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ABSTRACT Sign language recognition is crucial for improving communication accessibility for the
hearing impaired community and reducing dependence on human interpreters. Notably, while significant
research efforts have been devoted to many prevalent languages, Korean Sign Language (KSL) remains
relatively underexplored, particularly concerning dynamic signs and generalizability. The scarcity of KSL
datasets has exacerbated this limitation, hindering progress. Furthermore, most KSL research predominantly
relies on static image-based datasets for recognition, leading to diminished accuracy and the inability to
detect dynamic sign words. Furthermore, most KSL research predominantly relies on static image-based
datasets for recognition, leading to diminished accuracy and the inability to detect dynamic sign words.
Additionally, existing KSL recognition systems grapple with suboptimal performance accuracy and
heightened computational complexity, further emphasizing the existing research gap. To address these
formidable challenges, we propose a robust dynamic KSL recognition system that combines a skeleton-based
Graph Convolution network with an attention-based neural network, effectively bridging the gap. Our
solution employs a two-stream deep learning network to navigate the intricacies of dynamic signs, enhancing
accuracy by effectively handling non-connected joint skeleton features. In this system, the first stream
meticulously processes 47 pose landmarks using the Graph Convolutional Network (GCN) to extract
graph-based features. These features are meticulously refined through a channel attention module and a
general CNN, enhancing their temporal context. Concurrently, the second stream focuses on joint motion-
based features, employing a similar approach. Subsequently, these distinct features from both streams
are harmoniously integrated and channelled through a classification module to achieve precise sign-word
recognition. A significant contribution of our work lies in creating a novel KSL video dataset, addressing
the scarcity of data in this domain. This dataset comprises comprehensive information, including skeletal data
from 47 joint skeleton points and details from both hands, body, and facial expressions. Our dataset aims to
fill a critical gap in KSL research and provides a solid foundation for more extensive and inclusive studies in
the field. Through this innovative approach, we aim to contribute significantly to the field of KSL recognition,
filling the gaps in dynamic sign recognition and bolstering the accessibility of sign language communication
within the Korean hearing impaired community and beyond. Our evaluations on a benchmarkKSL-77 dataset
and our proprietary lab dataset resulted in recognition accuracies of 99.87% and 100%, respectively. These
results highlight the superiority of our model in the KSL recognition domain, outperforming existing models
in terms of accuracy and computational efficiency.
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INDEX TERMS Dynamic hand gesture recognition, Korean sign language (KSL), graph convolutional
network (GCN), general convolutional neural network (GCNN), machine learning, hand skeleton points, deep
learning.

ABBREVIATIONS
KSL Korean Sign Language.
CNN Convolutional Neural Network.
GCN Graph Convolutional Network.
ASL American Sign Language.
PCA Principal component analysis.
HMM Hidden Markov model.
ANN Artificial neural networks.
FCA Fuzzy classification algorithms.
KNN K-nearest-neighbor.
DGSTA Dynamic Graph-based Spatial-Temporal

Attention.
GSTCAN Graph-based Spatial-Temporal Convolution

and Attention Network.
ASGCN Spatial Graph Convolutional Network.
GSCAN Graph Spatial Convolution and Attention

Network.

I. INTRODUCTION
Sign Language recognition (SLR) is a crucial commu-
nication medium for the hearing impaired community,
providing a way to interact without relying on traditional
spoken languages. Worldwide, the World Health Orga-
nization (WHO) reports that approximately 430 million
individuals are affected by hearing loss [1], [2], [3], [4].
To facilitate communication between the hearing impaired
and non-hearing impaired populations using sign language,
it is essential for both communities to learn sign language.
However, learning sign language is challenging due to the
specific motions required to convey various signs. It neces-
sitates individuals to acquire a significant number of distinct
gestures separate from spoken language. Additionally, sign
language varies significantly from one country to another and
even within the same country, resulting in entirely different
sets of signs. For instance, Korean Sign Language (KSL)
is entirely distinct from American Sign Language (ASL)
and Bangla Sign Language (BSL) [5]. Furthermore, sign
language can vary within regions, sometimes leading to
the existence of multiple sign languages within a single
spoken language. For example, British Sign Language
features different gestures from ASL, despite both being
used alongside the English language. In such situations,
only human translators can facilitate communication between
the hearing impaired and non-hearing impaired communities
for Korean people. However, obtaining a human translator
for Korean individuals can be challenging due to cost and
efficiency concerns [6]. In this context, an automatic sign
language translator becomes the only viable solution for
communication between the hearing impaired and non-
hearing impaired communities. A considerable amount of
research has been conducted on sign language recognition
for various languages, including English, Arabic, Turkish,

Indian, and others [7], [8], [9], [10]. However, Korean sign
language(KSL) recognition has seen limited development
due to the absence of a comprehensive KSL dataset. Kim et al.
introduced a dynamic KSL recognition system using a fuzzy
neural network, recording 31 KSL alphabet signs with a hand
glove system [11]. While effective, this system relied on
hardware and sensors, leading to issues related to portability
and high costs. In response, researchers have shifted their
focus towards vision-based systems, utilizing webcams or
cameras for increased portability and cost-effectiveness.
Other researchers proposed a vision-based Korean sign lan-
guage classification model employing an ensemble artificial
neural network (ANN) [6]. They utilized ten labels and
1,500 sample images captured with a high-quality camera,
achieving an accuracy of 97.4%, primarily focusing on finger
spelling signs. However, the limitation of their approach is
the relatively small number of signs considered, which may
not suffice for a real-life KSL recognition system. To address
this limitation, Yang et al. collected a large-scale Korean
sign word dataset and achieved 79.80% accuracy using a
deep learning network [12]. To further enhance performance
accuracy, Shin et al. introduced a KSL recognition system
employing a multi-branch transformer and a general CNN-
based model [5]. However, their use of pixel-based images
as input differs from existing KSL recognition systems that
rely on RGB image-based approaches, potentially leading
to performance challenges related to various backgrounds,
partial occlusion, computational complexity, and varying
lighting conditions. To address the complexity of pixel-
based issues, Ko et al. released a KSL dataset and
presented a KSL translation model designed to extract 2D
human pose key points [13]. Nevertheless, they encountered
challenges related to lower performance accuracy and high
computational complexity.

Additionally, most existing research focuses on recogniz-
ing sign language using still images and does not consider the
detection of dynamic sign words. Notably, there is a lack of
research in the development of a dynamic KSL recognition
system [14].
Moving forward, while advanced research combining

computer vision, robotics, and natural language processing
has made significant strides in the evolution of sign
language recognition (SLR), there remains a conspicuous
gap in dynamic KSL recognition. Existing studies tend to
rely heavily on hardware and sensor-based systems [12],
while those oriented towards static KSL recognition have
limitations [6]. Furthermore, the field of skeleton-based video
classification research in the context of KSL remains largely
unexplored, highlighting a substantial research gap [13].
Recently, some researchers have employed Graph Convolu-
tional Neural Networks (GCNs) for skeleton-based dynamic
action recognition, as seen in works such as [15], GSTCAN
[16], GSTCAN [17], ASGCN [14], and GSCAN [18].
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Among these, the study by Shi et al. utilized two-streamGCN
networks based on joint and joint motion skeleton-based
information in an attempt to improve performance accu-
racy [14]. However, these models fell short of achieving
high accuracy for KSL recognition. The primary drawback
lies in their failure to consider non-connected skeleton
joints and joint motion features, which could potentially
enhance performance accuracy in KSL recognition. In light
of these challenges and gaps in existing research, our
proposed solution involves joint skeleton-based dynamic
KSL recognition using two-stream deep learning networks.
Each stream incorporates the Graph Convolutional Network
(GCN) and an attention-based general neural network
approach. To overcome these challenges, we proposed a joint
skeleton-based KSL recognition using two two-stream deep
learning networks where each stream is constructed with
the Graph convolutional network(GCN) and attention-based
general neural network approach. Our principal contributions
encompass:

Our principal contributions encompass:

• Novelty: We’ve created a unique skeleton-based KSL
video dataset featuring 47 joint skeleton points,
including details from both hands, the body, and
facial expressions. This dataset was carefully curated,
considering diverse backgrounds and environmental
conditions during data collection. By utilizing Medi-
aPipe estimation to extract skeletal data from videos,
we’ve successfully addressed challenges like differing
backgrounds, partial obstruction, computational require-
ments, and varying lighting conditions. This dataset not
only bridges a critical research gap but also establishes
a robust basis for more extensive and inclusive studies
in the realm of KSL recognition.

• Methodological Innovation: We’ve introduced a
system designed to excel in recognizing dynamic
KSL words through video classification, effectively
surpassing the limitations of conventional static image-
based methods. Within our system, we’ve crafted a
dual-stream neural network that integrates the Graph
Convolutional Network (GCN) with channel attention
and a general deep learning model. Our primary
approach entails constructing a graph and feeding
it into the GCN module to generate graph-based
features. To address issues related to non-connected
joint skeleton data, we’ve enhanced these features using
channel attention. Subsequently, we’ve further refined
the features through a standard CNN module to enrich
their temporal context. Finally, we’ve concatenated
the features from both streams and input them into a
classification module for sign language recognition.

• Empirical Validation: Through extensive experi-
mentation conducted on both our newly established
skeleton-based KSL dataset and a standard benchmark
KSL-77 dataset, we’ve achieved remarkable accuracy
rates of 100.00% and 99.87%, respectively. These
results unequivocally demonstrate the effectiveness of

our approach within the field of KSL recognition. The
data and code have been uploaded to the following
link:https://github.com/musaru/KSL.

The structure of the paper we organized is as follows: Related
work described in Section II. Section III demonstrates the
proposed methodology and explains the dataset, feature
values, and classification method. Section IV describes
the results, including the optimal parameter values and a
comparison between systems with and without variation
features shown V . Finally, Section VI describes the
discussion, and the conclusion section follows this.

II. RELATED WORK
Static sign language recognition, continuous sign language
recognition and dynamic sign language recognition are
different categories of sign language. For decades, several
kinds of machine learning and deep learning algorithms
have been proposed for EMG, ECG, Image-based emotion,
activity, and sign language recognition systems [5], [7],
[8], [10], [19], [20], [21], [22], [23], [24], [25], [26],
[27], [28]. Every country has a different sign language,
so developing SLR systems for the specific sign language has
been attempted worldwide. In the Bengali sign language case,
researchers developed the sign language recognition system
with machine learning and deep learning algorithm [3],
[4], [29]. Pitsikalis et al. proposed an SLR method using
the Hidden Markov model (HMM), and they collected
961 images with a Kinect TM depth camera, which has
depth channels and RGB channels [30]. However, their model
achieved fine performance, while the HMMs model has
a non-discriminatory learning feature, which occasionally
misses the input from the alternative class. Moreover, their
architecture cannot be placed into commercial use. Ong et al.
employed the sequential pattern tree boosting algorithm
for their multi-class sign language classification model,
where they aimed to extract hand motion features from the
sequential images [31]. Their model performed better than
the HMM model, and the validation achieved 93.00% and
88.00% accuracy for the Greek and German sign language,
respectively. Almeida et al.applied a phonological model to
decompose the RGB-D image for feature extraction, and
then they used a support vector machine (SVM) for the
classification and reported 80.00% accuracy for their own
dataset [32]. Fatimi et al. employed an artificial neural
network (ANN) and SVM for an ASL recognition model,
which had a higher accuracy score than HMM and SVM
models [33]. Lee et al. employed the SVM for several
wearable hand devices when their model performed 98.2%
accuracy. In other cases, 98 % accuracy was yielded with the
Chinese sign language (CSL) recognition model applied to
the fuzzy network. Moreover, an ASL recognition model for
ten terms of 0-9 used KNN, LDA and SVM, reaching 93.79
% score at best. Na et al. proposed a KSL recognition system
with triaxial accelerometer signals, and after using SVM,
they achieved 92.00% accuracy [34]. Kim et al. proposed
a dynamic KSL recognition system using a fuzzy neural
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network system where they recorded the 31 KSL alphabet
using hand gloves system [11] In the same way, various
conventional machine learning algorithm-based SLR systems
proposed by many researchers, such as hidden conditional
random field (HCRF), HMM, and random decision forest
(RDF) which produced good performance scores with a small
datasets [35], [36]. However, some problems remained, such
as the heavy computational complexity of a large dataset,
which makes the classification performance slower. As a
solution for these problems, some researchers proposed an
ANN algorithm for sign language recognition [37], [38].
Kim et al. proposed a Korean sign language classification
model employing ensemble ANN [6]. They prepared the ten
labels and 1500 samples and focused on finger spelling signs;
consequently, it performed with 97.4% accuracy. Ko et al.
released a KSL dataset and presented a KSL translation
model for extracting 2D human pose key points [13].
For some years, the advances in artificial intelligence and
computing technologies switched to the deep learning-based
model. Al-Hammadi et al. designed a 3-dimensional CNN
by including single and parallel branch-based methods to
develop an SLR system where their method achieved good
performance for three sign language datasets [39]. In their
evaluations, they yielded accuracy scores of 84.38%, 34.9%,
and 70% for datasets consisting of 40, 23, and 10 classes
under the singer-independent condition. Moreover, they
improved by +10% under the signer-dependent condition,
where their work was better than similar previous cases.
Sincan et al. developed a hybrid method by combining
a long short-term memory(LSTM) with the CNN, aiming
to generate an attention-based feature and feature pooling
model(FPM) [15]. Their model features an attention module
to expedite solving the convergence point, where a high
accuracy score was performed in the evaluation for Turkish
sign language. Yuan et al. developed an SLR system using
LSTM and Deep CNN, and then they evaluated their model
with ASL and CSL dataset [15]. While their model overcame
the gradient vanishing and overfitting problem, they need to
solve the long-distance dependency problems, which are not
resolved in their method. Aly et al. developed an Arabic sign
language recognition system using a deep bi-direction LSTM
(BiLSTM) classification method through a self-organization
map-based features [40]. Some researchers applied deep
learning models such as 2DCNN, 3DCNN and LSTM
architecture for the skeleton-based SLR system [41]. For
more than a few years, such as CNN with attention, VGGNet
and AlexNet, several existing CNN architectures have been
employed to overcome particular issues [42], [43], [44].
These architectures mainly consisted of deep learning layers
such as convolution, dropout, and pooling. The multiple
paths of that layer prove their effectiveness in GoogleNet
and InceptionNet [45], [46]. ResNet enhanced generalization
performances by incorporating shortcut connections every
two layers to the base network [47]. The mentioned
method is not effective for the non-connected skeleton point

for skeleton-based gesture recognition. An attention-based
architecture module was applied to an operator between
adaptable modalities as a solution to the existing issues [48].
Transformers have frequently been employed for novel vision
tasks since the remarkable advance of natural language
processing with it [42], [47], [49]. ViT is a well-known
transformer architecture directly adapted from other research
domains to the computer vision research domain for the
sign language classification task. However, it is required a
huge amount of dataset to perform high accuracy score [50],
when a researcher presented DeiT, which overcomes the
huge dataset issue and enables to process train task with
fine efficiency [51]. After appearing ViT, an enhanced
transformer T2T-ViT was introduced, which converts the
neighbouring tokens into individual tokens recursively [52].
The problem with ViT is that it sometimes loses some
potential information because it relies on only the patch
sequence. Then, a TNT transformer, which has inner and
outer blocks by incorporating both pixel-level information
and patch-level details, was proposed. PVT, CvT and CPVT
can be integrated into the general deep learning layer and
transformer to solve the long-range dependencies issue,
whereas the combined utilization did not perform well [53],
[54], [55]. The CMT technique was proposed to overcome the
combination inefficiency issue, consisting of a transformer,
four stages, and the CNN. However, the disadvantage is that
the CMT of mixed short-term and long-term dependency
in each stage causes rising computational complexity.
Additionally, while numerous deep learning models based on
transformers have been developed, adequate performance has
not yet been yielded [56]. Recently, shin et al. used a multi-
branch CMT-based transformer and a general CNN-based
model to develop the KSL recognition system. The main
drawback of the work is that they used pixel-based images
as input for the dataset [5]. They still face problems such
as lower performance accuracy and high computational
complexity. In addition, we did not find a skeleton-based
dynamic KSL recognition system yet. Recently, skeleton-
based GCN and attention modules have proven excellent
in other sign language recognition work [1], [14], [18],
[56]. However, most of the KSL research work is related
to static KSL recognition where no motion is included, and
the dynamic nature of the sign is not considered. A limited
number of dynamic KSL recognition research works have
been done, mostly using hardware and sensor-based systems,
which still have many drawbacks. Thus, it is urgent to
develop a vision-based dynamic KSL recognition model to
recognize KSL from video or dynamic data. In addition,
KSL recognition is still a bit challenging work because of
the diversity of the signs coming from human gestures.
In addition, arbitrary-view and dynamic signs come from the
multiple-camera viewpoint. In addition, no skeleton-based
KSL recognition work has been done yet. To overcome the
problems, we developed a skeleton-based Graph convolution
and attention-based general neural network to achieve
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satisfactory accuracy and efficiency in the KSL recognition
systems.

III. DATASET DESCRIPTION
Also, KSL is one of the most used people using this
language, but little research has been done, and few datasets
are available online. We have only one dataset online, the
large-scale Korean sign language (KSL) dataset [12]. In the
study, we worked with the dataset to evaluate the proposed
model: large-scale KSL dataset described in Section III-A.
We create a new KSL selection data set, which we described
in Section III-B

FIGURE 1. Example of KSL image from 77 class KSL dataset.

A. LARGE KSL- DATASET
Large KSL is one of the most usable benchmark datasets
for Korean sign language recognition work. This is the first
large-scale KSL dataset for the Korean sign language, one
of the most used languages in the world. This dataset was
recorded from 20 people for 77 sign words. Although many
daily activity words are available in theKorean sign language,
they tried to include the most used sign word in their data.
During the data collection, they used 17 diverse backgrounds
and locations for multiple signers where they considered
facial expressions besides hand gestures. They considered the
various distances and angles for collecting the actual scenario
to account for the real-life situation. There are 1229 videos in
their dataset laterally; it generated 112564 frames from the
videos. They considered a 30 ps frame rate for converting
the video dataset into frames, and they discarded a few
initial frames and a few end frames to keep the actual
information by removing the noise and empty frames. For
hand pose extraction, we used the media pipe approach,
which took the RGB video as an input and produced the joint
skeleton point for the hand and body pose key points, which
fed the network as an input dataset. Increasing the privacy
of the signer and reducing the computational complexity
are the main purposes of using joint skeleton information
here instead of pixel-based images. The main goal of the
skeleton dataset is to increase the privacy and efficiency
of the system by avoiding the exact pixel information and
scenarios. Figure 1 visualized the skeleton points of this
dataset.

FIGURE 2. Proposed korean sign language word.

B. PROPOSED LAB DATASET
To overcome the unavailability of theKSL dataset, we created
a word and signer-independent KSL dataset. To make this
dataset, we selected the 20 most significant words Korean
people use for daily activities. The name of these words
dataset included thanks, love, okay, no, happy, sorry, hello,
shame, late, regrettable, meet, yes, help me, effort, give,
welcome, what, by, why and who [6], [12], [55]. Although
the existing KSL dataset included 77 KSL words to make
their dataset, that number is also good for expressing
ideas, thoughts, expressions and requirements to other
people. However, not all 77 words are frequently used for
their daily activities. We investigated that some of them
are mostly used to do daily activities, but some other KSL
words can be used more frequently to express a human’s
basic needs and thoughts compared to the included 77 words.
In the proposed new dataset, we also included the five
most usable sign words from the existing large-scale KSL
dataset [55]. We considered more than 15 KSL words with
high significance to use in daily life for the deep and mute
Korean people. The five sign words that we selected from
the previous dataset are as follows: no, thanks, what, sorry,
and who. We selected more than 15 words by studying and
seeing the problem with the current sign languages. The
study mainly considered the skeleton point instead of the
image pixels. The sample image of the dataset is visualized
in Figure 2. As an environment, we used a webcam-based
RGB camera to record the 20 words for the KSL dataset.
The sample RGB picture with skeleton mapping for the same
picture is shown in Figure 4. To record the dataset, we used
4-second videos with 120 frames, most of which were people,
and 30 people willingly connected with us to record the
dataset. Moreover, The background of the proposed KSL
video dataset recorded the various scenarios as possible with
a natural background.

IV. PROPOSED METHODOLOGY
Figure 3 demonstrates the proposed workflow architecture.
Research on KSL recognition primarily focuses on using
still images for sign language recognition, often failing
to detect dynamic sign words. In addition, the existing
system may fail to achieve high-performance accuracy with
the benchmark dataset because of the unavailability of the
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FIGURE 3. Proposed korean sign language word recognition architecture.

FIGURE 4. Skeleton key points for the proposed model.

training dynamic KSL dataset. Recently, some researchers
have employed Graph Convolutional Neural Networks
(GCNs) for skeleton-based dynamic action recognition,
as seen in works such as DGSTA, [16], GSTCAN [17],
ASGCN [14], and GSCAN [18]. Among these, the study by
Shi et al. utilized two-stream GCN networks based on joint
and joint motion skeleton-based information in an attempt
to improve performance accuracy. However, these models
fell short of achieving high accuracy for KSL recognition.
The primary drawback lies in their failure to consider
non-connected skeleton joints and joint motion features,
which could potentially enhance performance accuracy in
KSL recognition. In light of these challenges and gaps
in existing research, our proposed solution involves joint
skeleton-based dynamic KSL recognition using two-stream
deep learning networks. Each stream incorporates the Graph
Convolutional Network (GCN) and an attention-based gen-
eral neural network approach. To overcome these challenges,
we proposed a joint skeleton-based dynamic KSL recogni-
tion using two two-stream deep learning networks where
each stream is constructed with the Graph convolutional
network(GCN) and attention-based general neural network
approach. To do this, we derived a new skeleton dataset from
the recorded videos using the Mediapipe pose estimation
method, overcoming the mentioned challenges. This estima-
tion captures skeletons from both hands, as well as facial and
body points, to consider the emotional information besides
the only hand gesture information. We then analyzed motion

in the skeleton-based dataset. Our proposed two-stream
neural network architecture employs a Graph Convolutional
Network (GCN) and an attention-based neural approach. The
first stream uses Mediapipe to extract 47 pose landmarks,
which GCN processes to create graph-based features. These
are further refined by a channel attention module and a
general CNN to enhance temporal context. The second stream
captures joint motion data using a similar feature extraction
process. Features from both streams are combined and fed
into a classification module for sign language recognition.
Detailed descriptions of our methodology are provided in
subsequent sections.

A. POSE ESTIMATION
In the study, we considered a hand skeleton point instead of
a pixel-based image. One of the main reasons is to hide the
human hand’s information to protect privacy and security.
The idea is the skeleton information does not contain the
details of visual information such as texture or skin colour.
This idea allows a person to anonymise their identity, and we
will not record or store the hand’s appearance. The texture of
the hands is relevant to preserving crucial biometric systems
and so on. Moreover, fingerprints and palm prints, which are
very sensitive information for a person, are not required to be
exposed to the skeleton dataset. Skeleton dataset can protect
this personal information from unauthorized access to their
biometric data. Another advantage of the skeleton dataset is
that it needs significantly less storage of the hand gesture data.
Shortly, using the skeleton dataset, we offered a secured hand
gesture recognition system that hides personal information
while enabling secure privacy and authentication protection.
The study used a media pipe system to extract the skeleton
joint from the video dataset. We collected 21 skeletons from
the left hand, 21 skeleton points from the right and points
from the body. In total, there are 47 skeleton key points we
extracted here [18], [57].

B. CAPTURING JOINT MOTION
In the study, we included static and dynamic signs for theKSL
sign word, although existing research developed dynamic
signs in the static system. Motion is a very effective feature
for dynamic gestures in terms of alignment and movement
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TABLE 1. The list of the key points used in the study.

and improves the effectiveness of overall skeletal information
structures. Directly affecting themovement of a joint skeleton
is the main purpose of the motion calculation. There are
21 total landmarks in the joint skeleton dataset, and each
landmark consists of x, y and z three-dimension coordinates;
we captured motion for each coordinate separately [18]. The
difference in the coordinated point between the consecutive
frame joint positions is the concept of this calculation. The
motion calculation procedure of the proposed method is
visualized in Equation 1 and Figure 5.

MotionX = Xt − Xt+1

MotionY = Yt − Yt+1

MotionZ = Zt − Zt+1 (1)

FIGURE 5. Visualize the motion calculation scenario.

C. GRAPH CONVOLUTION NETWORK (GCN)
GCN is a spatial type of neural network mainly designed to
perform graph-structured data. In the study, we are working
with the skeleton dataset, which mainly represents the human
hand and bodymovement, which we represented with a graph
shown in Figure 3. In the graph, we considered each joint
a node and the connection between the two nodes as edges.
The GCN model captured and then processed the skeleton
graph as structural information based on the relationship
among the nodes. In addition, the proposed graph structure
captured the spatial relationship and dependencies among the
joints.

D. GRAPH AND GRAPH CONVOLUTION CONSTRUCTION
In the study, we constructed a spatial-temporal graph to
construct a hierarchical representation of the skeleton infor-
mation extracted from the hand, body and face gestures [16],
GSTCAN [17]. The constructed undirected graph from the
skeleton can be expressed as the following Equation 2:

G = (V ,E) (2)

where the graph is constructed on the sequence of T frames
and all N number of joints, our study has 32 frames
and 47 skeleton joints based on the intra and inter-frame
connection. Here V is mainly represented by the node-set
number, which can be as V = {v(t,i) | t = 1, . . . ,T , i =

1, . . . ,N } by considering all the joints in each sequence.
where v(t,i) represents the elements of the set V . The indices t
and i range from 1 to T andN respectively. The convolutional
graph here is constructed in the spatial and temporal domains.
In the spatial domain, each joint of the human body is
denoted as the vertex, and the spatial edge represents the
natural connection of the human body. On the other hand,
in the temporal domain, corresponding joints between the
consecutive frames are considered a temporal edge [14], [18].
Multiple layers of the spatial and temporal GCN operation
are employed here to predict the diverse action categories for
extracting effective features. The GCN for the spatial domain
for the specific vertex set vi can be written as the following
formula Equation.3:

Fout (vi) =

∑
(vj)∈Bi) 1

Zij

fin(vj) · w(li(vj)) (3)

Here, the vertex of the graph is represented by v, the
sampling area of the convolution for specific node vi
represented by Bi; it mainly denoted the distance between
neighbour vertex vi to vj. W-like represents the waiting matrix
generated function as an original convolutional layer, which
generates the weight vector depending on the user’s input
terms.

E. FEATURE MAP OF THE GCN
The feature map of the GCN can be represented by the
C × T × N dimension, where C,T , andN represent the
number of channels, temporal length, and number of vertexes,
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respectively. We can write the transformation formulas for
implementing the proposed model according to the following
Equation 4.

FGCN =

Kv∑
k=1

Wk (finAk ) ⊗Mk (4)

whereFGCN represents the output,
∑

denotes the summation,
k is the index variable ranging from 1 to Kv, Wk represents
a weight matrix, fin is the input feature, Ak is a matrix,
⊗ denotes element-wise multiplication, and Mk is another
matrix. Here, the kernel size of the spatial dimension is

denoted by Kv. Ak = 3
−

1
2

k Āk3
−

1
2

k here N × N adjacency
matrix are represented by Ak and elements fo the Āijk
represents the vertex vj in the subject Sjk of the vertex vi.
It is mainly used to generate the connected vertexes for a
particular subset from the input features by following the
associated weight vector. After normalising the diagonal
matrix, it can produce the following features Aiik =

∑
j A

−ij
k +

α where α is employed to discard the empty row by setting
value 0.001. The 1 × 1 convolution operation generated
the weight vector Wk , which generated Cout · Cin · 1 · 1.
Mk is represented by the attention map generated N × N
dimension and indicates the importance of various vertex and
dot products denoted by ⊙. In the same way, we applied the
GCN for the temporal domain; also, it is easy to compare
the spatial domain due to the number of neighbours for each
vertex being fixed, which is 2, which indicates the previous
and next consecutive frames. For the temporal domain, there
needs Kt ·1 convolution operation on the output of the feature
map where k represents the kernel size for t time frames [14],
[18].

F. CHANNEL ATTENTIOON
We applied the channel attention mechanism on the output
of GCN to enhance the representation of features with
the channel of a graph. Emphasizing the important feature
suppresses the less important feature aiming to improve the
gen-realization and discriminative power of the proposed
system. In the previous GCN layer, we designed for operating
the input skeleton data directly on the graph-structured data
and computed the convolution operation for aggregating
information from neighbouring nodes. The GCN generated
the feature maps where each channel has a corresponding
featuremap. To refine theGCN feature, we employed channel
attention, which explicitly enhances the interdependencies
between the channels and dynamically adjusts their impor-
tance. By learning channel-wise weights, it can determine the
contribution of each channel to the final representation. In the
study, the channel attention models took the extracted feature
maps, ran that feature throughout the global average pooling,
and generated the output for each channel. After that, each
channel is run through a couple of the fully connected layers,
the batch normalization layer and coupled with the ReLU
activation to produce the positive or 0 values. The powerful
feature vector can be generated by multiplying the output

of the activation function with the GCN features. In more
explanation, the channel attentionmodule produced a positive
value for the potential features and 0 for the less effective
features. After the multiplication operation, the important
feature is selected from the GCN feature by converting the
unimportant feature to zero [18]. Figure 6 demonstrates the
structure of the channel attention used in the study where
global average pooling took input from the N channels.
We used a dense layer as size N/8 based and then passed it
through a batch normalization layer to overcome the internal
covariate shift problems and prevent the gradient from being
too small. After using the ReLU activation layer, we used
another fully connected layer whose size is N and fed into
another ReLU activation. We focused on the ReLU activation
because it has lower computational complexity than the
sigmoid function.

FIGURE 6. Architecture of the channel attention.

G. GENERAL-CNN BLOCK
In the stage, we employed a classification module where
we included a coupled of the ReLU activation, Coupled
of fully connected layer, layer normalization, dropout layer
and the averaging pooling layer. Figure 7 demonstrates the
classification module architecture.

FIGURE 7. General CNN architecture.

H. CLASSIFICATION MODULE
In the stage, we employed a classification module where
we included a coupled of the ReLU activation, Coupled
of fully connected layers, layer normalization and dropout
layer [4]. Figure 8 demonstrated the classification module
architecture.
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FIGURE 8. Classification module.

V. EXPERIMENTAL EVALUATION
We experimented with the two large Korean sign language
datasets to test the superiority and effectiveness of the
proposed study. To do this, firstly, we visualize the dataset
with performance accuracy, and next, we demonstrate
a comparison table with the state-of-the-art comparison.
We divided the dataset into training and testing parts by
following the approach of the previous paper. The gesture
of the subject will be in the trained dataset, and the gesture
subject will not be in the trained dataset.

A. ENVIRONMENTAL SETTING
To split the dataset into training and testing sets, we followed
7:3 rules where 70% is considered a training dataset, and
30% is a testing dataset. We used a Python environment
and various Pytorch modules to implement the system.
For the learning rate, we used a.001 value; we divided
the 128 as batch size. We implemented the system in the
Geforce RTX 4090 GPU machine, which consists of Linux
and CUDA version 12.1, containing 64 GB RAM. We used
Adam optimizer [58] with the Geforce RTX 4090 GPU and
100 epochs for the model run.

B. ABLATION STUDY
In our ablation study, we proposed a model structured with
Graph Convolutional Network(GCN) modules spread across
joint and joint motion streams with spatial-temporal contex-
tual information enhancement. Within these, we integrated a
combination of joint-based features and joint stream-based
features supplemented by several Channel attention and Gen-
eral CNN modules. Building upon the foundational insights
from prior studies, specifically [56] and [57], we gleaned a
better understanding of the configuration of GCN and deep
learning models. In our research, aiming for computational
efficiency, we assessed configurations with a single GCN for
spatial attention, accompanied by a Channel Attention and
an NN module, as demonstrated in the ‘‘Joint Stream’’ and
‘‘Joint Motion Stream’’ models. Both models registered an
accuracy of 96.22% on the KSL-77 dataset and 98.00% on
the Proposed KSL-20 dataset. However, our standout result
was achieved with the ‘‘Proposed Model’’. Here, we utilized
2 GCNs, supplemented by 2 Channel Attentions and 2 NN

modules, in a parallel architecture emphasizing spatial and
temporal contextual enhancements. This model yielded an
impressive accuracy of 99.86% on the KSL-77 dataset
and a perfect score of 100.00% on the Proposed KSL-20
dataset, marking a distinct edge over the other configurations.
Another noteworthy configuration is the ‘‘Two Stream Only
GCN’’ model, which utilizes 2 GCNs without any Channel
Attention or CNNmodule. It achieved an accuracy of 99.90%
on the KSL-77 dataset and 99.00% on the Proposed KSL-20
dataset.

TABLE 2. Strategic ablation study highlighting variations in GCN, channel
attention and general CNN module counts aligned with spatial and
temporal feature enhancement.

These results unequivocally underscore the superior per-
formance of our proposed configuration compared to other
configuration architectures.

C. PERFORMANCE WITH THE BENCHMARK KSL DATASET
The study used two benchmark KSL datasets to evaluate the
model: the publicly available large-scale KSL77 dataset and
our proposed dataset. The KSL77 is considered one of the
most challenging datasets in the KSL recognition domain.
Classwise performance accuracy, precision, recall and f1
score are demonstrated in Table 3, and we showed here the
performance matrix for the first 20 classes. We can see that
the proposed model achieved good performance for all the
labels equally. More than 50% classes achieved 100.00%
accuracy, around 40% classes achieved more than 99.00%
accuracy, and the rest of the classes produced more than
98.00% accuracy. Also reported the performance accuracy
with the proposed KSL-20 dataset on the right side of
the table, where our model generated more than 99.00%
performance accuracy for all the classes.

The average of the performance matrix of all the classes
is demonstrated in Table 4 for both datasets. We can see that
our model produced the This demonstrated that the proposed
model achieved 99.87%,99.87%,99.87%, and 99.87% for
precision, recall, f1-score and accuracy, respectively, for
benchmark KSL-77 datasets. In the same way, the next two
visualized the proposed KSL-20 dataset; it produced the
100.00%, 100.00%, 100.00% and 100.00% for the precision,
recall, f1-score and performance accuracy average.

D. COMPARISON OF THE STATE OF THE ART METHOD
FOR KSL DATASET
We have included the state-of-the-art comparison for both
datasets to prove the superiority of the proposedmodel. State-
of-the-art comparisons for the existing KSL77 benchmark
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TABLE 3. Precision, Recall and F1-Score for the KSL-77 and prposed
KSL-20 dataset the first 20 classes.

TABLE 4. Average Precision, Recall, F1-Score and Performance Accuracy
for the two dataset.

dataset are shown in Table 5. We can see that the existing
model generated 79.80% and 93.00% accuracy, whereas the
proposed model produced 99.87% performance accuracy,
which is 6% more than the existing method. The exist-
ing method used a deep learning-based CNN model and
reported 79.00% accuracy [40]. To improve the performance,
shin et al. applied themulti-head-attentionmodel to recognize
the image pixel-based KSL dataset and achieved 93.00%
accuracy [5]. They mainly focused on the various steps,
including the grain module and parallel CNN with the
multi-head attention model. Finally, they concatenated the
features and used a classification module for the recogni-
tion. The proposed model produced 99.87% accuracy for
the same dataset using a skeleton hand pose-based KSL
dataset. We also experimented with the latest Graph-CNN-
based state-of-the-art model, including Actional-structural
graph convolutional networks (ASGCN) [17], graph-based
spatial-temporal convolutional and attention neural network
(DSTCAN) [18], and Spatial, temporal graph convolutional
networks (DGSTA) [16], and we got 4.00%, 95.38% and
99.56% accuracy.

Table 6 demonstrates the comparison performance accu-
racy of the proposed model with the state-of-the-art compar-
ison of the proposed model for the proposed KSL-20 dataset.
The existing method generated 98.00% accuracy with the
multi-stage attention-based model [56]. On the other hand,

TABLE 5. Comparison for the KSL-77 with the state-of-the-art model.

TABLE 6. Comparison for the proposed KSL-20 dataset with the
state-of-the-art model.

the proposed model produced 100.00% accuracy, which is
much more than the previous system.

E. DISCUSSION
In the study, we proposed a GCN with spatial-temporal
attention and general neural recognition to recognize the
KSL alphabet and world. In the study, firstly, we employed
the Graph convolution to the skeleton dataset to convert the
skeleton data into a graph structure. Then, we employed
channel attention to produce the channel’s effective feature.
Then, we used adaptive graph CNN to extract features,
and finally, we applied a classification module for the
classification. Table 3 and Table 4 demonstrated the class-
wise precision, recall, f1-score and performance accuracy
and an average for all the classes, respectively. According
to Table 5 and Table 6 performance, we can say that
our model is much superior to the state-of-the-art method
in the KSL recognition research domain. We believe that
this study will upgrade the current KSL research situation
and will be considered a novel method in this domain.
Indeed, one of the key strengths of our vision-based Korean
Sign Language recognition system lies in its accessibility.
As a device-agnostic solution, our system can be seamlessly
integrated into any device equipped with a camera. This
versatility empowers a wide range of users to benefit from our
application, including thosewho rely on smartphones, tablets,
laptops, or even desktop computers. Whether it’s a mobile
device used on the go or a computer in a stationary setting, our
system ensures that users have the freedom to communicate
through sign language conveniently. This inclusivity aligns
with our commitment to making communication barrier-free
for all members of the community, including those who are
hearing impaired or hard of hearing.

VI. CONCLUSION
In this study, we have pioneered the development of
an advanced skeleton-based video classification system

143510 VOLUME 11, 2023



J. Shin et al.: Dynamic Korean Sign Language Recognition Using Pose Estimation

featuring a two-stream attention-based neural network
architecture. Each stream seamlessly integrates a Graph
Convolutional Network (GCN) and an attention-driven neural
framework, resulting in a robust and effective model for
dynamic Korean Sign Language (KSL) recognition. In the
first stream, we harnessed the complete body joint skeleton
and meticulously processed it through a GCN, leading
to the generation of robust graph-based features. Further
enhancement of these features was achieved by incorporating
a channel attention module, and their temporal context was
enriched through the utilization of a general CNN. The
second stream, mirroring the first, focused on capturing joint
motion information. The fusion of features from both streams
culminated in a powerful classification module, enabling
precise sign language recognition.

Our model demonstrated exceptional performance in
extensive evaluations, surpassing existing state-of-the-art
models. This impressive achievement underscores the effi-
cacy and superiority of our proposed model in the field of
KSL recognition. Our model’s adaptability, combined with
its potential for training on various sign language datasets,
opens doors to broader applications, benefiting not only the
Korean hearing impaired community but also potentially
extending its reach to other linguistic communities. In our
future endeavours, we are committed to further optimizing
our model. This includes expanding the dataset to encompass
more sign words, selecting the optimal number of joints,
enhancing feature extraction techniques, and leveraging
advanced graph techniques to achieve even higher levels of
performance. These ongoing efforts will not only improve
the accuracy and efficiency of our model but also enhance
its applicability in real-world scenarios. We believe these
enhancements will solidify the position of our model as a
promising solution for accessible communication through
sign language recognition.
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