possible to detect the presence of the negatively damped
component by visual inspection of a limited-time window.
This has necessitated application of measurement-based
mode identification algorithms.

Normally, the onset of conspicuous power system oscil-
lations is preceded by a major event such as tripping of
a transmission line or a generator. The signals obtained in
the immediate aftermath of such major events are termed
as ring-down signals. The strength of the excited modes
in these signals is characteristically high, and therefore
mode identification is easy. Hence algorithms suitable to
mode identification from the ring-down signals were first
applied to power systems. The first and foremost among
these is Prony analysis. The basic formulation of this was
put forth by Prony way back in 1795 [5] for gas expansion
analysis. Subsequently, Hildebrand refined this algorithm by
incorporating least-squares principle [6]. The version of the
algorithm thus proposed is known as Least-Squares (LS)-
Prony or extended Prony algorithm. However, it was only
after the advent of digital computer that Prony analysis found
practical application. The first such applicationwas published
in the area of radar signal analysis in 1970s [7].

Implementation of Prony algorithm is straightforward
whenever the number of component modes in the oscillatory
signal is known in advance. However, one characteristic
problem with power system oscillatory signals is that
the number of component modes is not known. In fact,
an integrated power system is a very high order system,
but the number of electromechanical modes excited upon
occurrence of a major disturbance is far less. There is no
universally accepted guideline as to how to determine the
number of excited modes. In view of this, Prony analysis
is often implemented iteratively [8], [9], [10]. In such an
approach, the number of excited modes (also called ‘order

of linear prediction – OLP’ or ‘reduced model order’) is
initially taken very low and increased progressively until the
reconstructed signal matches with the original signal.

This iterative Prony formulation suffers from the fol-
lowing two drawbacks: (i) prolonged algorithm execution,
particularly in case of signals obtained from large systems
(ii) inability to identify the modes if the signal is noisy with
a signal-to-noise ratio (SNR) below 20 dB.

As compared to Prony method, the matrix pencil algorithm
performs better from the viewpoint of mode identification
from noisy signals due to incorporation of singular value
decomposition (SVD) of the data matrix [11]. SVD serves as
a panacea to both the above problems. On the one hand, SVD
enables non-iterative determination of reduced model order.
On the other, this also acts as a noise-filtering technique.

This intuits the possibility of improvement in the per-
formance of Prony method by similar integration of SVD.
The first successful attempt in this direction was made
by Kumaresan and Tufts in the area of acoustic mode
identification. They subject the data matrix to SVD and
filter out the dyads corresponding to the lowest singular
values. This method is known as Principal Eigenvector (PE)-
Prony algorithm [12]. Further improvement was achieved
in acoustic mode identification area by Rahman and Kai-
Bor [13], who put forth total least squares (TLS) solution
of the linear prediction equation instead of the normal least-
squares solution. A comparative case study of application
of PE-Prony and TLS-Prony algorithms to power systems
has been reported by Zhou et al. [14]. Statistical analysis of
TLS-Prony algorithms is discussed recently in [15]. However,
a detailed discussion of PE- and TLS-Prony analyses of
power system signals that brings out their finer points is not
available in the literature, and hence the same is presented in
this paper.

In both the above improvisations of Prony, the data matrix
or the augmented data matrix is replaced by one of lower
rank without retaining its Toeplitz structure. It is reasonable
to expect that a lower rank matrix having the same Toeplitz
structure as the given data matrix would further improve the
performance of Prony algorithm [16]. The same is attempted
in structured total least squares (STLS)-Prony algorithm
proposed by Park et al. [17] and Lemmerling [18]. While [17]
develops the general concept of STLS-Prony algorithm, [18]
discusses STLS-Prony algorithm applications specifically in
the areas of nuclear magnetic resonance spectroscopy and
acoustic mode identification. In fact, structure-preserving
rank reduction of a matrix continues to be an active area of
research [19], [20]. However, STLS-Prony analysis of power
system signals has not been reported anywhere. Although the
general formulation of STLS-Prony algorithm is established,
its customization to power systems entails considerable effort
due to two peculiar attributes of the power system: (i) the
number of component modes in a test signal is far less than
the order of an integrated system and (ii) some of the modes
may be negatively damped. Thus, formulation of STLS-Prony
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algorithm for power system signals and examination of
its performance relative to other SVD-augmented Prony
algorithms are considered as worthwhile research problems
and hence are explored in this paper.

The flow of the paper goes as follows: Section II
contains a brief discussion on iterative Prony algorithm.
This is followed by detailed presentations on PE-Prony
algorithm and TLS-Prony algorithm in Sections III and IV
respectively. Discussion on iterative Prony, PE-Prony and
TLS-Prony algorithms in Sections II-IV serve as a logical
prelude to the formulation of STLS-Prony algorithm for
power system signals presented in Section V. While the
contribution of the paper is primarily in the development of
STLS-Prony algorithm for power system signals, the nuances
of PE-Prony and TLS-Prony algorithms are also brought
out. A thorough comparison of PE-, TLS- and STLS-Prony
algorithms through a few case studies on benchmark power
systems is taken up in Section VI while the conclusions
follow in Section VII.

II. ITERATIVE-PRONY ALGORITHM
Before proceeding to discuss SVD-augmented Prony algo-
rithms, it is in order to make a brief presentation on iterative
formulation of Prony algorithm. (In fact, this is the summary
of the detailed formulation put forth by the current authors
in [9].) This involves the following steps:

Step 1 – linear prediction (LP) solution:
A power system ring-down signal comprises of dc expo-

nentials of the form Ai exp(σit) and exponentially varying
sinusoids of the form Ai exp(σit)cos(ωit+φi).

One can express cos(ωit+φi) in terms of exponentials by
applying Euler’s theorem. Hence, a ring-down signal can be
expressed as a sum of exponentials as:

y(t) =

n∑
i=1

Bieλit (1)

where n is the number of exponential components in the
signal, B is the residue and complex frequency λ = σ + jω.
(σ is decrement factor and ω is radian frequency. In case of
exponentially varying dc, ω would be zero.)

Equation (1) can be represented in discrete domain as:

y[k] =

n∑
i=1

Bizki (2)

where

zi = e(λi1t) (3)

and 1t is the sampling interval.
Equation (2) is the solution of the following linear

prediction (LP) equation of order n:

y(k) = a1 y(k−1)+a2 y(k−2)+ . . . . . .+an y(k−n) (4)

In other words, a power system that produces a response
given by (2) must obey the LP model of (4).

Changing the sampling index k from n to (N −1), (4) can
be expressed in matrix form as:
y(n−1) y(n−2) . . . y(0)
y(n−0) y(n−1) . . . y(1)

...
...

. . .
...

y(N −2) y(N −3) . . . y(N −n−1)


︸ ︷︷ ︸

Y


a1
a2
...

an


︸ ︷︷ ︸

a

=


y(n+0)
y(n+1)

...

y(N −1)


︸ ︷︷ ︸

y

(5)

The linear prediction coefficients a1,a2, . . . .,an are
obtained as the least-squares solution of (5) as signal
sample values y are known. However, the number of
samples, N has to be greater than twice the number of
components, n in order that (5) constitutes an overdetermined
system i.e., N > 2n.
NOTE: The data matrix Y in (5) is Toeplitz as all the

elements in a given diagonal represent the same sample. It is
important to recognize that this is true regardless of whether
the test signal y is noisy or noiseless.

Step 2 – polynomial rooting:
The characteristic equation of (4) is:

zn−
(
a1 zn−1

+a2 zn−2
+ . . .+an z0

)
= 0 (6)

The roots of (6) give n different values for z.
Step 3 – determination of continuous-time eigenvalues:
The continuous-time eigenvalues λi are then obtained

from discrete time eigenvalues zi using (3). The real- and
imaginary-part of λi yield the decrement factor σi and the
radian frequency ωi of component i respectively.
Step 4 – Vandermonde solution:
Again, by varying k from 0 to (N − 1), (2) is represented

in matrix form as:
z01 z02 . . . z0n
z11 z12 . . . z1n
...

...
. . .

...

zN−1
1 zN−1

2 . . . zN−1
n


︸ ︷︷ ︸

Z1


B1
B2
...

Bn


︸ ︷︷ ︸

b

=


y(0)
y(1)

...

y(N −1)


︸ ︷︷ ︸

y

(7)

One gets residues Bi by least-squares solution of (7). (Please
note that Z1 is a Vandermonde matrix.)
From Bi, amplitude Ai and phase-angle φi are obtained.
With the knowledge of amplitude, phase-angle, decrement

factor and radian frequency of different component modes,
the signal can be reconstructed.

Step 5 – choice of order of linear prediction (OLP), n:
Implementation of the Prony algorithmwith the above four

steps is straightforward if OLP (order of linear prediction)
n (which also represents the number of components in the
signal) is known. However, in case of power system ring-
down signals, n is not known in advance. Hence in the
iterative Prony method, the value of OLP, n is initially taken
very low, and the reconstructed signal obtained with this
value of n is compared against the original signal. If the
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reconstructed signal does not match with the original signal,
then n is increased in steps until satisfactory matching is
attained.

This iterative approach needs a fitness metric to decide
the extent of matching between the original and the
reconstructed signals. Signal-to-estimation-error ratio (SER)
[often called ‘signal-to-noise Ratio (SNR)’] is the metric
normally employed. The definition of SER is [8]:

SER = 20 log10
rms(y)

rms(y− ŷ)
(8)

where y is the original signal and
ŷ is the reconstructed (or the estimated) signal.

As the matching between the reconstructed signal and the
original signal improves, SER increases. An SER of 30 dB
normally ensures satisfactory matching between the original
and the reconstructed signals [21], [22] provided the signal is
subjected to detrending [23] prior to being taken up for mode
identification.

NOTE: Detrending is the process of removing the trend of
the signal. This is a pre-requisite for successful identification
of oscillatory modes, which is crucial for detecting onset of
instability. The trend can be any of the following: simple
DC offset, an inclined straight line, a quadratic curve or an
exponentially varying DC.

An alternative fitness metric for Prony analysis is mean
absolute percentage error (MAPE) [9], [24], which is defined
as:

MAPE =
1
N

N∑
i=1

|
yi− ŷi
yi

| (9)

where
N number of data points;
yi sample value of the original signal;
ŷi sample value of the reconstructed signal.

As the reconstructed signal matches better with the
original signal, MAPE decreases. When MAPE value
reaches down to 0.1, matching between the original- and
the reconstructed-signal is found to be satisfactory in
general.

Interestingly, it is noted in [9] and [10] that in some cases
even when the mode identification is satisfactory, either SER
has not gone above the threshold of 30 dB or MAPE has not
fallen below the threshold of 0.1. This leads to unnecessary
iterations if SER alone or MAPE alone is employed as
the fitness metric. Hence ‘MAPE combined with SER’ is
proposed as a superior fitness metric so that iteration can be
terminated if either MAPE or SER reaches the threshold [9].
Step 6 – selection of dominant modes:
Prony algorithm throws up a few spurious modes. There-

fore it is imperative to deploy a yardstick to sift the dominant
component modes. Energy of the signal is generally adopted
as such a yardstick [25]. Here energy is the sum of the squares
of the instantaneous values of the signal component over the
entire analysis window. Further, 10% of the energy of the
most dominant mode is fixed as the threshold of dominance

i.e., modes with energy above this threshold are considered
dominant while those below the threshold are ignored.

III. PRINCIPAL EIGENVECTOR (PE)-PRONY ALGORITHM
The oldest among the SVD-augmented Prony algorithms is
PE-Prony algorithm, which is enunciated in the following
lines.

As mentioned in Section II, the first step in Prony
analysis is the solution of linear prediction equation. (The
basic difference among the three SVD-augmented Prony
algorithms lies in this step.)

The general approach in SVD-augmented Prony algo-
rithms is to initially assume the number of component
modes in the signal as very high and then to determine the
actual number of component modes n by SVD of the data
matrix. Accordingly, in PE-Prony algorithm, the number of
component modes (or the OLP) initially assumed is denoted
as r and is taken roughly equal to one third of the samples in
the signal analysis window. That is,

r = round
(
N
3

)
(10)

Thus, replacing n by r in (5), one gets
y(r−1) y(r−2) . . . y(0)
y(r−0) y(r−1) . . . y(1)

...
...

. . .
...

y(N −2) y(N −3) . . . y(N − r−1)


︸ ︷︷ ︸

Y


a1
a2
...

ar


︸ ︷︷ ︸

a

=


y(r)

y(r+1)
...

y(N −1)


︸ ︷︷ ︸

y

(11)

where
Y data matrix of size (N − r)× r ;
a linear prediction coefficient vector of length r ;
y observation vector of length (N − r).

The next step in PE-Prony algorithm is to subject the data
matrix Y to SVD as given below [26].

[Y ](N−r)×(r) = [P](N−r)×(N−r) [D](N−r)×r [QT ](r×r)
(12)

NOTE:

• In (12), the square matrices P and Q are orthogonal and
comprise respectively of left- and right-singular-vectors
of Y . On the other hand, matrix D has the same size
as Y i.e., [(N − r)× r]. Further, D is a diagonal matrix
and the number of diagonal elements equals r . These
diagonal elements are either positive or zero, appear in
the decreasing order and represent the singular values of
Y . The number of nonzero singular values is equal to the
rank of the given matrix Y .

• It is proved in literature that if the signal is noiseless,
then the data matrix Y would have a rank n equal to the
actual number of components in the signal [17], [27].
In such an event, out of r singular values of Y , only
the first n singular values would be nonzero. On the
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other hand, when the signal is noisy, all the r singular
values would most likely be nonzero. However, in such
a case, the first n singular values would be significantly
large and the remaining (r − n) singular values would
be very small. Hence it is logical to surmise that the
large singular values correspond to actual component
modes in the given signal whereas the smaller ones
are due to noise [28]. Accordingly, by segregating the
large singular values one can decide the actual number
of component modes in the given noisy signal. This
segregation becomes easy if a clear gap can be observed
at one place when the singular values are arranged in
the descending order; singular values above the gap
can be regarded as corresponding to the actual modal
components of the signal while those below the gap as
corresponding to noise. However, such a clear gap is
not visible at times. In such cases, segregation of the
singular values is carried out by fixing a threshold in
terms of the largest singular value. The most common
threshold selected is 10−3 times the largest singular
value [29]. The number of singular values above the
threshold is counted as n, which gives the number of
component modes in the given signal. Thus, the model
order, n is determined directly here without resorting to
any iterative procedure.

• Hence, n is considered as the numerical rank of Y
whereas r is its actual rank.

• Alternatively, (12) can be rearranged as:

[Y ](N−r)×(r) =

r∑
i=1

di piqiT (13)

Each product (di piqiT ) in (13) represents a rank-
1 matrix of same size as Y , which is called a dyad.
It is the outer product of the ith left-singular vector
pi and the ith right-singular vector qi, scaled by the
ith singular value di. Thus, (13) represents the ‘dyadic
decomposition’ of matrix Y [29].

• Hence the matrix Yn, which is the rank-n equivalent of
matrix Y can be represented as:

Yn =

n∑
i=1

di piqiT (14)

That is, Yn is obtained from Y by retaining the first n
dyads of Y . The remaining dyads, which are supposed
to represent the noise in the signal are filtered out. Effec-
tively, matrix Yn is obtained from matrix Y by setting its
(r−n) singular values below the threshold to zero.

• Although Y is a Toeplitz matrix, the individual dyads do
not have the Toeplitz structure in general. As such, the
matrix Yn, comprising the selected dyads of Y , is not
Toeplitz in general.

• The matrix Yn can be represented in terms of matrices
P,D and Q as:

[Yn](N−r)×r = [Pn](N−r)×n [Dn](n×n) [Qn
T ](n×r)

where Pn = P(:,1 : n)

Dn = D(1 : n,1 : n)

Qn = Q(:,1 : n) (15)

That is, Pn contains the first n columns of matrix P and
Qn contains the first n columns of matrixQ. On the other
hand, Dn contains the first n rows and first n columns of
matrix D.

As Y is replaced by its reduced-rank equivalent Yn, the
linear prediction equation changes to:

Yn a= y (16)

From this, linear prediction coefficient vector a is got as:

a= (Yn)+ y (17)

where (Yn)+ is the Moore-Penrose pseudoinverse of Yn, and
this can be calculated as:

(Yn)+ =

n∑
i=1

1
di
qi piT (18)

Hence (17) can be written as [12]:

a=

n∑
i=1

qi

(
piT y
di

)
(19)

NOTE:

1) The singular values, di appear in the denominator on the
RHS of (19). Hence the lowest singular values perturb
the solution a highest. By filtering out these, PE-Prony
algorithm minimizes this perturbation.

2) The rank-reduced data matrix Yn can be seen as a
projection of the original data matrix Y on to the
columns of Pn since

Yn = PnPnTY (20)

where PnT (transpose of matrix Pn) itself is the
Moore-Penrose pseudoinverse of Pn.
The least-squares approach assumes that the data
matrix is error-free and all the error is contained in
the observation vector. Hence the observation vector is
projected on to the column space of the data matrix.
Thus, in iterative-Prony, the observation vector y is
projected on to the column space of data matrix Y
spanned by first r columns of matrix P. On the other
hand, in PE-Prony, y is projected on to column space of
rank-reduced data matrixYn spanned by the columns of
matrix Pn, which are, in fact, the first n columns of P.
Hence column space of Yn is a subspace of the column
space of Y . Thus, in PE-Prony, the observation vector
y is projected on to a smaller subspace as compared to
iterative-Prony. Hence perturbation of the observation
vector is generally greater in PE-Prony as compared
to iterative-Prony. Also, the projection of observation
vector is generally shorter in PE-Prony as compared to
iterative-Prony.
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3) Therefore, the LP solution vector obtained in PE-Prony
is shorter than that in iterative-Prony because it involves
a shorter projection of the observation vector and it
leaves out the smallest singular values that perturb the
projected observation vector highest.

Determination of linear prediction coefficient vector a
completes the first step in PE-Prony analysis. Other steps are
largely similar to those in the iterative Prony algorithm.

Hence PE-Prony algorithm can be summarized as follows:

• Step 1 – determination of linear prediction coeffi-
cients:
Signal samples are arranged in the form of LP equa-
tion (11), taking the initially assumed number of modes
r equal to one third the number of samples i.e., (N/3).
The data matrix Y is subjected to SVD and its numerical
rank n is determined as the number of singular values
of Y above the threshold of 10−3 times its largest
singular value. Using the first n singular values and the
corresponding left-and right-singular vectors, the linear
prediction coefficient vector a is obtained according
to (19).

• Steps 2-4: These steps are identical to those of
iterative Prony. These involve determination of discrete
eigenvalues zi (by polynomial rooting) and thence the
continuous-time eigenvalues λi. From λi, the decrement
factor σi and radian frequency ωi of different component
modes are obtained. Thereafter, residues Bi are decided
through Vandermonde solution, which, in turn, yield
amplitude Ai and phase-angle φi of the components.

• Step 5: Further, as in the iterative-Prony method,
dominant modes are selected based on their energy,
taking 10% of energy of the most dominant mode as the
threshold.

• Step 6: From the details of amplitude, phase-angle,
decrement factor and radian frequency, signal can be
reconstructed and compared with the original signal.
The extent of matching between the original signal and
the reconstructed signal can be gauged using fitness
metrics SER and MAPE. However, this is an optional
step which is not integral to the successful working of
the algorithm.

IV. TOTAL LEAST SQUARES (TLS) - PRONY ALGORITHM
In the conventional least-squares approach, one presumes
that the observation vector alone is erroneous and the data
matrix is error-free. On the other hand, the total-least-squares
approach consists in treating both the data matrix and the
observation vector as erroneous. Such an approach is all the
more logical in linear prediction-based algorithms such as
Prony analysis as most of the samples that constitute the
observation vector figure in the data matrix as well [30].
Reconsider the linear prediction equation given in Sec-

tion II,

Ya= y (21)

Since the above equation normally represents an overdeter-
mined system, the equality sign does not hold in a strict sense.
In the conventional least-squares approach, one perturbs the
observation vector, y by the shortest possible distance g so
that the vector (y+ g) lies in the column space of matrix Y .
Therefore the solution vector, â satisfies the equation:

Yâ= y+g (22)

The equality sign holds in a strict sense after optimal
perturbation of the observation vector in (22). Further, if this
equation is solved using Moore-Penrose pseudoinverse, then
the obtained solution vector, â will be the shortest possible
one.

On the other hand, the total-least-squares approach expects
that both the data matrix, Y and the observation vector, ymay
contain errors and hence it perturbs both of these such that

(Y +E)â= (y+g) (23)

In (23),E and g represent theminimumpossible perturbations
of datamatrix,Y and observation vector, y respectively so that
the equality sign applies in a strict sense. In other words, the
perturbed observation vector, (y+g) is now required to lie in
the column space of the perturbed data matrix, (Y +E).

Equation (23) can be rewritten as a homogeneous equation
as:

[(Y +E) | (y+g)]

 â

−1

 = 0 (24)

Equation (24) can, in turn, be rearranged as:

([Y |y]+ [E|g])

 â

−1

 = 0 (25)

or

(B+F)z= 0 (26)

where

[B](N−r)×(r+1) = [Y |y] (27)

[F](N−r)×(r+1) = [E|g] (28)

z=

 â

−1


(r+1)×1

(29)

The TLS approach looks for a solution vector, â that
minimizes the Frobenius norm of matrix F. The fact that
(y+g) should belong to the column space of (Y +E) implies
that matrix (B+F) should be rank-deficient. On the other
hand, since y does not lie in the column space of Y , B is a
full-rank matrix provided Y is a full-rank matrix. That is,

rank(B+F) = rank(Y +E) = rank(Y ) (30)

rank(B) = rank(Y )+1 (31)

Thus, the perturbation matrix F must be so selected that the
rank of (B+F) must be one less than that of B. This suggests
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the following SVD-based approach for the solution of total-
least-squares problem:

To begin with, consider the SVD of matrix B:

[B](N−r)×(r+1) = [P](N−r)×(N−r) [D](N−r)×(r+1)

[QT ](r+1)×(r+1) (32)

This can be represented equivalently as follows:

B=

r+1∑
i=1

di piqiT (33)

Equation (33) is the dyadic decomposition of matrix B.
In this, di represents the ith singular value of B whereas pi
represents the ith left singular vector and qi represents ith

right singular vector of B. The rank-1 matrix obtained from
the product (di pi qiT ) is the ith dyad. Since pi and qi are
normal vectors, the Frobenius norm of ith dyad is equal to
di. It is worth noting that the matrix obtained by deducting
anyone dyad from B will have a rank one less than that of
B. Hence every dyad of B is a candidate for the perturbation
matrix F. However, F is required to meet the additional
criterion that it must have minimum Frobenius norm. Among
the dyads, it is the last dyad that has the minimum Frobenius
norm – equal to the lowest singular value, dr+1 – and hence
this qualifies as the right candidate for the perturbation
matrix F.

[F](N−r)×(r+1) = −(dr+1 pr+1 q
T
r+1) (34)

With this choice of matrix F,

B+F=

r∑
i=1

di piqiT (35)

Thus, matrix B+F is obtained by retaining only the first r
dyads of matrix B while dropping its (r+1)th dyad. In other
words, addition of matrix F to the matrix B is tantamount to
setting the (r+1)th singular value of matrix B, dr+1 to zero.
So, the matrix B+F has only r nonzero singular values and
hence, has a rank r , but it has the same left- and right-singular
vector matrices as B, namely, P and Q. Hence, the first
r columns of the right-singular vector matrix, Q serve as
an orthonormal basis to the row space of (B+ F) and the
(r+1)th column serves as a basis to the null space of (B+F).
Therefore, this column can be a solution to the homogeneous
equation (25) since such a solution has to lie in the null space
of (B+F). However, there is an additional criterion in (25)
that the last element of the solution vector, z be equal to
−1, and in order to meet this criterion, the (r + 1)th right
singular vector qr+1 has to be divided by the negative of its
last element.

z=

 â

−1

 =
−1

(qr+1)r+1


(qr+1)1
(qr+1)2

...

(qr+1)r
(qr+1)r+1

 (36)

Hence

[
â
]
=

−1
(qr+1)r+1


(qr+1)1
(qr+1)2

...

(qr+1)r

 (37)

As already indicated, the gist of the above approach lies
in ensuring that the rank of matrix (B + F) equals the
rank of matrix Y . This works satisfactorily if Y has a low
condition number. This implies that the singular values of Y
are sufficiently close. This would be true only when the signal
considered is noiseless and the actual number of component
modes in the signal is equal to the assumed value, r . On the
other hand, in case of noisy signals, the lowest singular
values pertaining to noise are very low. In regard to mode
identification of such noisy signals, the practice followed in
Section III is to resort to SVD-based noise filtering wherein
all the singular values below a certain threshold (which is
selected as 10−3 times the largest singular value) are set to
zero. It is reasonable to expect that the same approach should
be adopted here as well. If n be the number of singular values
of Y above the threshold, then a rank-n matrix (B+F) has
to be obtained by setting the remaining [(r+1)−n] singular
values of B to zero. Thus, the rank of (B+F) is forced to
equal not the actual rank, but the numerical rank of Y .

The rank-n truncated matrix obtained in such a case will
be:

(B+F)n =

n∑
i=1

di piqiT (38)

That is, matrix (B+F)n is obtained from matrix B by
retaining only the first n dyads and dropping the last (r+1−

n) dyads.
With this, the homogeneous equation (26) can be rewritten

as:

(B+F)n z= 0 (39)

Now the first n right singular vectors, q1,q2, . . . ,qn serve
as a basis for the row space of (B+F)n whereas the remaining
[(r + 1) − n] right singular vectors serve as a basis for
the null space of (B+F)n. Hence each of these last [(r +

1)− n] right singular vectors, qn+1,qn+2, . . . ,qr+1 becomes
a candidate for the solution vector z, upon being suitably
scaled. In fact, any vector that lies in the subspace spanned
by qn+1,qn+2, . . . ,qr+1 is a candidate solution. However, one
has to pick z such that its component â has minimum length.
[It can be noted from (29) that â contains all the elements of
z except the last one.] To accomplish this, [31] suggests the
approach given below.

Arrange the last [(r + 1)− n] right singular vectors into a
matrix as follows:

Q1 = [qn+1 qn+2 . . .qr qr+1](r+1)×(r+1−n) (40)

Multiply Q1 by a Householder matrix H such that in the last
row of the resultant matrixQ2, all the elements except the last
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one are zeros.

Q2 = [Q1](r+1)×(r+1−n)[H](r+1−n)×(r+1−n)

=


∗ ∗ . . . ∗

∗ ∗ . . . ∗

...
...

. . .
...

∗ ∗ . . . ∗

m

0 0 · · · · · · 0 s


(r+1)×(r+1−n)

(41)

The Householder transformation is a reflection which retains
the lengths and the relative angles of the column vectors
unchanged. Hence, all the columns of Q2 are orthonormal,
have (r +1) elements each and span the same column space
asQ1. (That is, matricesQ1 andQ2 are right-equivalent [32].)
Hence each column of Q2 is a candidate for z. Now if one
constitutes a sub-vector by picking the first r elements of
the first column of Q2, then it has a length equal to unity.
This is because it comprises all the elements of a normal
vector except the last one, which is zero. The same is true
of the sub-vectors constituted by the first r elements of each
column ofQ2 except the last column. However, the sub-vector
constituted by the first r elements of the last column of Q2
has a length less than unity. (This is because it includes all
the elements of a normal vector except the last one, which
is nonzero.) Therefore, among the different sub-vectors thus
obtained, the sub-vector constituted by the first r elements
of the last column of Q2 qualifies as the right candidate for
â as it has the shortest length. Hence the last column of Q2
can be picked as the solution vector z of the homogeneous
equation (39) provided it is scaled suitably so that its last
element equals −1.

Therefore

z=

âTLS
−1

 = −
1
s

 m

s

 (42)

Hence it follows that

âTLS = −
1
s

[
m

]
(43)

Note that âTLS requires only the last column of Q2, which
is the product of Q1 and the last column of matrix H . Thus
for the TLS solution, it is required to compute only the
last column of H . This last column, designated as hend ,
is obtained simply by normalizing the last row of Q1 to a unit
vector [13].

hend =
1

norm(r+1)


(qn+1)r+1
(qn+2)r+1

...

(qr)r+1
(qr+1)r+1

 (44)

where

norm(r+1) = [(qn+1)
2
r+1 + (qn+2)

2
r+1 + . . .+ (qr)2r+1

+ (qr+1)
2
r+1]

1
2 (45)

Hence  m

s

 =

r+1∑
i=n+1

(qi)r+1

norm(r+1)
qi (46)

It is evident that

s=

r+1∑
i=n+1

(qi)2r+1

norm(r+1)
(47)

Therefore

âTLS = −
1
s

[
m

]
= −

[∑r+1
i=n+1(qi)r+1 q′

i∑r+1
i=n+1(qi)

2
r+1

]
(48)

where

qi =

 q′
i

(qi)r+1

 (49)

That is, q′
i is a sub-vector that includes all the elements except

the last one of vector qi.
This completes the determination of linear prediction

coefficients, which is the first step in Prony analysis. The
remaining steps are identical to those given at the end of
Section III.

Hence TLS-Prony algorithm can be summarized as
follows:

• Step 1 – determination of linear prediction coeffi-
cients:
Signal samples are arranged in the form of LP equa-
tion (11), taking the initially assumed number of modes
r equal to one third the number of samples i.e., (N/3).
From (11), augmented data matrix is formed as: B =

[Y |y]. Matrix B is subjected to SVD and the matrix of
right singular vectorsQ is got. The LP coefficient vector
is hence obtained as:

âTLS = −
1
s

[
m

]
= −

[∑r+1
i=n+1(qi)r+1 q′

i∑r+1
i=n+1(qi)

2
r+1

]
where qi is the ith right singular vector of B and q′

i is a
sub-vector that includes all the elements except the last
one of vector qi. Further, n is the numerical rank ofY i.e.,
the number of singular values of Y above the threshold
of 10−3 times its largest singular value.

• Steps 2-6: These steps are identical to the corresponding
ones in PE-Prony algorithm elaborated in Section III.

V. STRUCTURED TOTAL LEAST SQUARES (STLS) - PRONY
ALGORITHM
The data matrix Y in the linear prediction equation (11) has
a Toeplitz structure. In PE-Prony and TLS-Prony algorithms,
this data matrix is replaced by a lower-rank equivalent matrix
obtained by SVD, which is supposed to represent the filtered
ring-down signal. The equivalent matrix does not have a
Toeplitz structure as SVD-based dyadic decomposition is
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not a structure-preserving decomposition. However, it is
evident from (5) in Section II that a noiseless ring-down
signal also adheres to the linear prediction model, and hence
the corresponding data matrix must also have a Toeplitz
structure. Thus, one can expect the results to be more
accurate if the rank-reduced data matrix retains the Toeplitz
structure [16].

One approach suggested in this direction is the sig-
nal enhancement through a composite property mapping
algorithm put forth by Cadzow [27]. In this, a rank-n
approximation of the data matrix is first obtained using
SVD (where n is the number of singular values above the
threshold). This approximation does not preserve the Toeplitz
structure. In order to re-establish the Toeplitz structure, the
elements along each diagonal are replaced by their average
value. Although the matrix thus obtained has a Toeplitz
structure, it has a rank greater than n. Hence, SVD-based
rank reduction and re-establishment of the Toeplitz structure
are repeated iteratively until the (n+ 1)th singular value of
the corrected data matrix falls below a pre-defined tolerance
level. The approach based on Cazdows algorithm is reported
to be suboptimal [33], [34], and hence the same is not adopted
in this work.

Instead, an alternative approach is explored here in
which this structured total least squares problem is cast
as an optimization problem whose objective function is to
obtain the rank-reduced data matrix directly as a Toeplitz
matrix [10], [17], [18].

The conceptual idea behind rank reduction of a matrix is
to add a perturbation matrix so that the resultant has a lower
rank. Evidently, if the rank-reducedmatrix is to have the same
Toeplitz structure as the original matrix, then the perturbation
matrix must also have a Toeplitz structure. In fact, it is not just
the data matrix Y but also the augmented data matrix [y|Y ]
that has a Toeplitz structure.

[y|Y ]=T=



y(r)
y(r+1)

...

y(N −1)︸ ︷︷ ︸
y

y(r−1) y(r−2) . . . y(0)
y(r) y(r−1) . . . y(1)
...

...
. . .

...

y(N −2) y(N −3) . . . y(N − r−1)︸ ︷︷ ︸
Y


Thus, STLS consists in finding an augmented perturbation

matrix [g|E] of same dimension as [y|Y ] with the shortest
Frobenius norm and Toeplitz structure.

Let

[g|E] =


ηp+1
ηp+2

...

ηp+m︸︷︷︸
g

ηp ηp−1 . . . η1
ηp+1 ηp . . . η2

...
...

. . .
...

ηp+m−1 ηp+m−2 . . . ηm︸ ︷︷ ︸
E


Number of rows in E = number of rows in g = m.
Number of columns in E = p.

It is to be noted that in a Toeplitz matrix, the number of
distinct elements is equal to (number of columns + number
of rows −1). In case of matrix [g|E], it is equal to (p+m).
(NOTE: Size of matrix g is same as that of matrix y.

Similarly, size of matrix E is (m× p). This is supposed to
be equal to size of matrix Y , which is [(N − r)× r]. Hence,
m = (N − r) and p = r . Thus, m and p are variable names
used only for convenience, whose values actually depend on
N and r .)

Now define

η =
[
η1 η2 . . . ηp+m

]T (50)

α =
[
η1 η2 . . . ηp+m−1

]T (51)

g=
[
ηp+1 ηp+2 . . . ηp+m

]T (52)

It may be noted that the vector α has only those η elements
that are present in matrix E.
Hence one can write

α = P0η (53)

g= P1η (54)

where

[P0](p+m−1)×(p+m) =
[
I (p+m−1)×(p+m−1) | 0(p+m−1)×1

]
(55)

[P1]m×(p+m) =
[
0(m×p) | I (m×m)

]
(56)

(I is an identity matrix and 0 is a null matrix.)
At this juncture, it is in order to define a structured residual

vector r̂ as:

r̂(η,a) = (y+g)− (Y +E)a (57)

Since (y+ g) lies in the column space of (Y + E), r̂(η,a)
should ideally be zero.

The task at hand is to minimize the Frobenius norm of
the matrix [g|E] i.e., ∥g|E∥F subject to r̂ = 0. This is a
constrained minimization problem.

This minimization problem can be simplified by represent-
ing the Frobenius norm of the matrix [g|E] as a scaled l2 norm
of vector η as follows:

∥g|E∥F = ∥Lη∥2 (58)

where L is a square diagonal matrix that accounts for
the repetition of distinct elements in [g|E]. For example,
if η5 appears 6 times in [g|E], then the fifth diagonal element
of L will be

√
6. (The procedure for constructing matrix L is

given in Appendix.)
Hence the objective function can be restated as:
to minimize ∥Lη∥2 subject to r̂= 0.
Since it may not be possible to ensure that r̂ is identically

a zero vector due to the restriction imposed on the structure
of [g|E], one has to minimize r̂ as far as possible.

Therefore, the objective function is rephrased as:

min
η ,a

∥∥∥∥(
r̂(η ,a)
Lη

)∥∥∥∥
2

(59)
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That is, to find vectors η and a which minimize l2 norms of
vector r̂ and the product vector Lη .
It is important to note that the greater emphasis is on the
minimization of l2 norm of r̂.

The solution of this problem has to be attempted iteratively
starting with suitable initial values. The initial values adopted
in this work are:

ai = ˆaTLS (60)

ηi = 0 (61)

The initial solution ai obtained from TLS approach is
preferred to that obtained from least-squares as it is naturally
more accurate [18]. Beginning with these values, the problem
is approached as a linear approximation problem with
Newton’s method as follows:

r̂(η +1η,a+1a) = r̂(η,a)+
∂r
∂η

1η+
∂r
∂a

1a (62)

L(η +1η) = Lη +L 1η (63)

In order to get the partial derivatives, the following alternative
representations of r̂ are used:

r̂= y+g− (Y +E)a
= y+P1η − (Y +E)a (64)
= y+P1η −Ya−Aα

= y+P1η −Ya−AP0η (65)

Therefore
∂ r̂
∂a

= −(Y +E) [from(64)] (66)

∂ r̂
∂η

= P1 −AP0 [from(65)] (67)

In obtaining the above expressions, the following equivalence
is used:

Ea= Aα (68)

Expanding this, one can get matrix A as follows:


ηp ηp−1 . . . η2 η1

ηp+1 ηp . . . η3 η2
...

...
. . .

...
ηp+m−1 ηp+m−2 . . . ηm+1 ηm


︸ ︷︷ ︸

E


a1
a2
...
ap


︸ ︷︷ ︸

a

= A



η1
η2
...
ηp

ηp+1
...

ηp+m−1


︸ ︷︷ ︸

α

(69)

From (69), it is evident that

A=


ap ap−1 ap−2 . . . a1 0 0 . . . 0
0 ap ap−1 ap−2 . . . a1 0 . . . 0
0 0 ap ap−1 ap−2 . . . a1 . . . 0
...

...
...

...
...

. . .
...

. . .
...

0 0 . . . 0 ap ap−1 ap−2 . . . a1


m×(p+m−1)

(70)

NOTE: MATLABTM [35] has a built-in function ‘toeplitz’,
which generates a Toeplitz matrix when the first column and
the first row of the matrix are specified as the arguments.
Following the syntax of this function,matrixAmay bewritten
as:

A= toeplitz(d1,e) (71)

where

d1 =

[
ap 0 0 . . . 0︸ ︷︷ ︸

(m−1) zeros

]T
(72)

e=

[
ap ap−1 ap−2 . . . a2 a1 0 0 . . . 0︸ ︷︷ ︸

(m−1) zeros

]T
(73)

With the above, (62) and (63) can be rewritten as:

r̂(η +1η,a+1a) = r̂(η,a)− (Y +E)1η+ (P1 −AP0)1a
(74)

L(η +1η) = Lη +L 1η (75)

Considering RHS of (74) and (75), (59) can be reformulated
as:

min
1η,1a

∥∥∥∥[
(P1 −AP0) −(Y +E)

L 0

][
1η

1a

]
+

[
r̂
Lη

]∥∥∥∥
2

(76)

Such a minimization problem is normally handled as a least
squares problem as follows:[

(AP0 −P1) (Y +E)
−L 0

][
1η

1a

]
=

[
r̂
Lη

]
(77)

NOTE: As already mentioned, the basic premise behind the
least squares approach is that the equations cannot be satisfied
exactly. The RHS is not exactly equal to LHS. Therefore, the
effort is directed towards minimizing the sum of the squares
of the errors, which is same as minimizing the l2 norm of
the error vector. For the least-squares formulation of (77), the
error vector is the function in (76). Thus, (76) and (77) are
equivalent.

However, in applying least-squares principle to an overde-
termined set of linear equations, if a few equations have to
be satisfied more accurately, such equations are weighted by
a factor W , and this leads to weighted least squares [36].
As already indicated, in case of (76), the part corresponding
to (74) has to be satisfied more accurately than the part
corresponding to (75). Hence the weighted least squares
formulation in this case is represented as:[

W (AP0 −P1) W (Y +E)
−L 0

][
1η

1a

]
=

[
W r̂
Lη

]
(78)

Greater the value of the weighting factor, W is, the
better [47]. In this work,W is taken as 108.
Using the values of 1η and 1a obtained from the solution

of (78), the vectors η and a are updated as:

ηnew = η +1η (79)

anew = a+1a (80)
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FIGURE 1. Flowchart for linear prediction solution of STLS-Prony
algorithm.

Using the new values of ηi, matrix E and vector g are
also updated appropriately as Enew and gnew. With these, the
augmented data matrix T = [y|Y ] is updated as:

Tnew = T + [gnew|Enew] (81)

Conventionally, iteration is terminated when the Eucledian
norms (or l2 norms) of the correction vectors 1η and 1a
go below a pre-specified tolerance [17]. The termination
criterion adopted in this work is slightly different. Here, the
number of singular values of the initial augmented datamatrix
T whose value is above 10−3 times the largest singular value
is noted as n. This is the numerical rank of the augmented
data matrix. The leitmotif of the linear prediction solutions
presented in this paper is rank reduction. Hence, in this work,
iteration is terminated when the nth singular value of the
updated augmented data matrix Tnew is reduced to 10−4 times
its largest singular value. This is tantamount to reducing the
numerical rank of T to at least (n−1).

This completes the determination of LP coefficient vector
a, which is the first step in Prony analysis.

Hence the STLS-Prony algorithm can be summarized as
given below. It may be noted that among the steps 2 – 6, some
deviate slightly from those given at the end of Section III.

• Step 1 – determination of LP coefficients:
The flowchart in Fig. 1 encapsulates the determination
of LP coefficients in STLS-Prony algorithm.

• Step 2: Polynomial rooting for getting discrete modes
zi.

• Step 3: Determination of continuous-time eigenvalues
λi from discrete modes zi. Decrement factor σi and
radian frequencyωi are obtained from λi. The steps 2 and
3 are identical to those in PE-Prony algorithm discussed
in Section III.

• Step 4: Determination of residues Bi by Vandermonde
solution. Amplitude Ai and phase-angle φi are thence
calculated.
NOTE: The unique feature of STLS is that the
noise-filtered data matrix Tnew obtained at the end of
step 1 retains the Toeplitz structure of the original
augmented data matrix T = [y|Y ]. Hence it is possible
to obtain a unique noise-filtered value for each sample
from the data matrix Tnew. This noise-filtered version of
the original signal is used in Vandermonde solution.

• Step 5: Thereafter, dominant modes are selected based
on their energy content employing 10% of the energy of
the most dominant mode as the threshold.

• Step 6: As an optional step, the signal can be recon-
structed from the details of amplitude, phase-angle,
decrement factor and radian frequency of different
components, and the fitness metrics SER and MAPE
can be computed. However, in computing these, the
reconstructed signal is compared with the noise-filtered
version of the original signal got from the matrix Tnew
here, unlike in other versions of the Prony algorithm,
where the reconstructed signal is compared with the
original noisy signal itself.

VI. CASE STUDIES USING SVD-AUGMENTED PRONY
ALGORITHMS
The motivation for the work reported in this paper is the
improvement of Prony algorithm performance, particularly
in case of noisy signals. So long as the SNR level of the
ring-down signal is 20 dB or above, the iterative Prony
algorithm works effectively, and the need for a better
algorithm does not arise. However, as SNR goes below 20 dB
(or as the noise content in the ring-down signal increases),
proliferation of the number of components n takes place, and
then the iterative Prony method fails. This is due to the fact
that the linear prediction solution requires that the number
of components n be less than or equal to (N/2) i.e., half the
number of samples in the window, and this condition is not
met when SNR of the test signal goes below 20 dB.

On the other hand, the mode identification results of the
SVD-augmented Prony algorithms match quite closely with
those of the iterative Prony method up to an SNR level of
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FIGURE 2. Two-area, four-machine power system.

20 dB, and hence there is no need to discuss these in detail.
Therefore, the focus here is narrowed down to signals with
lower SNR (higher noise content). Accordingly, case studies
employing SVD-augmented Prony algorithms are presented
for the following four SNR values: (a) 10 dB, (b) 5 dB,
(c) 2 dB and (d) 1 dB.

The well-known four- , ten- and sixteen-machine power
systems are selected for carrying out case studies as these
are among the IEEE-recommended benchmark models [37].
Noisy signals are obtained by adding white Gaussian noise to
noiseless signals obtained through time-domain simulation of
power system models. Further, the test signal window length
is standardized at 20 s in this work. This is based on the
recommendation in [38], which is a comprehensive document
on Prony analysis of power system signals. In this reference,
it is suggested that the minimum window length be at least
two cycles of the lowest frequency component expected.
The lowest frequency of electromechanical oscillations is
0.1 Hz [39], and two cycles of this frequency correspond to
20 s. Further, for the sake of confirmation, a shorter window
length of 10 s is tried, and then all the three SVD-augmented
Prony algorithms are found to fail.

A. MODE IDENTIFICATION OF SIGNALS FROM
FOUR-MACHINE SYSTEM
The one-line diagram of this system is given in Fig. 2.
Four-machine, two-area system is a small synthesized

system that is ideal for studying electromechanical oscilla-
tions [39]. There is a clear demarcation between the two areas,
with generators 1 and 2 belonging to area-1, and generators
3 and 4 belonging to area-2. The number of electromechanical
modes is three (which is equal to number of generators minus
one). Out of the three electromechanical modes, one is an
inter-area mode while the remaining two are local modes –
local mode of area-1 and local mode of area-2.

System data used are obtained from [40]. The model
employed for generators is operational impedance 2.2 [41].
NOTE: 2.2 model implies that two coils – one field coil

and one damper coil – are considered along the d-axis of the
rotor and two damper coils are considered along the q-axis
of the rotor. The electrical state variables are flux linkages of
these four coils. Added with two mechanical state variables,
namely, power angle δ and slip (or per unit speed deviation),
this results in a sixth order model.

Static exciters are enabled on all the generators. Loads
considered are of constant-impedance type. Time-domain
simulation window is 20 s long, and Dormand-Prince
(ODE5) numerical integration method is employed with a
fixed step size of 0.025 s. Note that this step size corresponds
to 40 samples/s. This matches well with the reporting
rate of WAMS worldwide, which varies between 10 −

120 frames/s [4]. Further, as electromechanical oscillations
have a maximum frequency of 4 Hz [1], this sampling rate is
quite adequate for reconstructing these oscillations.

For obtaining oscillatory signals, reference voltage of
generator 4 is perturbed. The slip (or per unit speed deviation)
signal of generator 4 referenced to its center-of-inertia
(COI) [42] and the detrended electrical torque signal of
generator 1 are taken up for mode identification.

The normal practice for validating these results is to
compare them with the benchmark eigenvalues obtained
through detailed small-signal stability analysis [43]. The
relevant swing-mode values got from small-signal stability
analysis in this case are [44], [45]:

−1.0488± j6.7981 (highly damped local mode of area-2)
and

−0.0372± j4.4583 ( inter-area mode).

1) MODE IDENTIFICATION OF SLIP SIGNAL OF GENERATOR
4:
The results obtained in this sub-case are presented in Table 1.

From the results in Table 1, one can draw the following
inferences:

• As expected, both the highly-damped local mode of
area-2 and the inter-area mode can be observed in
this signal as it is drawn from the area-2 where the
perturbation has originated.

• When SNR is 10 dB, both TLS-Prony and STLS-Prony
algorithms successfully identify the highly damped
local mode whereas PE-Prony fails to do so. Further,
local mode value of −1.0702± j6.5863 estimated with
STLS-Prony algorithm is closer to the benchmark
eigenvalue of −1.0488 ± j6.7981 than that estimated
with TLS-Prony algorithm. Thus STLS-Prony algorithm
performs better than the other two algorithms. Hence
STLS-Prony algorithm has practical relevance in system
identification from noisy signals containing a well-
damped mode.
NOTE: Mode identification is generally considered
successful when the decrement factor matches up to first
decimal place and radian frequency deviation is within
4% in comparison to those of the benchmark eigenvalues
obtained through detailed small-signal stability analy-
sis [10].

• Further, when SNR is 10 dB, both TLS-Prony and STLS-
Prony do show a spurious mode with purely real value.
This represents an exponentially varying DC. Throwing
up spurious DC modes is a known issue with Prony
algorithms [8]. Since the value of this purely real mode
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TABLE 1. Mode identification results of highly noisy slip-COI signal of
generator 4 from stable 4-machine system: VRef of G4 is perturbed.

is negative, it represents an exponentially decaying DC
component, and hence is not worrisome.

• When SNR goes below 10 dB, all the three algorithms
fail to identify the highly damped local mode.

• However, all the three algorithms succeed in identifying
the inter-area mode right down to an SNR of 1 dB.

• As already mentioned, the rank-reduced augmented data
matrix obtained in STLS retains the Toeplitz structure.
Hence the diagonals of this Toeplitz matrix offer unique
values for the individual samples. These values can be
regarded as the filtered sample values. It is this filtered
input signal that is compared against the reconstructed

signal for the computation of the fitness metrics in the
STLS-Prony algorithm. Hence, it can be seen that even
when the SNR level of the input signal is 1 dB, SER
between the filtered input signal and the reconstructed
signal is around 30 dB, which indicates a very good
matching. This validates the efficacy of the STLS
approach as a filtering technique.
On the other hand, in case of PE-Prony and TLS-Prony
algorithms, the rank-reduced data matrix does not retain
the Toeplitz structure. As such, it is not possible to assign
unique values to individual samples from the rank-
reduced matrix. Hence, a filtered version of the input
signal cannot be obtained. Therefore, in case of these
algorithms, the reconstructed signal is compared against
the original unfiltered input signal. Naturally, as the SNR
level of the input signal decreases, the SER between
the reconstructed signal and the original unfiltered input
signal turns out to be lower and lower, indicating a poor
matching.

• However, the run-time of STLS-Prony method is much
longer than those of the other two algorithms due to the
iterative procedure involved in obtaining an optimally
filtered data matrix.

2) MODE IDENTIFICATION OF DETRENDED ELECTRICAL
TORQUE SIGNAL OF GENERATOR 1:
The results of this sub-case are listed in Table 2. As the
perturbation has taken place in area-2, the local swing mode
of area-1 is not excited. Since the test signal considered here
is drawn from area-1, one gets to observe only the inter-area
mode in this signal.

Given below are the inferences drawn from the results in
Table 2.

• The poorly-damped inter-area mode is the only elec-
tromechanical mode present in the signal. Hence all the
three algorithms succeed in identifying it even when the
SNR is reduced to 1 dB.

• However, when the SNR is 2 dB or lower, PE-Prony
throws up some spurious high frequency modes as
dominant in addition to genuine electromechanical
modes. Among these, there are two modes, whose
frequency is around 8 rad/s. This is clearly within the
frequency range of electromechanical modes, and hence
causes confusion. (The swing mode frequency range
goes normally up to 2 Hz or 12.57 rad/s and extends
occasionally to 4 Hz or 25.13 rad/s [40].)

• STLS-Prony method also shows a spurious high
frequency mode of 125.66 rad/s as dominant when
the SNR level of the signal is 1 dB. However, the
frequency range of this spurious mode is outside that
of electromechanical modes, and hence this does not
cause confusion. In fact, 125.66 rad/s equates to 20
Hz, which is half the sampling frequency. Throwing
up a spurious mode with frequency equal to half the
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TABLE 2. Mode identification results of highly noisy detrended electrical
torque of generator 1 of stable 4-machine system: VRef of G4 is
perturbed.

sampling frequency is a well-known drawback of Prony
methods [8].

B. MODE IDENTIFICATION OF A SIGNAL FROM
TEN-MACHINE SYSTEM
The one-line diagram of the ten-machine, four-area power
system is depicted in Fig. 3. This system is taken up for a
case study as it represents a practical system, namely, New
England power system.

In this case also, power system data are borrowed
from [40]. The model employed for generators is 1.1. This
implies that only one coil, namely, field coil is considered
along rotor d-axis and one damper coil is considered along
rotor q-axis. The two electrical state variables selected are
the flux linkages of these two coils. Along with the two
mechanical state variables – power angle δ and slip, this
results in a fourth order model.

IEEE AC4A exciters [42] are enabled on all the ten
generators. As in the previous case, time-domain simulation
window is 20 s long, and Dormand-Prince (ODE5) numerical

FIGURE 3. Four-area, ten-machine New England power system.

integration method is employed with a fixed step size of
0.025 s.

For obtaining oscillatory signals, reference voltage of
generator 7 is perturbed. The active power signal in the
tie-line between buses 12 and 25 is then taken up for mode
identification. This case is interesting because the system
goes unstable. In fact, small-signal stability analysis shows
that there are two negatively-damped inter-area swing modes,
whose values are [44]:
0.2111± j6.0077 and 0.0624± j3.9632.
The corresponding mode identification results are con-

tained in Table 3.
The inferences drawn from the results in Table 3 are as

follows:

• All the three algorithms succeed in identifying both the
negatively-damped inter-area modes right down to an
SNR of 1 dB. This is very significant from the viewpoint
of online control.

• Below an SNR of 5 dB, PE-Prony and STLS-Prony
algorithms throw up some spurious high frequency
modes. However, the frequency of such modes is outside
the frequency range of swing modes.

C. MODE IDENTIFICATION OF A SIGNAL FROM
SIXTEEN-MACHINE SYSTEM
This system is selected as a representative of large power
systems. The one-line diagram of the sixteen-machine power
system is depicted in Fig. 4.
The data of this power system are adopted from [46].

The model employed for generators is operational impedance
2.2 (sixth order model). DC1A exciters [42] are enabled on
generators 1− 8 and static exciter with slip PSS is enabled
on generator 9. However, no exciter is enabled on generators
10− 16. To initiate oscillations, a symmetrical fault lasting
0.05 s is simulated at bus 66. The signal considered for
mode identification is the detrended active power in the line
between buses 9 and 30, and the analysis window lasts for 20 s
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TABLE 3. Mode identification results of highly noisy detrended power in
line 12−25 of 10-machine system: VRef of G7 is perturbed.

starting 1s after the initiation of the fault. (This 1 s delay in the
starting point of the analysis window is meant to exclude the
nonlinear characteristics triggered due to fault occurrence.)
The numerical integration method used is Dormand-Prince
(ODE5) with a fixed step size of 0.02 s. Note that the step
size is selected here deliberately to be slightly different from
that in the previous case studies. This is meant to confirm
that there is no great variation in the performance of the
algorithms when the reporting rate is varied moderately.
However, even in this case, the sampling rate of 50 samples/s
is within the band of 10 − 120 frames/s employed in the
practical WAMS [4].

The results of mode identification are listed in Table 4.
The relevant eigenvalues indicated by detailed small-signal
stability analysis are:

−0.0888± j2.4678 and −0.0762± j3.1489.
Following are the observations made from the results in

Table 4:

FIGURE 4. Five-area, sixteen-machine power system.

• Although the signal has two electromechanical modes,
these are lightly damped. Hence all the three algorithms
are effective in identifying these right down to an SNR
of 1 dB.

• When SNR is 10 dB, PE-Prony algorithm throws up
a spurious mode with a purely real positive value of
0.0211. Again, when SNR is 5 dB, PE-Prony throws
up a similar mode of value 0.0091. This can result in
a false alarm as a purely real positive mode represents
an exponentially growing DC which implies instability.

• The run-time of TLS-Prony method is more than 9 s in
this case whereas it is around 0.5 s in all the previous
cases. (A system with i7 processor, 3.4 GHz frequency
and 4 GB system memory is used. Operating system
employed is Ubuntu 14.04, and MATLABTM version
deployed is 8.3 or R2014A.) This is because the Vander-
monde solution is obtained with QR decomposition via
Givens rotation [47] here due to rank-defeciency issue
encountered when the solution is attempted with QR
decomposition via Householder transformation. This
problem of rank defeciency is encountered, and QR
decomposition has to be approached via Givens rotation
for Vandermonde solution in case of STLS-Prony algo-
rithm as well. The ‘mldivide’ operator in MATLABTM

resorts to ‘QR decomposition via Householder transfor-
mation’ when it is used for the least-squares solution
of an overdetermined system of linear equations. Thus,
MATLABTM can be said to have a built-in function
for ‘QR decomposition via Householder transformation’
whereas ‘QR decomposition via Givens rotation’ has
to be coded by the user. A user-defined function
takes longer to execute as compared to a built-in
function.
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TABLE 4. Mode identification results of highly noisy detrended power in
line 9-30 of 16-machine system for a fault at bus 66: 1−21 s after fault.

VII. CONCLUSION
The contribution of this paper can be summarized as follows:

• PE-Prony analysis and TLS-Prony analysis of power
system signals are enunciated very lucidly and their
nuances are brought out.

• A formulation of STLS-Prony algorithm for power
system signals is developed successfully.

• It is demonstrated that STLS-Prony algorithm performs
better than PE-Prony and TLS-Prony algorithms when
the test signal has a highly damped local mode.

• On the other hand, when the test signal has only lightly
damped inter-area modes, both TLS-Prony and STLS-
Prony algorithms are effective right down to an SNR
of 1 dB whereas PE-Prony algorithm throws up some
spurious electromechanical modes.

• Filtering a noisy oscillatory signal is a nontrivial
problem. In this context also, STLS is shown to be
relevant by virtue of its characteristic ability to offer
unique filtered values to individual samples of the test
signal.

• The solution of linear equations in Prony analysis
of highly noisy signals often gets bogged down by
rank deficiency issues. It is demonstrated that this
problem can be circumvented by taking recourse to
QR decomposition via Givens rotation. As compared to
the commonplace technique of Householder transforma-
tion, Givens rotation is no doubt long-winded. However,
this can be expedited by adopting Fast Givens rotation,
which will be taken up as future research.

• One basic limitation of STLS-Prony algorithm is its
protracted execution. Adoption of Fast Givens rotation
is hoped to improve this, and hence enhance the appeal
of STLS-Prony algorithm remarkably.

TLS-Prony and STLS-Prony algorithms, which work right
down to an SNR of 1 dB when the signal has only inter-area
modes, have a scope for application to mode identification
from ambient signals as the latter have an SNR level above
this [48], [49]. The primary advantage of these algorithms
is that these require a signal window length of only 20 s
whereas the mode-meter algorithms normally used for mode
identification from ambient signals require a signal window
length of 10 minutes [50]. This drastic reduction in the
required signal window length would improve power system
reliability significantly by virtue of a pronounced curtailment
in latency, which enables rapid initiation of mitigating control
action in the event of onset of system instability.

APPENDIX
DETERMINATION OF MATRIX L
The basic advantage of the Toeplitz structure of the pertur-
bation matrix [g|E] in STLS-Prony algorithm presented in
Section V is that its Frobenius norm can be obtained as the
scaled Eucledian norm of a small vector made up of distinct
elements of [g|E]. That is,

∥g|E∥F = ∥Lη∥2
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TABLE 5. Repetitions of different ηi elements of [g|E] in the example.

Expanding this, one obtains the matrix L as given below.∥∥∥∥∥∥∥∥∥∥∥


ηp+1
ηp+2

...

ηp+m︸︷︷︸
g

ηp ηp−1 . . . η2 η1
ηp+1 ηp . . . η3 η2

...
...

. . .
...

ηp+m−1 ηp+m−2 . . . ηm+1 ηm︸ ︷︷ ︸
E



∥∥∥∥∥∥∥∥∥∥∥
F

=

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

[L]



η1
η2
...

ηl
ηp+1

...

ηp+m


︸ ︷︷ ︸

η

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥
2

(82)

This is better illustrated through an example.
Consider a case with the number of rows in [E] = the

number of rows in [g] = m= 8.
Let the number of columns in [E] = p= 4.
With these, (82) becomes:

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥



η5
η6
η7
η8
η9
η10
η11
η12︸︷︷︸
g

η4 η3 η2 η1
η5 η4 η3 η2
η6 η5 η4 η3
η7 η6 η5 η4
η8 η7 η6 η5
η9 η8 η7 η6
η10 η9 η8 η7
η11 η10 η9 η8︸ ︷︷ ︸

E



∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥
F

=

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

[L]



η1
η2
η3
η4
η5
η6
η7
η8
η9
η10
η11
η12


︸ ︷︷ ︸

η

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥
2

(83)

From the Table 5, one can infer that if the Frobenius norm
of [g|E] is to become equal to Eucledian norm of [Lη], then
L in this example must be formed as a square diagonal matrix
as follows:

L= diag(
√
1,

√
2,

√
3,

√
4,

√
5,

√
5,

√
5,

√
5,

√
4,

√
3,

√
2,

√
1). (84)
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