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ABSTRACT The lateral line scales of fish are an important phenotype of fish species. As an important
countable feature, the accurate and effective counting of lateral line scales is an important reference standard
for breeding, determining the growth status of fish, and identifying fish species. At present, the statistical
work of fish lateral line scales mainly depends on manual statistics and semi-automatic methods, which
cannot meet the current needs of sustainable development and precision digital fisheries. The method based
on computer vision and deep learning can provide an a real-time, efficient and non-contact method for
identifying and counting fish lateral line scales. However, it is still a challenge due to the high similarity
between fish scales and the variable size issues caused by the free movement of the fish. Hence, we proposed
a transformer module improved YOLOvS model (TRH-YOLOVS) for fish lateral line scale detection and
counting, which focus on the high similarity of fish scales. In addition, we design a small target detection
module in the head layer to address the challenge of multi-scale fish. To evaluate the effective of our method,
performance of proposed model is analyzed on different type fish dataset and it is also compared with
classical method including SSD, YOLOv4 and YOLOvS. Comprehensive experimental results show that the
proposed model achieves fine results (e.g., 98.8% precision, 96.7% recall and 99.0% mean average precision)
with relatively lower computational coat (e.g., 16.1M model size) and fast detection speed (e.g., 37 FPS)
compared with the benchmark algorithm. The TRH-YOLOvV5 model is also used for swimming fish video
to detect fish lateral line in real-time and can be integrated into aquaculture vision system for aquaculture
precision and sustainable management.

INDEX TERMS Detection, fish lateral line scales, YOLOVS, transformer, aquaculture.

I. INTRODUCTION

The lateral line scales of fish are one of the most important
fish phenotypes [1]. The detection and counting of fish lat-
eral line scales play a vital role for breeding, growth status
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assessment and species identification of fish in aquacul-
ture [2], [3]. Currently, the detection and counting techniques
of fish lateral line scales primarily rely on manual identi-
fication and statistical counting. These techniques always
directly contact to fish and detect with naked eye [4]. These
contact recognition techniques are time-consuming, labor-
intensive and fish body injuries and they cannot satisfy the
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requirements of efficient and intelligent in modern aquacul-
ture [5], [6], [7]. Recently, the semi-automatic techniques
have been applied to the identification of fish body phe-
notypes, e.g., body size, tail and head distribution and fish
lateral line scales detection [8]. However, it is highly sus-
ceptible to external equipment, environmental interference
and subjective factors such as the habits, experiences, and
preferences of the collector [8], [9]. For above reasons, the
development of non-contact measurement methods is urgent
and necessary to replace the directly manual methods [10].
In recent years, computer vision technology and deep learn-
ing develop rapidly. These technologies have been fusion
applicated in aquaculture production grading, phenotypic fea-
ture acquisition and fish size measurement [9], [11], [12].
These researches provide a well way and idea for non-contact
detection of fish lateral scales and counting for aquaculture
intelligent development.

In terms of fish phenotypic extraction and recognition,
White et al. used image binarization method to detect the
direction of the fish head and tail and used these intersect-
ing points and information to calculate the final fish body
length [13]. With the development of the optical ranging and
automatic data acquisition technologies, Costa et al. mea-
sured the length and shape of northern Bluefin tunas in a
sea cage using underwater binocular cameras [14]. These
methods had a confidence level of up to 95% accuracy, reduc-
ing measurement costs and improving measurement speed.
Compared to manual feature detection methods, the above
methods have made significant improvements, but underwa-
ter environment, multi-scales and swimming status of fish add
difficulties and limit the application for the traditional image
processing technology [15]. Deep learning networks (DLN)
emerge as a promising solution to address these challenges.
For fish biomass estimation, Abinaya et al. presented a seg-
ment analysis technique based on YOLOV4 to determine the
length and biomass of fish for health and growth rate during
fish growing stages [16]. For fish texture phenotypic features,
Maurya et al. proposed a color texture feature extraction
method based on genetic optimization and a method based on
transfer learning to efficiently identify fish color and texture
features [17]. In addition, in the actual aquaculture production
process, Banwari et al. used computer vision to predict the
freshness of fish by extracting phenotypic features of fish
eyes [18]. Liao et al. developed 3DShenoFish software based
on deep learning to address the issue of automatic measure-
ment of morphological features, extracting the morphological
phenotype of fish from 3D point cloud data [19].

These previous researches of fish body phenotype based on
computer vision mostly focuses on morphological parameter
features, such as body length, head length, and tail stalk
width data [5], [8], [20]. There are few researches on the
phenotype recognition and counting of lateral scales. The
only computer vision-based recognition methods for fish
lateral scales remain in the early stages of recognition and
cannot complete the counting function. The scales of fish
lateral scales is roughly small in fish image and the edge
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of fish lateral scales is extremely similar [21]. These factors
are the challenges for the fish lateral scales detection in the
underwater environment [22]. In order to achieve non-contact
and precision detection technique of fish lateral scales in the
reality aquaculture environment, we explored the application
of deep learning in animal detection using the cutting-edge
object detection framework YOLOVS and transformer self-
attention mechanism. We proposed an TRH-YOLOvVS5 model
to non-contact detect and count fish lateral scales in the
complex aquaculture scene.

The contributions of this paper are as follows: (1) We
integrated the transformer self-attention mechanism (TR) and
added a small target detection layer on this basis to improve
the overall feature extraction ability of the model, greatly
improving the recognition rate of fish lateral line scales.
(2) Establish a challenge dataset for fish lateral line scale
detection and counting. We collected image data of fish lat-
eral scales in different scenes and conducted effectiveness
screening on experimental data. Additional, in order to avoid
too single dataset image and ensure the reliability of the
data, brightness, adaptive histogram equalization, enhance
edges, Gaussian noise in six methods of image preprocessing,
including horizontal and vertical flipping, are used to expand
the original image data and ultimately construct fish lateral
line scale datasets.

Il. MATERIAL AND METHODS

A. DATA ACQUISITION AND PREPROCESSING

1) EXPERIMENT AND IMAGE TYPE

The fish body lateral line scale data collection was carried out
at the Hebei Zhuozhou Digital Fishery Precision Technology
Integration Base. The collection period is from July 19, 2022,
to August 2, 2022. The collection objects are 8-23 cm cru-
cian carp and koi fish, including a total of 18 black crucian
carp, 10 red gill crucian carp, 1 pure white crucian carp,
6 red and white koi, 2 tri-color koi, and 1 yellow koi. The
SONY IMX686 camera is used for data collection through
shooting, and the data collection includes multi-directional,
multi-species, different distance, different scene, and differ-
ent size fish body lateral line scale images and real-time
videos. A total of 1903 image data files and 16 video data
files were collected, with image formats as JPG, resolution of
4624 pixels x 2604 pixels per image; video format is MP4,
with each video having a frame width of 1920 and a frame
height of 1080.

The specific collection environment is shown in Fig.1,
which displays the equipment, scene, and collection of three
types of fish photos required for the experimental data.
The first category is static lateral line scale images. These
images are collected by setting different vertical distances
(three distances: 15cm, 30cm, 45cm), different lighting con-
ditions (three levels: dim, weak, and strong), different angles
(two types: front and oblique side), and different vertical
positions (four positions: upper left, upper right, lower left,
lower right). The second category of images are fish in
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FIGURE 1. The structure of experiment system and categories of fish lateral line.

motion. Ten representative fish are randomly selected and
placed in a glass tank, and images and videos of freely
swimming fish are collected outside the glass tank. This
category of photos is taken in various environments, such
as a calibration board background, multi-fish culture pond
background, fishing background, artificial holding back-
ground, and natural environment background. In order to
increase the effective and rich dataset, enhance the dataset’s
robustness, the experiment adds data collection from multi-
ple scenes, and this type of image is the third category of
images.

2) DATASET OF FISH LATERAL LINE BASED ON DATA
AUGMENTATION

In order to improve the quality of fish lateral line scale
datasets, this study first cleans the collected 1903 images
to remove images with high repeatability, indistinguisha-
bility, or significant distortion. In the end, 233 images are
selected for the future model building. In order to avoid a
simple dataset structure and reduce the impact of the dataset
on the accuracy of the later fish lateral scale recognition
and counting model construction. Six image pre-processing
methods, including adding random brightness(Bright), adap-
tive histogram equalization(Ahe), enhancing edges(Edge),
adding Gaussian noise(Noise), horizontal flipping(H-Flip)
and vertical flipping(V-Flip) are used as the data augmen-
tation methods in this study [23]. The pre-processed images
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(random selected three images) are shown in Fig.2. The top
line is the initial images; the other lines are pre-processed
images. Adding Random Brightness is designed to simulate
the diversity of light intensity in real-world scenes, and the
fact that the surface of the fish body will experience different
levels of reflection and chose a method of adding random
brightness for data processing. Adaptive Histogram Equal-
ization is compensated for some of the blurring issues of
the lateral line scale images and use the method of adaptive
histogram equalization for data processing. Edge Enhance-
ment used edge enhancement for data processing to increase
the distinguishability of the fish body’s lateral line scales in
the image and the usage rate of some blurry images. Adding
Gaussian Noise chose Gaussian noise for data processing to
meet the varying image quality due to differences of image
acquisition equipment and environmental conditions. Hori-
zontal flip (H-Flip) is done by flipping the image 180 degrees
on its vertical axis, and vertical flip (V-Flip) is done by flip-
ping the image 180 degrees on its horizontal axis, to enhance
data diversity.

Finally, a total of 1615 images and annotation files were
obtained through image annotation. And it is divided into
training set, testing set, and validation set in a 3:1:1 ratio,
forming a scientific fish lateral scale dataset. (The data
divided ratio is according the book “Machine Learning
Yearning”™ of Andrew Ng and his instructional video. when
the amount of data is not very large (below ten thousand), the
training set, test set, and validation set can be divided into a
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FIGURE 2. Results of different data augmentation techniques for fish
lateral line image.

6:2:2 ratio. If the amount of data is large, the data set can be
adjusted to a 98:1:1 ratio.)

B. TRH-YOLOv5 METHOD FOR DETECTION
OF FISH LINE SCALES
YOLOVS is a standard convolutional neural network that
performs various convolution operations, pooling opera-
tions, and result output through a fully connected layer on
input three-channel images [24], [25]. It adopts the Path
Aggregation Network (PANet) structure [26], which leads to
insufficient fusion of multi-scale features. YOLOVS mainly
includes three parts: the Backbone layer, the Neck layer and
the Head layer. The Backbone layer continuously extracts
key and general features through convolutional down sam-
pling. The Neck network layer is used for further feature
extraction [27]. It includes two parts: the left FPN and the
right PAN. The FPN extracts features at different scales in
the image by constructing a feature pyramid with different
resolutions. The right-side PAN obtains multiscale informa-
tion through a bottom-up path aggregation module. Finally,
the Head layer is used for object detection and output of
corresponding final detection results, converting the three
feature maps extracted by the backbone network into the
final target detection results. We chose the smallest YOLOvS5s
as the base model, which ensures detection accuracy while
saving detection time and model space size.

In the fish body lateral line scale detection aspect, due
to the small scale of lateral line scale targets and the small
interclass differences between other scales, it increases the
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difficulty of lateral line scale detection and recognition for
dynamic fish bodies. Therefore, a TRH-YOLOVS fish body
lateral line scale detection model is proposed in this paper.
The overall structure of proposed method is illustrated in
Fig.3.

To solve the problem of the extremely similarity of fish lat-
eral line scales boundaries, the Transformer Encoder is fused
with the C3 module in the eighth layer of the Backbone layer,
forming a new module to further improve feature extraction
capability in YOLOvVS5-6.1. The features obtained from the
C3 module at the seventeenth layer of the Neck layer are
then convoluted and up-sampled. Afterward, the same-scale
features from the third layer of the backbone network are
fused by concat, forming the feature map corresponding to the
small object detection layer. Subsequently, the small object
detection layer (Head) is built in the detection network, com-
pleting the overall construction of the model.

1) IMPROVE THE BACKBONE OF YOLOvV5

BY TRANSFORMER MODULE

Transformer is a neural network model based on self-
attention mechanism, which has long been applied in the
field of Natural Language Processing (NLP) [28]. It is imple-
mented through the transmission between encoder-decoder
repetitive units and can be regarded as a combination of two
recursive neural network substructures. The detail algorithm
is described by Dai et al. [29]. Our main focus is on the left-
side Encoder. In the encoder, each encoder has two sublayers:
the first sublayer is a multi-head attention mechanism layer,
i.e., the Multi-Head Attention module; the second sublayer
is the feed-forward neural network layer MLP module. Its
advantage lies in enabling the model to cover the global image
better and obtain rich contextual information [30].

The most critical challenge is to effectively combine Trans-
former with computer vision and convert the features of
processing text data in the original model to image data.
Therefore, the paper simulates the application of Transformer
in natural language processing tasks, and when processing
images, a one-dimensional vector still needs to be input,
so the input image needs to be cropped. First, assume that
the input raw fish lateral line scale image size is HxWxC,
where H is the image height, W is the image width, and C
is the image depth. The image is cropped into nine different
image patches through the Patch operation, with each image
patch size being Px P, where P is a preset fixed value, i.e., the
height or width of the obtained image patches. The number
of patches is as Eq.(1):

N =H x Ig (1)
The lateral line scale images are cropped into nine dif-
ferent image patches through the Patch operation. Then
each lateral line scale image patch is flattened into a
one-dimensional vector through the Flatten operation. The
class token and positional encoding are combined with it
to generate a new vector, transforming the lateral line scale
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FIGURE 3. An overview of the TRH-YOLOVS5. TR represents the Transformer self-attention mechanism module; H represents the small object detection

layer.

image of the fish into a one-dimensional vector with cate-
gory and positional features. This serves as the input for the
model, achieving the integration of Transformer with visual
information.

Inspired by the above Vision Transformer, this model
addresses the multi-scale target and the problem of being eas-
ily confused in fish lateral line scale phenotype recognition
and counting. The last C3 bottleneck block in YOLOVS5-
6.1 version is fused with the Encoder in Transformer to
form a new TR module at the last layer of the backbone
network. Its structure is shown in Fig.5. This process mainly
takes into account that the last C3 layer has higher semantic
information, which can better cover the entire image and
obtain rich context information. Particularly, it can better
capture the difference information at the boundary of the
lateral line scales. In contrast, the shallow semantic infor-
mation obtained from the early C3 layers, if an encoder is
added to each layer, will certainly result in a large number of
parameters and slow calculations. Therefore, centered around
the study’s requirements to automatically and real-time detect
lateral line scales, an encoder module was added at the
high-level semantic location. Compared with the original
C3 module, after integrating the Transformer Encoder, its
self-attention mechanism and other characteristics enhance
the model’s ability to capture different feature information.
It can better cover the global image and obtain rich contextual
information.
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2) IMPROVED NECK OF TRH-YOLOvV5

Due to the different species and sizes of fish, the correspond-
ing lateral line scale sizes are multiple scales in different data
images and have many small targets. In the model training
and detection process, the model goes through multiple con-
volution operations from bottom to top, causing some feature
information loss in the shallow feature map [31]. Although
the resolution of the P3 detection layer is 80 x 80 pixels, its
detection capability is still limited.

To achieve better recognition and counting results for
multi-scales and small lateral line scales, we designed a new
small object detection layer, the P2 detection layer, to make
full use of shallow semantic information as shown in the
Fig.6. Its resolution is 160 x 160 pixels, which can be regarded
as having only performed two convolution operations in the
Backbone layer and containing more comprehensive shallow
object feature information. In the Neck layer, two same-scale
features obtained from FPN and PAN methods and P2 feature
layer are merged through concat concatenation, and the final
fusion result is output. When the model deals with small-scale
fish lateral line scale targets, it can use the P2 detection layer
for accurate detection and improve recognition and counting
accuracy.

3) PERFORMANCE EVALUATION

This study uses the following seven indicators to evalu-
ate the model: Precision, Recall, Mean Average Precision
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(mAP), Model Size, Model Parameters (Params), Floating-
point Operations per Second (FLOPS), and Frames per
Second for Single-frame Image Inference (FPS). The specific
expressions of the evaluation indicators are as follows:

(1) Precision: The ratio of correctly predicted positive sam-
ples to all samples predicted as positive, that is, how
many of the samples predicted as positive are actually
positive.

L )
+ FP
Recall: The ratio of correctly predicted positive sam-
ples to the total number of real positive samples, that is,
how many lateral line scale positive samples the model
can predict correctly from these samples.
TP
TV 3)
TP + FN
In the above formulas, where TP, FP and FN represent true
positives, false positives and false negatives.

(3) Mean Average Precision (mAP): This indicator is not
an absolute measure of the model, but it can relatively
reflect the performance of the model.

Precision =

(@)

Recall =
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In the above formulas, A Ps is the average accuracy at [OU =
0.5. The mAPs is the average AP of all categories at IOU =
0.5. The APs0.95 is the average accuracy at IOU = 0.5 to
10U = 0.95 with an interval of 0.05, and the mAP5g.95 is
the average AP of all categories at IOU = 0.5 to IOU =
0.95 with an interval of 0.05. Among the above three indi-
cators, the larger the value, the better the performance of
the model. In this study, the mAPs is used for the model
evaluation.

Ill. RESULT AND DISSCUSION

A. NETWORK TRAINING PARAMETERS

Since many important parameters are involved in the training
of the TRH-YOLOVS5 object detection model, mainly includ-
ing: Batch-size, learning rate, and optimizer type. Changes in
these parameters will directly affect the accuracy and speed
of model training. Therefore, a comparison experiment of
parameter settings is conducted in this section to set the
optimal parameters.
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FIGURE 6. Improve head layer for small fish lateral line detection.

In order to optimize the batch size and learning rate for the
proposed model, the SGD optimizer was used as the default
optimizer for comparative experimental analysis. SGD is a
classic optimizer that minimizes the loss function of the
model by adjusting parameters through gradient descent.
The advantages of SGD are simple implementation and high
efficiency, but it converges slowly and is prone to local
optima under some special scenarios or dataset conditions.
Adam is an optimizer that approximates random gradient
descent, which adjusts model parameters by maintaining the
first-order and second-order momentum of the gradient and
gradient square of the model. Adam has the advantage of fast
convergence speed. However, the adjustment of hyperparam-
eters increases the complexity of model construction. In the
third part of this section, a comparative experiment was con-
ducted on the training of SGD and Adam optimizer models,
and it was found that the convergence speed and convergence
effect of SGD optimizer were better in the process of fish
lateral scale detection.

1) BATCH-SIZE SETTING

Batch-size is the number of samples selected in a single
training session for a model. Its reasonable adjustment can
not only reduce memory usage but also improve training
speed to some extent. Therefore, a Batch-size comparison
experiment is conducted. According to the control variable
approach and method, while keeping the learning rate at
0.01 and using the default SGD optimizer, the model is
trained for 300 epochs with Batch-size set to 4, 8, 16, and
32 respectively. The experimental results can draw the con-
clusion, as shown in Fig.7. It can be observed that when
Batch-size is set to 4, the convergence speed of this model
is the fastest, but due to its doubled training time and con-
sidering the objective conditions of hardware devices, the
overall best effect is achieved when the Batch-size is set
to 8.

As shown in Table 1, a faster convergence speed is shown
when Batch-size is set 8, the model also performs outstand-
ingly in evaluation indicators such as Precision (P), Recall
(R), and Mean Average Precision (mAP5).

143622

Backbone Neck Head
21
0  CBS[6,2] P12 C3 False * Conv[1, 1] — 7
v t 20 l ” Z 3
1~ CBS|3,2] P24 » Concat CBSJ3, 2]
v t 19 \ 23
2 C3 Ture UpSample —>  Concat
’ f ik ' 2
3 CBS|3,2] Pp3s CBS[1,1] — C3 False —— Cony][l, 1] 2
v 3 v

TABLE 1. TRH-YOLOV5 detection results for fish lateral line with different
Batch-size.

Batch- P R mAPs, Training
size Time (h)
4 98.3% 97.0% 98.9% 47.93

8 98.8% 96.7% 99.0% 25.82

16 98.5% 97.3% 99.0% 22.09

32 98.9% 97.3% 99.1% 21.39

TABLE 2. TRH-YOLOV5 detection results for fish lateral line with different
learning rate.

Learning P R mAPs, Training time
rate (h)
0.01 98.8% 96.7% 99.0% 25.82
0.001 94.5% 90.7% 96.5% 29.60
0.0001 80.9% 66.3% 79.5% 29.06

2) LEARNING RATE

The learning rate is an important hyperparameter, and the size
of its parameter value determines the step size of each training
iteration, which can make the loss function converge to the
minimum. Therefore, a learning rate comparison experiment
is conducted. According to the control variable approach and
method, while keeping Batch-size = 8 and using the default
SGD optimizer, the model is trained for 300 epochs with
learning rates set to 0.01, 0.001, and 0.0001 respectively,
as shown in Fig.8. The experimental results can draw the
conclusion: It can be observed that when the learning rate is
set to 0.01, the convergence effect of the loss function of this
model is the best.

As shown in Table 2, the learning rate is set to 0.01,
the model achieves the best performance in comprehensive
evaluation indicators such as Precision (P), Recall (R), and
Mean Average Precision (mAPs).

3) OPTIMIZER
Optimizers play a very important role in the process of
data training and model construction. Keeping the Batch-size
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FIGURE 8. Convergence speed with different learning rate.

at 8 and the learning rate at 0.01, the default SGD opti-
mizer and the Adam optimizer are set for model training,
with the number of training rounds set to 300 epochs,
as shown in Fig.9. The experimental results can draw the
conclusion: When using the default SGD optimizer, the con-
vergence speed of the model is the best, that is, the most
effective.

In addition to showing a faster convergence speed when
using the default SGD optimizer, the model also performs
outstandingly in comprehensive evaluation indicators such
as Precision (P), Recall (R), and Mean Average Precision
(mAP5() as shown in Table 3.

B. MODEL ABLATION EXPERIMENT

TRH-YOLOVS is based on the YOLOvS model. To evalu-
ate the effectiveness of different modules in our proposed
approach, some strategies are implemented on fish school
feeding behavior dataset, such miss Transformer module,
improved head module and both miss the two modules. Based
on the above training strategy, we obtain the ablation results
for fish lateral line detection.
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TABLE 3. TRH-YOLOV5 detection results for fish lateral line with different
optimizers.

Optimizer P R mAPs, Training
time (h)

SGD 98.8% 96.7% 99.0% 25.82

Adam 97.6% 95.1% 98.2% 2593

As shown in Table 4, when the fish lateral line datasets
are executed on the baseline YOLOVS, the model accuracy in
the validation the model precision and mAPs5y reach 97.4%
and 95.3%. To enhance the small object detection precision,
the improve head layer is added to the baseline model and
the precision and mAPs5y can reach 98.2% and 98.8%. The
detection result accuracy of fish lateral line is improved 3.5%.
When just the transformer module is added to the baseline
model (TR-YOLOVS), the precision and mAPso can reach
97.3% and 95.3%. The accuracy of TR-YOLOVS is not sig-
nificant. The TR module and H module are both added to
the YOLOVS, the precision increase from 97.4% to 98.8%
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FIGURE 9. Convergence speed with different optimizers.
TABLE 4. Model improvement ablation experiment.
Transformer (TR) H P R mAPs, Size (MB) FPS
97.4% 88.5% 95.3% 14.4 42
N 98.2% 96.5% 98.8% 16.5 35
YOLOVSs
97.3% 87.9% 95.3% 14.5 49
N \ 98.8% 96.7% 99.0% 16.1 37
mAP 0.5 mAP 0.5
0.98 e 0.98
0.96 0.96
4 o Eerom At
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(a) Original Data Chart for mAP 0.5

(b) Smoothed Data Chart for mAP_0.5

FIGURE 10. Model training process comparison in ablation experiment. (a) The original data chart is constructed using the
original data in the model building process, and (b) the smoothed chart processes the data of the original data chart for

smoothing, making it easier to observe the results.

and the mAPs( increase from 95.3% to 99.0%. From the
Size and FPS results, it is found that the TRH-YOLOVS
has a relatively smaller number of model parameters and
a higher detection speed under the premise of prediction
accuracy.

To explain this achievement, the accuracy curves of differ-
ent models are produced and shown in Fig.10. Special, based
on YOLOVS, the origin model and TR-YOLOvS model,
the accuracy curve can achieve convergence, but the final
prediction result accuracy is relatively low. In comparison,
the convergence speeds of TRH-YOLOvS5 model and the
H-YOLOV5 model are faster and the accuracies are higher
than baseline model and the TR-YOLOVS model.
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C. COMPARING WITH OTHER CLASSIC

DETECTION MODEL

In order to validate the reliability of proposed TRH-YOLOvVS
model, our proposed model is compared with the following
baseline: SSD, YOLOv4, and YOLOVS. These model are all
has strong ability for multi-scale object detection. It is worth
noting that the same experimental settings are presented in
baseline to achieve a fair comparison.

The experiment results are illustrated in Table 5. It shows
that the proposed TRH-YOLOvVS achieves the best per-
formance on the test datasets in terms of precision and
mAPsy with other baseline models. The SSD and YOLOv4
have the poorest performance on validation dataset. And,
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TABLE 5. Model performance comparison table.

Model P R mAPs, Size (MB) Params FLOPS FPS
SSD - 37.9% 45.7% 90.6 - - 8
YOLOv4 59.5% 94.9% 95.0% 244.4 - - 14
YOLOvVS5s 97.4% 88.5% 95.3% 14.4 7012822 15.8 42
TRH-YOLOVS 98.8% 96.7% 99.0% 16.1 7672808 26.6 37
SSD (LLS:0) YOLOv4 (LLS:26) SSD (LLS:1)
YOLOVSs (LLS:32) TRH-YOLOVS (LLS:27) YOLOvSs (LLS:24) TRH-YOLOvS (LLS:22)
(a) Small Scale Detection Image - Standard Quantity 27  (b) Medium Scale Detection Image - Standard Quantity 22
YOLOVSs (LLS:10) TRH-YOLOVS (LLS:10) YOLOvSs (LLS:17) TRH-YOLOVS (LLS:29)
(c) Large Scale Detection Image - Standard Quantity 10  (d) Large Scale Detection Image - Standard Quantity 28
YOI,()\S\ (LLS:28) 'IAR"—\‘()I()\ S(LLS:27) YOLOVSs (LLS:30) TRH-YOLOVS (LLS:28)
(e) Complex-scene Detection Image — (f) Complex-scene Detection Image —
Standard Quantity 30 Standard Quantity 28
FIGURE 11. Comparative diagram of the detection effects of various models under different sizes and scenarios.
these two models have the largest model size and low- of the proposed model in detection accuracy and robust
est detection speed. Compared with the baseline YOLOVS ability.
model, precision of proposed TRH-YOLOvV5 model increases In order to verify the effectiveness of the proposed method

from 97.4% to

98.8%, and the mAPs5y increases from in detecting the lateral line of fish in actual scene images,

95.3% to 99.0%. It shows the outstanding performance the paper tests the four models on selected images. Images of

VOLUME 11, 2023
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fish at small scales, medium scales, large scales and complex
scenarios were selected as verification images. The detection
results are shown in Fig.11. InFig.11 (a) and (b), for small and
medium scale images, we can see that the SSD algorithm is
almost ineffective, the YOLOVS5 method has over-detection,
and the method proposed in the paper detects correctly and
counts accurately in all cases. In Fig. 11(c) and (d), the SSD
detection of large scale different fish images is still not satis-
factory, but the method proposed in this paper still correctly
detects and counts all the images. In the re-examination scene
of Fig.11 (e) and (f), the standard number of lateral line scales
is 30 and 28. The method proposed in the paper did not
accurately detect the entire image in (e), but achieved a detec-
tion accuracy of over 90%. Overall, the method proposed in
the paper performed the best in different scenarios, different
sizes, and different types of fish images for lateral line scale
detection.

IV. CONCLUSION

The proposed TRH-YOLOv5 model aims to realize
non-contact detection and counting of the fish lateral line
scales in the actual aquaculture environment. In this study,
based on the basic YOLOvVS model, a new target detection
model was built to address the problem of the automatic iden-
tification and counting of fish body lateral line scales. The
paper leverages the Transformer’s self-attention mechanism
as well as the fundamental principle and benefits of small
target detection layer, thereby enhancing the recognition
capability of easily confused small targets and significantly
improving the accuracy of fish body lateral line scales’ iden-
tification and counting. The experimental results showed that
the TRH-YOLOvVS5 model performs best when the learning
rate is set at 0.01, the Batch-size is set at 8, and the default
SGD optimizer is used. While maintaining the same model
size and detection speed, the detection accuracy mAPsg
increased by 3.7%, and the recall rate R improved by 8.2%,
demonstrating superior detection performance and identifi-
cation accuracy for fish body lateral line scales. As tested
on multiple datasets of image collections, the identification
counting rate can reach 99%, showing excellent results.
Therefore, the model built in this study is efficient and
significant in terms of automatic recognition and counting
of fish body lateral line scales.

At present, the proposed model has integrated into the
smart fishery breeding platform, enabling efficient automatic
recognition and counting of fish body lateral line scales in
local images, local videos, and real-time videos, basically
fulfilling the actual needs of fishery research and aquacul-
ture. When compared with previous research, the use of this
system avoids touching the fish, significantly minimizing
damage to the fish. Furthermore, in terms of the identification
accuracy and counting precision of fish body lateral line
scales, this system performs even higher and more stable.

Currently, the proposed detection method mainly solves
the problem of fish lateral line scale detection in static
and dynamic scenes, including complex backgrounds and
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dynamic fish bodies. However, there are still issues with
uneven underwater illumination in many aquaculture condi-
tions. In the future, we will continue to study on the accurate
extraction of fish body features such as lateral line scales
under different lighting conditions, thereby further improving
the generalizability and robustness of our model algorithms.
Additionally, the quick movement of the fish can cause
motion blur in the image, making it more difficult to detect
feature edges, hence the fast speed of fish is yet another chal-
lenge restricting accurate extraction of detailed phenotypic
features of the fish body and is needed to continue studying.
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