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ABSTRACT The emerging fifth-generation (5G) technology towards Internet of Vehicles (IoV) provides
numerous advantages, such as lower levels of latency, stable link connections, and support for high
mobility. However, avoiding vehicle collisions in IoV is a challenging task due to routing Emergency Safety
Messages (ESMs) without strict delay and reliability requirements. To address this issue, we propose a novel
intelligent Software-Defined Networking-based Collision Avoidance (SDNCA) framework assisted 5G.
Primarily, SDNCA performs the first algorithm that accurately estimates the Risk Severity (RS) value for
each vehicle via training the proposed Risk Severity-Artificial Neural Network (RS-ANN)model through the
implementation of federated learning among vehicles. The SDNCA framework applies the second algorithm
to achieve three main objectives. First, it calculates the Quality of Service (QoS) of the ESM based on RS,
Vehicle Speed (VS), and Risk Distance (RD). Second, it dynamically allocates 5G network and computing
resources (gNBnr i and gNBcr i ) for three Virtual Networks (VNs) based on QoS, RD, and VS. Third, it selects
the best route (best gNB) for routing the ESMs from the Source Vehicle (SV) to the Destination Vehicle (DV).
To ensure effective forwarding for each ESM, SDNCA deploys the third algorithm at the selected gNB to
schedule the ESMs considering their priorities and configures the gNBnr i and gNBcr i based on the OpenFlow
control message received from the SDN. The real-time simulation results demonstrate that the SDNCA
framework achieves the ideal values of 17% Network Overhead (NO) and Computational Complexity (CC),
a remarkable 0% Collision Rate (CR), 18 ms End-to-End (E2E) Delay, and 89%–90% Packet (ESM)
Transmission Reliability (TR) compared with the existing related research.

INDEX TERMS 5G-IoV, beamforming, collision avoidance, emergency safetymessages, federated learning,
multi access edge computing, network function virtualization, software defined networking.

I. INTRODUCTION
Technological transformations in automated vehicles are
leading to vital changes in the transport systems and auto-
motive industries due to their rapid proliferation on roads,
contributing to increased safety and effectiveness [1], [2], [3].
Recently, the concept of the Internet of Vehicles (IoV) [4]
has drawn significant attention as a promising approach to
reduce traffic accidents, alleviate traffic congestion, and pro-
vide various convenient applications, such as autonomous
driving, interactive entertainment, and real-time traffic infor-
mation [5], [6].

The associate editor coordinating the review of this manuscript and

approving it for publication was Sangsoon Lim .

The IoV connects hardware devices, network communi-
cation channels, and cloud platforms that allow connected
vehicles, pedestrians, and intelligent units near the road
to exchange information in real-time [7], [8], [9], [10].
Autonomous vehicles (AVs) are nearing commercializa-
tion and are expected to become dominant among various
emerging vehicles in the future [11], [12]. Wireless commu-
nication technologies, specifically vehicular communications
such as Vehicle-to-Everything (V2X) [13], along with exist-
ing vehicle-sensing capabilities [14], provide support for
enhanced safety applications, thereby enabling AVs for
safer autonomous driving [15]. The important supporting
technologies of artificial intelligence (AI) [16] and fifth-
generation (5G) networks [17], [18] in IoV technology are
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considered potential solutions for boosting vehicular critical
safety applications [19].

IoV based on 5G communication (5G-IoV) enables
Vehicle-to-Vehicle (V2V), Vehicle-to-Infrastructure (V2I),
Vehicle-to-Roadside (V2R), Vehicle-to-Pedestrian (V2P),
Vehicle-to-Grid (V2G), Vehicle-to-Building (V2B), Vehicle-
to-Device (V2D), and Vehicle-to-Cloud (V2C) communi-
cation modes with high data rates and very low latency,
making AVs a reality [20]. Beamforming and virtualization
technologies are considered the best solutions to optimize
5G utilization in IoV. Beamforming design aims to reduce
the hardware and signal processing complexity while achiev-
ing near-optimal performance by directing a narrow beam
toward each vehicle destination. Thus, adaptive beamform-
ing can minimize interference, improve network coverage,
and increase throughput [21]. Conversely, Network Function
Virtualization (NFV) is an underlying method that enables
network operators to create network slices per end-user appli-
cation or service requirement with guaranteed performance
and quality corresponding to service-level agreements [22].
Thus, emerging 5G-IoV supports high-speed mobility, broad
coverage, substantial capacity, and a stable connection [23].
These attributes are effective for enabling V2X services,
particularly in satisfying the stringent latency requirements
of safety-critical missions such as autonomous driving [24].
Although 5G-IoV aims to provide new capabilities and strict
Quality of Service (QoS) requirements, it runs its network
functions over a unified operating system, particularly at its
edge [25].
Mobile Edge Computing/Multiaccess Edge Computing

(MEC) has been envisioned for future 5G-IoV, in which
some core network functionalities are moved to the net-
work edge, that is, nearer to the vehicles for lower latency
and local processing of sensitive data for critical public
safety services [26]. However, MEC requires the virtu-
alization of network infrastructure for the utilization of
cloud resources at the network edge. As Software-Defined
Networking (SDN) [27] provides flexibility in network man-
agement and large-scale optimization with unified abstrac-
tion [28], [29], SDN is combined with MEC to control virtual
network (VN) customization [30]. In addition, MEC can
be utilized to bolster the control of SDN in the 5G-IoV,
improving network and resource management [31]. Thus,
the supportive 5G-IoV introduces resilience, elasticity, QoS
provisioning, and programmability by efficiently allocating
the available 5G resources and minimizing network manage-
ment latency [32], [33]. Moreover, the central SDN controller
can manage edge servers deployed at 5G base stations [34].
Therefore, SDN can achieve reliable transmission of Emer-
gency Safety Messages (ESMs) to the destination vehicles in
the 5G-IoV environment [35].

ESMs are emergency warnings and delay-sensitive mes-
sages transmitted to the targeted vehicles when detecting
hazardous events on the road to avoid crucial danger
and road congestion [36]. The major challenge of ESM

dissemination in traditional vehicular networks is high broad-
cast storms, which consume large amounts of bandwidth,
increase network congestion, and further increase dissemina-
tion delay [37]. Moreover, the QoS provisioning regarding
the reliability of the surrounding vehicles that can receive
safety messages from a transmitting vehicle within the mes-
sage lifetime still has several limitations in high-density IoV
scenarios and uneven traffic distributions [38], [39]. The
reason can be attributed to the numerous challenges that
vehicular networks face, such as channel interference, limited
bandwidth, line-of-site (LOS) and non-line-of-site (NLOS)
connections, highly dynamicmobility scenarios, and environ-
mental changes [40]. At the same time, the large amount of
data collected by sensors requires high processing and com-
munication capabilities [41]. To alleviate the broadcast storm
problem and handle the challenges in vehicular networks,
SDN-assisted 5G-IoV technology requires the integration of
AI techniques [42].
Federated learning (FL), a promising framework [43],

is considered a feasible solution for safety-and time-critical
applications involving AVs [44], [45], [46]. Considering FL
in IoV [47], the vehicles will train and improve the ini-
tial downloaded model using their local data and send the
resulting model parameters to the edge servers and then to
the central server for global aggregation [48]. The essential
communication between the edge server and federated vehi-
cles can be either synchronous FL (SFL) or asynchronous
FL (AFL) [49]. Recent studies have investigated the appli-
cation of FL in SDN controller, and the central SDN server in
this case is used to coordinate the edge servers associatedwith
5G base stations and aggregate the learning model updates
received from these edge servers [50].

However, to the best of our knowledge, no research has
used FL to enable the SDN controller to implement three
objectives for the purpose of routing ESMs in 5G-IoV.
To overcome the aforementioned bottlenecks, and specifi-
cally provide effective coordination and boost safety-critical
services in 5G-V2I communication, we propose a novel
Software-Defined Networking-based Collision Avoidance
(SDNCA) framework for routing the ESMs from the Source
Vehicle (SV) to the Destination Vehicle (DV) via 5G technol-
ogy to avoid vehicle collisions. The key contributions of the
proposed framework are as follows:
• The novelty of the proposed SDNCA framework lies

in the implementation of four technologies (i.e., 5G,
FL, MEC, and SDN) in IoV environment. The
SDNCA framework employs three proposed algo-
rithms (Algorithms 1–3) for routing ESMs to avoid
vehicle collisions by controlling network congestion.

• We propose a Vehicular Federated Learning (VFL)
algorithm (Algorithm 1) for improved estimation of
the Risk Severity (RS) of vehicles. This algorithm
estimates RS for each vehicle by training the pro-
posed AI model (Risk Severity-Artificial Neural Net-
work (RS-ANN) model) through federated learning
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between vehicles. This method of learning enhances
the training and test accuracies, and provides lower
training and test latencies.

• On the basis of Algorithm 1, we formulate a novel
SDN algorithm (Algorithm 2) to handle three main
successive objectives in an OpenFlow control message.
First, it identifies the QoS for each ESMby (5). Second,
it dynamically allocates 5G network and computing
resources (gNBnri and gNBcri ) based on the QoS value,
Risk Distance (RD), and Vehicle Speed (VS). Third,
it traces the best route (best gNB) for routing ESMs
from SV to DV. Algorithm 2 handles each ESM inde-
pendently in an efficient manner, which controls the
network congestion.

• Algorithm 3 is then proposed at the selected gNB to
schedule ESMs based on their priorities using (10).
It also configures the gNBnri and gNBcri . In this way,
the selected gNB forwards ESMs to the DV with low
latency and extremely high reliability, thereby avoiding
vehicle collisions.

• The real-time simulation results indicate that the SDN
controller in our SDNCA framework can optimize
the network communication of ESMs to vehicles in
5G-IoV through the FL scheme.

The rest of the paper is organized as follows: Section II
explains the related research papers along with their lim-
itations. Section III demonstrates the specific problem
statement. Section IV describes the proposed architecture.
Section V briefly describes the proposed SDNCA framework
using the proposed algorithms. Section VI presents the sim-
ulation scenarios and evaluates the performance of various
phases implemented in the SDNCA. Section VII concludes
the study and provides future research directions.

II. RELATED RESEARCH
In recent years, increasing safety by transmitting ESMs
to vehicles has become a challenge. This section provides
related research on safety message dissemination in vehicular
networks based on three categories. The most relevant studies
are summarized in Table 1.

A. TRADITIONAL IEEE 802.11P PROTOCOL-ENABLED
ESMS DISSEMINATION
Short-range V2V and V2R communications [51] are basic
vehicular communications that are enabled through the
IEEE 802.11p protocol/WAVE [52], [53]. The dedicated
spectrum for this protocol is 75 MHz in the range of 5.850–
5.925 GHz [54], [55]. One of the main problems using IEEE
802.11p technology in emergency traffic situations is broad-
cast storms, which have been addressed in the literature [56],
[57], [58], [59], and [60] using various mechanisms. The
clustering technique was introduced in [56], [58], and [60]
to reduce broadcast storms and disseminate ESMs by choos-
ing a forwarder that has higher compatible interests with
other vehicles in [56]. This forwarder disseminates ESMs to

vehicles near the accidental region, thereby attaining ESM
dissemination over time. However, the researchers in [58]
allowed only the furthest vehicles to rebroadcast ESMs after a
certain time barrier expiration, which resulted in less network
congestion. [60] outperformed [58] by examining the link
stable estimation parameter and achieving improved results.
The protocol in [57] strengthened reliability by evaluating
each vehicle’s transmission probability concerning distance,
packet reception ratio, and link availability metrics. The vehi-
cle with the highest value forwards the ESM, with other
vehicles as backups in case of failure. In [59], SDN man-
aged network loads, and different ML classifiers detected
accident events, whereas selected forwarders (RSU and vehi-
cles) transmitted ESMs based on nearby vehicle information
with the help of SDN, thereby improving routing efficiency.
ESM delivery at intersections was evaluated in [61], which
obtained vehicles at extreme positions and hidden zones.
Subsequently, amodified PSO algorithm is proposed to adjust
multiple transmission factors with improved performance
to offer highly reliable vehicular safety services. In [62],
a TDMA-based MAC protocol was utilized to disseminate
ESMs. The protocol controls the collisions by setting the
transmission powers dynamically based on the transmission
ranges and thus achieves a high QoS for safety applications.
The protocol proposed in [63] was used to alleviate the burden
of DSRC and guarantee reliability. The protocol prioritizes
the ESM transmission from a vehicle based on accident
risk evaluation, which calculates the distance between the
vehicle and the danger zone and hence transmits ESMs with
higher reliability. The Temporary Warning Network (TWN)
concept developed in [64] focused on improving the cov-
erage and duration of ESM dissemination. The selection of
the forwarder vehicles was based on their correlated space-
time information. The forwarder vehicles achieved efficient
performance.

B. 5G-ENABLED ESMS DISSEMINATION
Data dissemination in vehicular networks, especially ESM
dissemination, is one of the main challenges that needs
to be identified [65]. The low-latency feature of 5G tech-
nology [66], [67] is helpful in this context, particularly in
V2I communication, which enables the reliable transmission
of ESMs to vehicles on time [68]. A few 5G-V2X-related
schemes are explained in this section. Studies [69] and [70]
handled link and packet losses by transmitting ESMs over
Device-to-Device (D2D) communication. The routing mech-
anism selects the best forwarder utilizing the Bayesian
rule-based fuzzy logic (BRFL) and stable matching (SM)
algorithms in [69] and [70], respectively, which improves
the QoS. In [71], the authors reviewed in detail the latest
contributions for ESM dissemination in vehicular networks
in a 5G environment. They also highlighted the different
implemented mechanisms based on SDN and fog computing.
The DDQN algorithm in [72] adjusted the ESM transmitting
rate by calculating the risk distance between vehicles to mit-
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TABLE 1. Summary of the most related prior research.

igate channel congestion. The proposed algorithm satisfies
each vehicle’s requested resources and maintains safe com-
munication among vehicles. The authors in [73] introduced
a boosted routing framework based on social relationships
(SRs) for ESM dissemination. SDN and MEC have been
utilized in managing these SRs to improve ESM delivery. The
SDN implemented a federated k-means algorithm to cluster
vehicles in [74] to provide efficient ESM transmission. SDN
reduces network congestion by transmitting ESMs to the
selected cluster head (CH). The CH then delivers the ESMs
to all its members in single-hop communication.

C. SDN-ENABLED ESMS DISSEMINATION
Recently, SDN has been deployed in vehicular networks to
boost many services, including safety [75]. The major prob-
lem that occurs during emergencies is the need to reduce the
time taken to analyze the on-location situation to reduce traf-
fic congestion and facilitate critical-time safety information
dissemination [76]. [59], [71], [73], [74] proposed the SDN
paradigm for ESM dissemination due to its ability to reduce
routing overhead.

III. SPECIFIC PROBLEM STATEMENT
This section signifies the problems present in the existing
ESM dissemination approaches associated with the IEEE
802.11p, 5G, and SDN technologies that hinder resolving the
vehicle collision problem.

The proposed SDNCA framework focuses on a specific
problem, that is, avoiding vehicle collisions by routing ESMs
from SV to DV through the three proposed algorithms (Algo-
rithms 1–3). The issues identified in existing studies include
the following:

• ESM dissemination is highly bandwidth-intensive due
to broadcast storms. Therefore, the existing solutions in
Section II-A cannot satisfy the requirements of trans-
mitting ESMs to vehicles with high reliability and low
latency, which require high-speed network access.

• The integration of IEEE 802.11p and 5G technologies
in [69] and [70] in Section II-B elevates the complexity
and network congestion due to beacon messages and
network signal transmission. One of the main targets

of 5G-IoV is to avoid accidents involving vehicles
that require intelligent dynamic control for 5G BSs
(5G gNBs). The other existing studies that used 5G
technology in this section did not consider this point
when transmitting ESMs.

• Using SDN for ESM dissemination in vehicular net-
works is operationally expensive. Therefore, efficient
mechanisms are required to reduce the overall network
overhead and operational costs, an aspect not addressed
in the studies mentioned in Section II-C.

• Some of the mentioned works used the clustering tech-
nique, where the formation andmodification of clusters
for each ESM transmission increased the network over-
head.

IV. PROPOSED ARCHITECTURE
The proposed cellular 5G-V2I framework based on SDN
was used to optimize the network communication of ESMs
to vehicles in highway scenarios. The proposed architecture
shown in Fig. 1 comprises edge and backbone layers. The
edge layer is responsible for collecting information about the
environment (including traffic, vehicle speed, risks, obsta-
cles, and weather) and the system state (e.g., latency, channel
usage, and packet loss). The edge layer consists of the
following:

• vehicles enabled with 5G technology (V1, V2,
V3 . . . . . .VN );

• multiple 5G BSs; 5G gNBs (gNBE1, gNBE2,
gNBE3, . . . . . . . gNBEM ), which are responsible for
intra-communication and routing; and 5G gNBs cores
(gNBC1, gNBC2, gNBC3, . . . . . . . gNBCK ), which are used
for inter-communication through the backbone layer and
to receive OpenFlow control messages from the SDN
controller; and

• Edge Server (ES) for computing and storage processes.

By contrast, the backbone layer interconnects the different
5G edge BSs, providing high-speed routes for transmitting
ESMs. The backbone layer includes the following:

• The SDN controller makes the routing and scheduling
decisions. The decisions are sent as OpenFlow control
messages to the OpenFlow switches. Every networking
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FIGURE 1. SDN-enabled 5G-V2I proposed architecture.

device can act as an OpenFlow switch (e.g., gNBs and
routers).

• Backbone routers are used to communicate with the
SDN controller and forward traffic between different 5G
edge BSs.

• The 5G gNBs are used to communicate with the edge
layer.

In this study, we assume that the vehicles move at an
initial speed VS1 to the destination. At a particular time ti
(i= 1,2,3, . . . .) during T , when a vehicle Vi is driving in a real
road environment, it faces many circumstances that require it
to control its speed and change its direction to avoid accidents
and congestion. The proposed framework in Fig. 3 shows how
vehicles deal with these circumstances and avoid collisions.
Table 2 provides the main notations used in this study.

V. OVERVIEW OF THE PROPOSED SDN-BASED
COLLISION AVOIDANCE (SDNCA) FRAMEWORK
Each vehicle in the proposed framework (Fig. 3) is composed
of a sensor module that allows the sensor user to interact
with the environment and collect system state information
(e.g., latency, packet loss, channel usage, interference, and
vehicle speed). We define the information data for each vehi-
cle in a tuple format. The tuple has (O, W , VS, RD, RC,
and T ), and the definition of the tuple is illustrated in Table 2.
Each tuple is transmitted after preprocessing to the AImodule
(ANN module) implemented in the vehicles to train the AI
model (RS-ANN model, as shown in Fig. 2) through VFL.

TABLE 2. Main notations.

The RS label is calculated initially as follows:

RS = O+W + VS + RD+ RC + T (1)
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If RS ≥ 10, we reduce the value of the feature by O =
O− (RS− 9) if the O feature has the highest value that
causes RS ≥ 10, and we use the same procedure for all other
features.

On the basis of the received tuple, the AI module predicts
whether the tuple is considered a positive risk (PR) to the
vehicles. If the resulted prediction (RS) is ≥5, then it is
considered a PR; in either case, the data will be stored in a
learning database (LDBV ), which will be used to train the AI
model, and an ESM is generated along with the information
summary, which is (SV, DV, RS, VS, RD, defined tuple). The
generated ESM is transmitted to the SDN controller through
5G gNB.

A. PROPOSED VEHICULAR FEDERATED LEARNING (VFL)
The proposed VFL method is shown in Fig. 4. We propose
an ANN to build a VFL algorithm (Algorithm 1) using SFL.
First, the ES creates a baseline model called the RS-ANN
model, as shown in Fig. 2, and sends it to the vehicles. The
vehicles use their own dataset (O, W , VS, RD, RC, and T )
to train and improve the model for more accurate prediction
of the proposed target (RS), and the updated learning mod-
els (αi) of the vehicles are transmitted to the ES. The ES
aggregates the model updates received from the vehicles and
returns the global model (βti ) to the vehicles in each training
round. Following (2) (general formula [44]), the process is
repeated until the model converges. In this study, we use (4)
to calculate (βti+1). The SDN then performs its objectives
(Section V-B) based on these model updates.

βti+1 = βti +
∑N

i=1

|Di|
|D|

(αi) (2)

where αi is calculated in this paper by:

αi = local learning model ofVi − βti (3)

βti+1 = βti +
∑no.of epochs

j=1

∑N

i=1

(αi)
(i+ 1)× (j+ 1)

(4)

B. PROPOSED SDN-BASED COLLISION AVOIDANCE
APPLICATION
The SDN controller receives the ESM along with the infor-
mation summary (SV, DV, RS, VS, RD, defined tuple). In this
study, the SDN controller focuses on three objectives to
transmit ESM to a destination with low latency and high
reliability, as illustrated in Algorithm 2. Algorithm 2 explains
the objectives of the SDN controller, which are summarized
in sequential order.

1) SDN-ENABLED QOS
The SDN controller enables the 5G gNB to schedule mes-
sages based on their priorities. The QoS value is based on RS,
RD, and VS, and it is calculated using the following proposed
equation:

QoS =
RS + VS
RD

(5)

FIGURE 2. RS-ANN Model.

Algorithm 1 Proposed VFL Algorithm for Scenario 1 and
Scenario 2

Input: dataset (O,W , VS, RD, RC, T ), learning model
information

Output: training latency of the model, test latency of the
model, train_loss, test_loss, update learning model (β)

1: Initialization: neural network parameters, optimizer,
baseline_model of ES, latency, train_loss, test_loss

2: for no. of epochs
3: for each vehicle do
4: train the baseline_model based on the given

dataset
5: calculate train_loss
6: evaluate the model
7: calculate test_loss
8: calculate accuracy
9: each vehicle uploads its learning updates αi

to the ES
10: measure the latency of the model
11: end for
12: update the global model (β) based on (4)
13: send β to the vehicles
14: train and test β on each vehicle
15: calculate train_loss, train_latency, train_accuracy,

test_loss, test_latency, test_accuracy
16: end for

Thus, QoS will be the highest if RS is high, VS is high, and
RD is low.

2) SDN-ENABLED 5G COMMUNICATION
In this study, the 5G network and hardware functions are
virtualized. We use three gNBs, and three VNs are created
in each gNB (VN 1 for high QoS values, VN 2 for medium
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FIGURE 3. Proposed SDN-based Collision Avoidance (SDNCA) Framework in 5G-V2I.
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FIGURE 4. Proposed Vehicular Federated Learning.

QoS values, and VN 3 for low QoS values), as illustrated
in (6). Each VN operates independently using the allo-
cated resources (bandwidth (B), number of antennas (A),
and bit rate (R)). Moreover, each gNB allocates comput-
ing resources (CPU (C) and memory (M )) according to the
need to maximize the spectrum and energy efficiency. Scal-
ing the computing resources of the gNB will significantly
improve the processing speed of critical tasks, such as ESM
transmission, as illustrated in this paper in Algorithm 3.
As per the proposed framework, the virtualization and adap-
tive beamforming configurations are completely handled by
the SDN controller, as shown in Fig. 5 and Fig. 6. Algorithm 2
illustrates the process of Fig. 5 and Fig. 6 in steps 3–24.
Fig. 5 shows that the SDN controller applies the right con-
figuration for each task. The dynamic allocation of network
resources (gNBnr i ) and computing resources (gNBcr i ) can be
provided. Fig. 6 shows that the SDN controller enables the
optimal beamforming strategy to prioritize ESMs by shift-
ing and amplifying the 5G MIMO antennas toward the DV.
Steps 3–24 in Algorithm 2 show how the SDN allocates B
and M based on RD; allocates R based on VS; and allocates
A and C based on the QoS value (calculated in (5)) to handle

each ESM independently, thereby improving the spectral
efficiency and SINR.

Th1 (High QoS values) : 0.7 < QoS ≤ 1.06

Th2 (Medium QoS values) : 0.3 < QoS ≤ 0.7

Th3 (Low QoS values) : QoS ≤ 0.3 (6)

3) SDN-ENABLED ROUTING
The SDN controller traces the most optimal route (the
best gNB) to send the ESM to the destination with less packet
loss and delay.

On the basis of these objectives, the SDN controller sends
OpenFlow control messages to the switches (gNBs and
routers) to deliver the ESM as reliably as possible, enabling
the vehicle to take appropriate action (e.g., stopping and
changing direction) based on the SDN control messages
received.

In the proposed framework, we initially assume that all the
gNBs have the same signal that is transmitted to the vehicles
over the corresponding transmission range of each gNB.
Under standard circumstances, we assign the total network,
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FIGURE 5. Dynamic allocation of 5G resources by SDN.

FIGURE 6. Adaptive beamforming by SDN.

total complexity, and connectivity of any gNB as follows:

gNBtotal_net = MAX .B+MAX .R+MAX .M (7)

gNBtotal_comp = MAX .A+MAX .C +MAX .M (8)

gNBconnectivity = MAX .B+MAX .R+MAX .A (9)

We define the priority of the ESM using (10), which indi-
cates that the gNB provides faster processing of ESMs with
higher priority:

ESM_Priority =
QoS
1.06

(10)

Algorithm 3 explains how the gNB schedules the ESMs
based on their priorities and configures its resources (gNBnr i
and gNBcr i ) based on the OpenFlow control message received
from the SDN.

VI. PERFORMANCE EVALUATION
A. SIMULATION SCENARIOS
We consider two scenarios to simulate the proposed VFL
algorithm (Algorithm 1) in our SDNCA framework. Sce-
nario 1 has 100 vehicles with one ES, whereas Scenario 2

Algorithm 2 Proposed Algorithm for SDN Objectives
Input: SV, DV, RS, VS, RD, defined tuple, 5G resources
(gNBnr i and gNBcr i )

Output: QoS, allocation of (gNBnr i and gNBcr i ) for
VN 1, VN 2, and VN 3, the selected route (SR), VS

1: Initialization: B = 0,M = 0,R = 0,A = 0,C = 0,
dest_path←∅

2: Calculate QoS ← RS+VS
RD

3: 5G resources← set gNBnr i and gNBcr i based on QoS
value

4: for each gNB do:
5: in each VN do:
6: if RD is in the range of a far distance
7: assign B← highest value of B
8: assign M← highest value ofM
9: elif RD is in the range of a medium distance
10: assign B← medium value of B
11: assignM← medium value ofM
12: else
13: assign B← lowest value of B
14: assignM ← lowest value ofM
15: end
16: if VS is high
17: assign R← highest value of R
18: elif VS is medium
19: assign R← medium value of R
20: else
21: assign R← lowest value of R
22: end
23: assign A, assign C
24: end for
25: Possible Routes← compute routes between SV and

DV
26: SR← choose the best route from the Possible Routes
27: Send OpenFlow control message (QoS, 5G resources,

SR, VS)

has 400 vehicles with four ESs. Python programming lan-
guage is utilized to simulate the proposed VFL (Pytorch for
the machine learning library). We generate the training and
testing datasets as random integer values for each feature,
as listed in Table 2, to feed the RS-ANN model implemented
in the vehicles. The RS-ANN model consists of four fully
connected layers with 32, 64, and 32 neurons in three hid-
den layers. Rectified linear units (ReLUs) are used as the
activation functions of the three fully connected layers. The
RS-ANNmodel is trained for 1000 epochs with cross-entropy
loss and an Adam optimizer with a learning rate of 0.0001.

Network Simulator (NS3) is used to simulate 5G technol-
ogy for vehicles by utilizing the MAC protocol, Orthogo-
nal Frequency Division Multiple Access (OFDMA). Then,
we simulate the SDNCA framework (Fig. 3) in a sce-
nario of three gNBs, 100 vehicles, and one SDN controller.
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Algorithm 3 Proposed Algorithm at the Selected gNB for
Scheduling ESMs and Configuring (gNBnri and gNBcri )

Input: QoS, 5G resources, SR, VS
Output: scheduling of ESMs, configuring of gNBnr i and

gNBcr i
1: Initialization: Bi= 50MHz, Ri= 500Mbps, Ai= 1,

Ci= 1, Mi= 256MB, ESM_Priority = 100,
net_overhead = 0,TRi= 100, comp_cost = 0

2: At the selected gNB, after receiving the OpenFlow
control message from SDN do:

3: Calculate ESM_Priority by (10) for scheduling, then
4: if B > Bi
5: net_overhead ← net_overhead + (B− Bi)
6: assign Bi← B
7: TR1← TRi − 1
8: else
9: assign Bi← B
10: end
11: if R > Ri
12: net_overhead ← net_overhead + (R− Ri)
13: assign Ri← R
14: else
15: assign Ri← R
16: end
17: if A > Ai
18: comp_cost ← comp_cost + (A− Ai)
19: assign Ai← A
20: TR2← TR1 − 1
21: else
22: assign Ai← A
23: end
24: if C > Ci
25: comp_cost ← comp_cost + (C − Ci)
26: assign Ci← C
27: else
28: assign Ci← C
29: end
30: ifM > Mi
31: net_overhead ← net_overhead + (M −Mi)
32: comp_cost ← comp_cost + (M −Mi)
33: assignMi← M
34: else
35: assignMi← M
36: end

The gNBs are connected through an SDN switch. An Open-
Flow v1.0 OpenVSwitch virtual switch is used. The switch
is managed by a Ryu SDN controller, which is written
in Python. Table 3 displays the simulated parameters of
SDNCA. Thus, the effectiveness of SDNCA is evaluated
based on the following validation metrics by varying the
density and velocity of the vehicles:

1) Network Overhead (NO) and Computational Com-
plexity (CC): We define network overhead and

TABLE 3. Simulation parameters.

computational complexity percentages in terms of con-
suming network resources (gNBnr i ) and computing
resources (gNBcr i ). Network overhead represents the
percentage of the consumption (B, R, and M ) of
the total network (MAX.B, MAX.R, and MAX.M),
whereas computational complexity represents the per-
centage of the consumption (A, C , and M ) of the
total complexity (MAX.A, MAX.C, and MAX.M)
of the selected gNB that forwards the ESM to
the DV. These metrics are computed by the following
equations:

NO_Percentage =
net_overhead
gNBtotal_net

(11)

where net_overhead is the network overhead, which is calcu-
lated in steps (5, 12, and 31, respectively) in Algorithm 3.
Then, the network overhead (NO) at a given time is cal-
culated by adding (NO_Percentage) to its current value
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(NO_Current) as follows:

NO = NO_Current + NO_Percentage (12)

CC_Percentage =
comp_cost
gNBtotal_comp

(13)

where comp_cost is the complexity cost, which is calcu-
lated in steps (18, 25, and 32, respectively) in Algorithm 3.
Then, the computational complexity (CC) at a given time is
calculated by adding (CC_Percentage) to its current value
(CC_Current) as follows:

CC = CC_Current + C_Percentage (14)

2) Collision Rate (CR) of ESMs: We define the packet
collision rate as the number of data packet collisions
occurring in a network over a specified period. This
metric is computed as the ratio of the number of col-
lisions (Nc) with respect to the number of packets
received by gNB (NPgNB) as follows:

CR =
Nc

NPgNB
(15)

3) End-to-End (E2E) Delay: This metric is defined as the
difference between the time at which the source (SV)
transmits the ESM packet to the SDN controller (ttESM )
and the time at which the receiver (DV) receives the
ESM packet (trESM ). It can be measured as follows:

E2EDelay = ttESM − trESM (16)

4) Packet (ESM)TransmissionReliability (TR): Thismet-
ric evaluates network connectivity and its ability to
successfully deliver ESMs from the SV to the DV
without errors, losses, or delays. This metric is affected
by increasing the network overhead in terms of con-
suming B (as calculated in step 7 in Algorithm 3),
increasing the computational complexity in terms of
consuming A (as calculated in step 20 in Algorithm 3),
and increasing the collision rate, respectively. The
transmission reliability can be expressed mathemati-
cally as follows:

TR = TR2 − CR (17)

B. RESULTS ANALYSIS AND DISCUSSION
The evaluation results of the real-time simulation of the
proposed VFL algorithm are shown in Figs. 7–9. Fig. 7 (a)
shows the training and test accuracies in Scenario 1. In this
scenario, we achieve 95.60% training accuracy and 98.00%
test accuracy at epoch 346. Fig. 7 (b) shows the training
and test accuracies in Scenario 2. This scenario results in
95.30% training accuracy and 96.00% test accuracy at the
same epoch. Given an increase in the number of training
vehicles, these values reach 98.10% training accuracy and
99.00% test accuracy at epoch 1000 in Fig. 7 (a), whereas
training accuracy is 97.90% and test accuracy is 96.00% at
epoch 1000 in Fig. 7 (b).

FIGURE 7. Training and test accuracy for 100 vehicles (b). Training and
test accuracy for 400 vehicles.

Overall, high average accuracy values are obtained in
Fig. 7 (a) and Fig. 7 (b) because we design an accurate
RS-ANN training model, in addition to the participation of
all vehicles in the training process, which results in higher
accuracy values. Thus, the proposed VFL algorithm yielded
identical results, except for a small gap in its convergence
speed between the two scenarios. Using the ES that has the
capacity of four ESs (each 100 vehicles handled by one ES)
that distribute the load in Scenario 2 constitutes a key factor
for obtaining these identical values.

Fig. 8 (a) and Fig. 8 (b) demonstrate the training and
test losses for the RS-ANN model, which is a regression
network outputting the RS value of Vi in Scenario 1 and
Scenario 2, respectively. The train and test losses significantly
drop from more than 2.0 to 0.0760 train loss and 0.0493 test
loss (Fig. 8 (a)), and to 0.0657 train loss and 0.0727 test loss
(Fig. 8 (b)). Fig. 8 (a) and Fig. 8 (b) show smooth curves
without any fluctuations and with little differences between
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FIGURE 8. Training and test losses for 100 vehicles (b). Training and test
losses for 400 vehicles.

them in both scenarios. This indicates that the proposed VFL
algorithm is stable due to the load balancing of the data
packets and because we do not have major losses in the entire
system.

The training and test latencies are critical parameters that
should be investigated in the federated learning process as
they affect the transmission latency of ESMs in any system
model. We measure these parameters, as shown in Fig. 9 (a)
for Scenario 1 and Fig. 9 (b) for Scenario 2, with accurate
and desirable values. Initially, the training latency is more
than 0.025 s and then decreases to approximately 0.0150 s
in Fig. 9 (a); however, the value of the test latency remains
constant at 0.002 s in Fig. 9 (a). As shown in Fig. 9 (b), the
training latency is 0.015 s, fluctuations are observed at some
values (e.g., the training latency is 0.025 s when the training
vehicles are more than 50). These fluctuations are due to the
training process, and we achieve the same test latency value
shown in Fig. 9 (b). Technically, the test latency should be
lower than the training latency, which our results scrutinize.

FIGURE 9. Training and test latencies with different numbers of vehicles
(b). Training and test latencies with different numbers of vehicles.

Fig. 9 (a) and Fig. 9 (b) also show that increasing the number
of vehicles does not affect the training and test latencies,
which makes our system model more adaptable to IoV as the
number of vehicles is increased or decreased in a specific area
at a certain time.

The proposed SDNCA framework is simulated by con-
sidering vehicle density and vehicle speed and compared
with [74] for one common point, that is, SDNCA and [74]
simulated 5G technology for IoV. The novelty of the SDNCA
framework compared with [74] relies on the following main
facts: First, we consider vehicle speed in the SDNCA frame-
work, but its implementations were not considered in [74],
which is a drawback of the study. Second, we implement
federated learning in the SDNCA framework in Section V-A,
with efficient results shown in Figs. 7–9, which were not
implemented in [74]. Third, we perform a real-time sim-
ulation of the SDN core routers at the backbone layer in
Section V-B, alongwith ES execution at the edge layer to han-
dle the overall network load. However, the topology in [74]
requires more than one SDN controller and one core router
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FIGURE 10. (a). Evaluation of Network Overhead (b). Evaluation of
Computational Complexity.

to balance the load of 800 vehicles, and it does not mention
the technical aspects of the core layer. Thus, technically, the
system model in [74] has jitters, delays, and damage at a
certain stage.

Controlling the network overhead and computational com-
plexity is crucial for any real-time simulation. Fig. 10 (a)
and Fig. 10 (b) show the optimized network results of 17%
when N = 100 vehicles/km in the SDNCA framework, due
to the intelligent utilization of gNBnr i and gNBcr i . By con-
trast, the study in [74] obtained less network overhead and
computational complexity than the SDNCA framework when
N = 100 vehicles/km, andwhenN= 800 vehicles/km in [74],
the network overhead is 21% and the computational com-
plexity is 19.8%. Hence, the study in [74] did not simulate
the federated learning and core layer because the real-time
simulation for more network devices, core routers, and ESs
will increase the network overhead and computational com-
plexity by more than 21% and 19.8%, respectively, thereby
achieving 17% in the SDNCA framework for the real-time

simulation of 100 vehicles/km, which is considered an ideal
value.

The SDNCA framework possesses a 0% collision rate
for ESMs, as shown in Fig. 11 (a) and Fig. 11 (b). With
increasing vehicle density and vehicle speed, the collision
rate remains at 0, which denotes the ideality of SDNCA
and its proper configuration to transmit ESMs based on their
priorities (as calculated in (10)), thereby realizing the avoid-
ance of vehicle collisions in 5G environment. The SDNCA
framework outperforms the method in [74], with collision
rates of approximately 4% and 9% at N = 100 vehicles/km
implemented in two different scenarios.

FIGURE 11. Evaluation of Collision Rate vs. vehicle density (b). Evaluation
of Collision Rate vs. vehicle speed.

In contrast with [74], our analysis of the average end-to-
end delay of the SDNCA framework, which is depicted in
Fig. 12 (a) and Fig. 12 (b), reveals that the end-to-end delay
in the SDNCA framework is 18 ms at N = 100 vehicles/km,
which is approximately equal to the value obtained in [74]
for more than 300 vehicles/km. The lower end-to-end delay
values in the SDNCA framework, when vehicle density and
speeds increase, are due to the utilization of high computing
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FIGURE 12. (a). Evaluation of End-to-End delay vs. vehicle density
(b). Evaluation of End-to-End delay vs. vehicle speed.

resources to transmit ESMs faster based on their priorities
(as calculated in (10)), which are considered ideal values for
simulating the core and edge layers compared with [74].

The results shown in Fig. 13 (a) and Fig. 13 (b) indicate that
the SDNCA framework can provide high reliability of ESM
transmission because it has a constant value of 89%–90% as
the vehicle density and vehicle speed increase. In comparison,
[74] shows superior values at N = 100 vehicles/km, but its
reliability decreases as the vehicle density increases. Achiev-
ing 0% collision rates in SDNCA leads to a constant value of
89%–90%.

We can conclude two main points from Figs. 10–13 in the
SDNCA framework that should be scrutinized in real-time
simulation. First, we achieve the same values of network over-
head and computational complexity because these metrics
are complementary and directly proportional to each other.
Second, Figs. 11–13 have the same values of collision rates,
end-to-end delay, ESM transmission reliability when increas-
ing the vehicle density, and vehicle speed. These results show

FIGURE 13. (a). Evaluation of Packet (ESM) Transmission Reliability vs.
vehicle density (b). Evaluation of Packet (ESM) Transmission Reliability vs.
vehicle speed.

the effectiveness of the SDNCA framework, which handles
the ESMs simultaneously (Algorithms 1–3) to avoid vehicle
collision compared with the system model in [74], which
cannot consider an efficient system to cater to the critical
requirements of ESM transmission in the network due to the
reasons mentioned previously in this section.

VII. CONCLUSION AND FUTURE WORK
The SDN can be a prominent technology for 5G-IoV com-
munications, particularly for ESM transmission. This paper
proposes an SDNCA framework to efficiently transmit ESMs
from the SV to the DV and avoid vehicle collisions. The
core contribution of the SDNCA is optimizing the network
communication of ESMs to vehicles in terms of QoS. The
SDNCA implements VFL using Algorithm 1, which provides
two important points. First, the proposed VFL is unaffected
by the number of vehicles in terms of training accuracy, test
accuracy, train loss, test loss, training latency, and test latency.
Second, desirable results are obtained when all vehicles
(not some vehicles) participate in the training process. There-
fore, the systemmodel is stable and adaptable to the vehicular
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networks for any number of vehicles because it achieves load
balancing according to the ESs, backbone routers, and gNBs
that we have used.

Algorithm 2 is applied to calculate the QoS, allocate the
5G network and computing resources (gNBnri and gNBcri ),
and select the best route (best gNB) from the SV to
the DV. Algorithm 3 then schedules the ESMs based on
their priorities and configures the gNBnri and gNBcri of the
selected gNB based on the SDN OpenFlow control mes-
sage. Algorithms 2 and 3 handle each ESM independently to
achieve improved V2V communication.

Finally, the SDNCA performance is validated through
five evaluation metrics, namely, Network Overhead (NO),
Computational Complexity (CC), Collision Rate (CR), End-
to-End (E2E) Delay, and Packet (ESM) Transmission Relia-
bility (TR), and compared with [74]. The SDNCA framework
achieves a 0% collision rate, which is an ideal value that
can fulfill the stringent requirements for ESM transmission
in 5G-IoV environment.

In the future, we suggest designing a more complicated
network using the same proposed SDNCA framework but on
an extremely large scale. Specifically, we intend to simulate
a larger network consisting of 5G or 6G with 1000 vehicles,
two SDN controllers, and 20 backbone routers to enhance
coverage.
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