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ABSTRACT This research paper has developed a way of roughness of fuzzy substructures by using soft
relations for developing rough fuzzy substructures in Quantale module. Thus, an innovative concept of
fuzzy substructures of Quantale module under rough environment by soft relations, is presented. The lower
and upper approximations of fuzzy subsets of quantale module are defined by aftersets and foresets. This
relationship leads to various characterizations of the rough fuzzy substructures of quantale modules. Besides
of more comprehensive results, soft compatible and soft complete relations are required with foresets and
aftersets. Soft relations are further being used to determine upper (lower) approximation of fuzzy subsets of
quantale module using foreset and afterset. Moreover, several characterizations of rough fuzzy substructures
of quantale module are investigated. Furthermore, the algebraic relations of upper (lower) approximations
of fuzzy quantale submodule and fuzzy quantale submodule ideals are studied with the help of soft relations
under weak quantale module homomorphism. To illustrate that the suggested approach is superior to the
given methods, examples are provided. At last, we describe decision-making methods by using rough fuzzy
substructures of Quantale module under soft relations to deal with uncertainties in the real-world problems.
To demonstrate the validity, applicability, and efficacy of the suggested method, a detailed example of the
decision-making process is provided.

INDEX TERMS Quantale module and its substructures, rough sets, soft sets and fuzzy sets.

I. INTRODUCTION
In 1993, Abramsky and Vickers [1] proposed the Quan-
tale module concept. Quantale modules drew the attention
of many scientists and researchers. The idea of a module
over a ring served as the idea for the quantale module [2].
It substitutes quantales for rings and complete latices for
abelian groups. The quantale module was initially introduced
by Abramsky and Vickers’ for unified treatment of process
semantics [1]. Rosenthal [3] shows that modules over a com-
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mutative unital quantaleas provides a class of full linear logic
models.

The rough set is a formal approximation of a crisp set
in terms of a pair of crisp sets that provide the lower and
upper approximations of the original set, as first proposed
by Pawlak [4] in 1982. In recent years, roughness has been
applied to a variety of algebraic structures. Ali et al. [5]
proposed roughness in hemirings in terms of the Pawlak
approximation space and generalized approximation space.
Quantales were considered universal sets by Yang and Xu [6]
and the concepts of rough (prime, semi-prime, primary) ide-
als and prime radicals of upper rough ideals of quantales were
introduced.

VOLUME 11, 2023

 2023 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License.

For more information, see https://creativecommons.org/licenses/by/4.0/ 145897

https://orcid.org/0000-0002-4732-3320
https://orcid.org/0000-0001-6220-4373
https://orcid.org/0000-0002-4295-6719
https://orcid.org/0000-0002-1515-4243


S. M. Qurashi et al.: Rough Fuzzy Substructures of Quantale Module Under Soft Relations

Qurashi and Shabir [7] introduced the concept of rough-
ness in the Q-module. Some extension of rough set model was
presented by Zhang et al. [8]. The relation among topological
spaces and hyperrings with rough sets was studied by Abug-
hazalah et al. [9]. Yaqoob and Tang [10] rough set theory to
investigate quasi and inner hyperfilters in ordered LA-semi
hypergroups.

Molodtsov [11] presented soft set theory in 1999 as to
generalize fuzzy set theory to deal with uncertainty in a
parametric way. Soft set can be used as a parametrized family
of subsets of a crisp universal set. Numerous authors used
soft set theory to study various algebraic structures. Matrices
in soft set theory and their applications in decision making
problems were presented by Basu et al. [12].

Soft intersection semigroups, soft intersection ideals and
bi-ideals of semigroup was presented by Sezer et al. [13].
The concepts of generalized finite soft equality, generalized
finite soft union and generalized finite soft intersection of two
soft sets were introduced by Abbas et al. [14]. Approximation
of ideals in semigroups by soft relations were proposed by
Kanwal and Shabir [15].
An application of soft vector spaces was discussed by

Ali et al. [16]. The concept of generalized approximation of
substructures in quantales by soft relations was introduced by
Kanwal et al. [17] which is an extended notion of a rough
quantale and a soft quantale. A Multi-attribute decision-
making method in terms of complex q-rung orthopair via
Einstein geometric aggregation operators were studied by
Wu et.al. [18].
Zadeh [19] first proposed the fuzzy set notion in 1965.

Since then researchers have applied this key set in a variety of
fields. Qurashi and Shabir [20] presented generalized fuzzy
substructure in quantale. Yaqoob et al. [21] presented gen-
eralized fuzzy hyperideals, generalized fuzzy bi-hyperideals
and generalized fuzzy normal bi-hyperideals in ordered LA-
semi hypergroups using the concept of generalized fuzzy
sets. Soft binary relations were used by Bilal and Shabir [22]
to approximate pythagorean fuzzy sets over dual universes.
Recently, Fuzzy convexities were investigated via overlap
functions by Pang [23]. Important Hamacher aggregation
operators dependent on the interval-valued intuitionistic
fuzzy numbers related to decision making was proposed
by Liu [24].
Fuzzy formal contexts and fuzzy relations between objects

of different types in the form of fuzzy relational con-
text families were investigated by Boffa [25]. Qurashi and
Shabir ( [26], [27]) studied the roughness of fuzzy sub-
structures in quantales w.r.t generalized approximation space
in the form of (∈, ∈

∨
q) and (∈γ , ∈γ

∨
qδ). Hus-

sain et al. [28] presented the notion of rough pythagorean
fuzzy ideals in semigroups. Malik and Shabir [29] pro-
posed the notion of rough fuzzy bipolar soft sets and its
use in decision-making problems. Rough approximation of
a fuzzy set in semigroups based on soft relations was
presented by Kanwal and Shabir [30]. Different charac-

terizations of important residual Implications in terms of
Copulas were presented by Ji and Xie [31]. While Fuzzy
Quasi-Normed spaces utilized to express open mapping and
closed graph theorems were studied by Wu and Li [32].
Cubic Bipolar Fuzzy-VIKOR Method dependent on entropy
measures was proposed by Riaz et al. [33]. The character
and applications of aggregating intuitionistic uncertain lin-
guistic variables to group decision making were proposed by
Liu and Jin [34].
Zhan et al. [35] investigated the relationships among rough

sets, soft sets and hemirings. He introduced the concept of
soft rough hemirings, which is an extension of the rough
hemiring notion. Several soft rough set results and topological
structure of soft rough sets were presented by Riaz et al. [36].
Multigranulation roughness of intuitionistic fuzzy sets using
soft relations and their applications in decision making were
suggested by Anwar et al. [37]. Hussain et al. [38] studied
pythagorean fuzzy soft rough sets and their applications in
decision-making. Bera and Roy [39] developed a relation
between rough soft set and fuzzy set and introduced fuzzy
rough soft set. Shabir et al. [40] presented multigranulation
roughness based on soft relations.

The term ‘‘soft relationship’’ was first used by Feng et
al. [41]. Considering that soft relations were employed to
more effectively thatminimize some types of informationwas
extended by Shabir et al. [42]. Additionally, decision-making
methods including soft relations were connected to algebraic
structures and gave rise to fascinating new study areas ( [43],
[44], [45], [46]).

Fuzzy logic was introduced by Zadehas a mechanism for
computing with words, fuzzy logic has seen widespread use.
This artificial intelligence method is perfect for effectively
tackling the ambiguity, imprecision, and uncertainty present
in a wide range of scientific and technological domains.
Software systems employ it to make decisions, detect prob-
lems, provide recommendations, and more automatically.
Computer network security system is important in different
software houses and industries. Azam et al. [47] presented
such type of selection dependent on complex intuitionistic
fuzzy setting. Hybridization of fuzzy sets in terms of complex
interval-valued intuitionistic fuzzy decisionmaking problems
including COVID-19 healthcare facilities was introduced
by Khan et al. [48]. Different decision making techniques
of physical and natural phenomena inclusive of orthopair
fuzzy TOPSIS methods with incomplete weight and complex
hesitant fuzzy sets with priority degrees and distance were
explored by Khan et al. ( [49], [50]). Aggregation opera-
tors fermatean fuzzy power Bonferroni in decision making
were proposed by Ruan et al. [51]. Decision making pro-
cess under linguistic q-rung orthopair fuzzy Einstein models
and orthopair fuzzy membership grades were presented by
Akram et al. [52] and Feng et al. [53]. Some algorithm with
trapezoidal picture fuzzy numbers was studied by Akram
et al. [54]. TOPSIS model with complex spherical fuzzy
information was proposed by Akram et al. [55].
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A. COMPARITIVE STUDY AND DISCUSSION
In this study, we have made a comparison between the sug-
gested study and earlier research. First of all we will present
a definition which was presented by Shabir and Kanwal [42].
The definition is as follows

Assume V is the subset of E (S.P) and ( , V ) be a SBIR
from 1 to 2 i.e., : V → P( 1 × 2) .Thus, the
LOap ( M, V ) and UPap (

M
,V ) w.r.t the afterset of soft

set (M, V ) over 2 are essentially two soft sets over 1 are
defined as

M(v) =
{
γ1∈ 1 : ∅̸=γ1 (v)⊆ M(v)

}
and

M(v) =
{
γ1∈ 1 : γ1 (v)∩M(v) ̸=∅

}
.

For foresets the definition is as follows

N (v) =
{
γ2∈ 2 : ∅̸= (v)γ2⊆N(v)

}
and

N (v) =
{
γ2∈ 2 : (v)γ2∩ N(v)̸=∅

}
∀ v∈V .

In fact, in the above definition, equivalence class under
equivalence relation (congruence) is no needed while in the
following [5], [6], and [7], congruence relations are required.
Fuzzification of the above definition was defined in [30] and
equivalence (congruence) is not required in this definition.
It is nothing but the generalization of the definition proposed
by Dubois and Prade [57]. Now we will present comparative
discussion in the form of a Table as follows.

B. DEFICIT AND RESEARCH GAP IN EXISTING LITERATURE
The literature mentioned above highlights the various con-
tributions made by researchers in the fields of fuzzy sets,
rough sets, and soft sets theories. The ideas of roughness
of crisp sets, rough fuzzy sets, and rough soft sets have
been applied to many algebraic structures, and they play
a significant role in decision-making processes. Roughness
dependent on set-valued homomorphism in quantale module
was presented by Qurashi and Shabir [7]. However there
are many open questions and problems which should be
answered and addressed.

1. In the quantale module, approximation was performed
using set-valued mapping and congruence relations. There
was nomention of the decision-making process in these kinds
of approximations. So it was necessary to make decision
process in a new type of approximation in quantale module.

2. Numerous contributions to classical quantale module
theory are known yet, its generalization is not discussed
much. There is no discussion of fuzzy substructures or how
to approximate them using set-valued homomorphism and
congruence in quantale module.

3. Literature already in existence studies various crisp
and soft substructures under rough environment of quantale
modules via soft relations ( [43], [44]). Moreover, such type
of roughness via soft relations has also been discussed in
different structures like semigroups and quantale ( [15], [17]).
Given that quantale modules’ fuzzy substructures are a gener-
alization of their substructures, it is necessary to comprehend

TABLE 1. Comparison Table.

how these fuzzy substructures are characterized with respect
to soft relations.

4. Roughness of fuzzy sets in semigroups by soft relations
was applied by Kanwal and Shabir [30]. Naturally, one would
wonder how soft relations will handle the roughness of fuzzy
substructures in quantale module. This is a reasonable con-
cern to pose.

5. Some fundamental and important theorems of quantale
module homomorphism and soft quantale module homo-
morphism were discussed in ( [43], [44]). Consequently,
a discussion of these important theorems in the context of
quantale module homomorphism via fuzzy sets is imperative.

The final objective of this study is to close the knowledge
gap in the body of current literature and tackle the aforemen-
tioned remaining issues.

C. MERITS AND LIMITATIONS OF THE PROPOSED MODEL
Intuitionistic fuzzy substructures in quantale modules can
benefit from the results demonstrated in this study. Multi-
granulation roughness of Intuitionistic fuzzy based on soft
relations was presented by Anwar et al. [37], As intuitionistic
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fuzzy substructures in quantale module are easily defined
from fuzzy substructures in quantale modules so present
study can apply to find rough intuitionistic fuzzy substruc-
tures in quantale module by soft relations. It is noted that
roughness in Pythagorean fuzzy sets defined by soft rela-
tions was suggested by Bilal and Shabir [22], so such kind
of Pythagorean fuzzy substructures in quantale module can
be defined in quantale module by soft relations. However,
can we apply soft relations to define picture fuzzy sub-
structures, bipolar fuzzy substructures and q-rung orthopair
fuzzy substructures in quantale module under rough envi-
ronment? For these generalized structures, therefore, inde-
pendent research is advised. This represents our research’s
major limitation. Moreover, decision-making techniques are
used to define rough fuzzy structures in quantale modules
for the first time. These are the merits of the work we have
proposed.

D. MOTIVATION AND GOAL OF THE PROPOSED WORK
Although there have been numerous contributions to the
theory of quantale module, yet its generalization has not
received the appropriate attention or input. That is in the
quantale module, generalization including fuzzy and rough
fuzzy substructures received less attention. There are, as far
as we are aware, a few articles on the generalization of
quantale module. Although roughness with congruence rela-
tions and set-valued homomorphism [7] is available in the
literature yet there is no such attempt to find roughness
which is without the above techniques. More generalized
form of roughness of substructures and soft substructures
were performed in [43] and [44]. But these generalized
models in quantale modules did not contain roughness of
fuzzy substructures. Thus, this is our main motivation to
define roughness of fuzzy substructures in quantale mod-
ule by soft relations without equivalence and congruence
and we are motivated to take help from aftersets and
foresets.

The paper’s specifics are as follows. In introduction, there
are sub headings which specify our targets. The introduction
Section includes comparative study, research gaps, merits
and limitations and finally motivation of the proposed study.
Section II presents some important definitions relating to
fuzzy sets and fuzzy quantale module substructures. Further,
soft sets, soft binary relations, and rough sets are examined.
Section III describes a few characterizations of fuzzy subsets
of quantale modules with the use soft relations. Additionally,
section IV will express several rough fuzzy substructures
with respect to aftersets and foresets using soft relations.
The upper (lower) approximations of fuzzy substructures and
homomorphic images are described in Section V together
with quantale module homomorphism. The section VI helps
us to understand how rough fuzzy substructures are utilized
to have better understanding of decision making problems.
An example for better understanding is also added to under-
stand. At the last section the whole paper is captured in the
conclusion.

TABLE 2. List of acronyms/abbreviations.

II. PRELIMINARIES
In In this section, we go over some fundamental ideas about
substructures and fuzzy substructures of quantale module,
as well as the conclusions that go along with them. This will
be beneficial for our next work.
Definition 1 [56]: Let Q be a complete lattice. Define an

associative binary operation on Q satisfying :

1)
(
∨j∈J j

)
= ∨j∈J

(
j
)
;

2)
(
∨j∈J j

)
= ∨j∈J

(
j

)
.

∀ , ∈Q and
{

j
}
,

{
j
}
⊆Q (j ∈ J) .

Then (Q, ) is a quantale. Let Fi, F1, F2⊆Q. Then the
following are defined;

F1 F2 = {f1 f2 : f1 ∈ F1 , f2 ∈ F2} ;

F1 ∨ F2 = {f1 ∨ f2 : f1 ∈ F1 , f2 ∈ F2} ;

and ∨i∈IFi = {∨i∈I fi : fi ∈ Fi} .

Throughout the paper, for quantales the symbol Q1 and
Q2 will be used. The top element and bottom element will be
expressed by T and L respectively.
Definition 2 [1]: Let be a sup-lattice and let Q be a

quantale. Define a left action : Q × −→ . Then is
called left Q− module over the quantale Q if it satisfies the
following conditions:
1) (∨i∈I i) = ∨i∈I ( i ) ;

2)
(
∨j∈J j

)
= ∨j∈J

(
j
)
;

3) ( ) = ( ) .

for any , ∈Q, { i} ⊆Q (i ∈ I ), ∈ , and{
j
}
⊆ (j ∈ J) .

In this paper, for left Q− module over the quantale Q
will be used. For a Q− module , A⊆Q and ∈ we
have :

A m = {a m | a ∈ A} ;
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FIGURE 1. (a) Description of Q (b) Description of .

TABLE 3. Binary operation subject to .

TABLE 4. Left action subject to .

A B = {a b | a∈A, b∈B} where B⊆ .

For A, B, Ai⊆ (i ∈ I ). We write

A∨B = { ∨ | ∈A, ∈B}

and ∨i∈IAi = {∨i∈I i | i∈Ai} .

Example 1: Let Q = {L, , , T} be the complete lattice as
shown in Fig. 1(a) and operation on Q is shown in Table 3.
Then (Q, ) is a quantale. Let = {L, , T} be a sup lattice.
The lattice diagram of is given in Fig. 1(b) . Let : Q ×

→ be the left action on as shown in Table 4. Then it
is easy to verify that is Q− module
Definition 3 [1]: Let be a Q− module. If a sub-

set 1⊆ satisfies the following axioms for any
∈ 1, { i} ⊆ 1 and λ∈Q.

1) ∨i∈I i ∈ 1 ∀ i ∈ 1;

2) λ ∈ 1 ∀ λ∈Q, ∀ ∈ 1.

Then 1 is called Q− submodule (QSM ) of .
Definition 4 [1]: Let I be a subset of Q− module . Then

I is called Q− ideal (QID) of if the following hold :

1) A ⊆ Iimplies ∨A ⊆ I ;
2) ∈I and ≤ implies ∈ I where ∈ ;

3) ∈ I implies λ ∈ I for all λ ∈

Definition 5: If is a mapping given by : G →P
( )

where G ⊆ E (S.O.P), then the pair ( , G ) is called a soft
set over .

1)
(

, G
)
is called soft QSM over if (u) is a QSM for all

u∈G.

2)
(

, G
)
is called soft QID over if (u) is a QID for all

u∈G.

Definition 6 [11]: Let : G →P
(

1 × 2
)
where G ⊆

E (S.O.P). Then
(

, G
)
is called a STBR from a quantale

module 1 to 2.

Definition 7 [19]: A function β : −→ [0, 1] is known
as fuzzy subset (Fsst ) of . Let β and µ be two Fsst of .

Then β ⊆ µ if and only if β ( ) ≤ µ ( ) for all ∈ .

Clearly β = µ if and only if β ⊆ µ and µ ⊆ β. Let β and µ

be two Fsst of . Then the union and intersection of β and µ

are

(β∪µ) ( ) = Max {β ( ) , µ ( )}

(β∩µ) ( ) = Min {β ( ) , µ ( )}

for all ∈ .

Definition 8: Let β be a Fsst of a quantale module and
α ∈ [0, 1] . Then

βα =
{

∈ |β ( ) ≥ α
}
; βα+ =

{
∈ |β ( ) > α

}
are called α−cut and strong α−cut of Fsstβ, respectively.
Definition 9: Let Q be a quantale and 1 be Q− module

and η be Fsst of 1.Then η is said to be fuzzyQ− submodule,
if for any ∈ 1 and ∈Q, the following conditions hold:
1) η (∨i∈I i) ≥ ∧i∈Iη ( i) ∀ i∈ , ∀i ∈ I ;
2) η ( 1 ) ≥ η(e).
Definition 10: A pair

(
, G

)
is called a FSTS over U if

is a mapping given by : G→ F(U) and G is a subset of E
(the set of parameters) and F(U) is the set of all fuzzy subsets
of U.

Let be a quantale module and
(

, G
)
be FSTS over .

Then(
, G

)
is called a FSTQSM over if (u) is a FQSM of

for all u∈G with (u)̸= .(
, G

)
is called a FSTQID over if (u) is a FQID of

for all u∈G with (u)̸= .

Definition 11 [11]: Let be a finite set ϑ be an equiva-
lence relation on it. So ( , ϑ ) is referred as an approximation
space. Let U represent a subset of . The union of the
equivalence classes of then may or may not be written as
U. If U can be expressed as a union of certain equivalence
classes of , then we say that U is defined. Otherwise, it is
called not definable. The lower and higher approximations of
U are two definable subsets that can be used to approximateU

in the event that it cannot be definable. These approximations
are defined as follows :

ϑ(U) = {m∈ : [m]ϑ⊆U }

and ϑ(U) = {m∈ : [m]ϑ∩U̸= }.

A rough set is a pair (ϑ(U), ϑ(U)) if ϑ(U) ̸= ϑ(U).
Definition 12 [57]: Dubois and Prade introduced rough

fuzzy sets and fuzzy rough sets. Let X be a non-empty finite
set called the universe set and ϑ be an equivalence relation on
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X. Then (X, ϑ) is called an approximation space. Let C be a
fuzzy subset of . If ∈X, then

ϑ (C) ( ) =

∧
z∈[x]ϑ

C () andϑ(C)( ) = ∨z∈[x]ϑ C ( )

Then ϑ(C) is called lower approximation and ϑ(C)
is called upper approximation of the fuzzy subset C.
If ϑ(C)( ) ̸=ϑ(C)( ) , then β (C) = ( ϑ(C)( ) ,ϑ(C)( ) ))
is called a rough fuzzy set w.r.t ϑ.

III. ROUGHNESS OF FUZZY SET IN QUANTALE MODULE
BY SOFT RELATIONS
This section serve as to initiate the study of the notion of
approximation of fuzzy substructures by soft relation in quan-
tale modules and establish many fundamental aspects of this
phenomena.
Definition 13 [30]: Let ( , G) be a STBR from a quantale

module 1 to a quantalemodule 2.That is : G →P( 1×

2). For aFsstβ of 2, theUPAP(
β
, G) and the L0AP(

β
, G)

of β w.r.t aftersets are the two fuzzy soft sets (FSTS) over 1
defined as follows;

β
(u)(λ1) =


∨
c ∈λ1 (u)

β(c) if λ1 (u)̸=

0 if λ1 (u) =

and

β (u)(λ1) =


∧
c ∈λ1 (u)

β(c) if λ1 (u)̸=

0 if λ1 (u) =

For a Fsstµ of 1, theUPAP(µ ,G) and the L0AP(µ ,G) ofµ
w.r.t the foresets, are the two FSTS over 2 defined as follows

µ (u)(λ2) =


∨
c ∈ (u)λ2

µ(c) if (u)λ2 ̸=

0 if (u)λ2=

and

µ (u)(λ2) =

{ ∧
c ∈ (u)λ2

µ(c)if (u)λ2 ̸=

0 if (u)λ2=

for all u∈G.
here λ1 (u) =

{
λ2 ∈ 2 : (λ1, λ2) ∈ (u)

}
is called the after-

set of λ1 and (u)λ2 = {λ1 ∈ 1 : (λ1, λ2) ∈ (u)} is called
the foreset of λ2.

Moreover, for each β∈F (K2)
β
(u) : G→ F(K1) and

β (u): G→ F (K1) a nd for eachµ∈F (K1)
µ (u): G →F (K2)

and µ (u): G→ F (K2) .

Definition 14: A STBR
(

, G
)

from 1 to 2 i.e.,
: G →P( 1× 2) is called soft compatible relation

(STCR) if for all f ∈ 1 and g ∈ 2,
{
fj
}

⊆ 1 ,
{
gj

}
⊆ 2

for j ∈J and for all u ∈ G, we have

1) (fj, gj)∈ (u)⇒(
∨
j∈J fj ,

∨
j∈J gj)∈ (u);

2) (f , g) ∈ (u)⇒ (λ 1 f , λ 2g) ∈ (u) −∧ λ∈Q.

Definition 15: A STCR
(

, G
)
from 1 to 2 w.r.t after-

set is called soft complete relation (STCMR) if for all
v, ∈ 1, λ∈Q we have :

1) v (u)∨ (u) = (v∨ ) (u);
2) λ (u) 2v (u) = (λ 1v) (u).

A STCR if satisfies condition (i) w.r.t the aftersets only,
then we say it is ∨− complete.

A STCR if satisfies condition (ii) only w.r.t the aftersets,
then we say it is − complete.
A STCR ( , G) from 1to 2 w.r.t foreset is called soft

complete relation (STCMR) if for all v, ∈ 2, λ∈Q we
have:

1) (u)v∨ (u) = (u) (v∨ ) ;

2) (u)λ 1 (u)v = (u) (λ 2v) .

Theorem 1 [30]: Let ( , G) and ( , G) be two STBR from
a non-empty set 1 to 2 and β1, β2 be non-empty Fsst of
2. Then for all u∈G, we have

1) β1≤ β2 ⇒
β1 (u) ≤

β2 (u);
2) β1≤ β2 ⇒

β1 (u) ≤
β2 (u);

3)
(

β1
, G

)
∩

(
β2

, G
)

⊇

(
β1∩ β2

, G
)

;

4)
(

β1 , G
)

∩

(
β2 , G

)
=

(
β1∩ β2 , G

)
;

5)
(

β1
, G

)
∪

(
β2

, G
)

=

(
β1∪β2

, G
)

;

6)
(

β1 , G
)

∪

(
β2 , G

)
⊆

(
β1∪ β2 , G

)
;

7) ( , G)⊆( , G) implies
(

β1
, G

)
⊆

(
β1

, G
)

;

8)
(

, G
)

⊆
(

, G
)
implies

(
β1 , G

)
⊇

(
β1 , G

)
.

Theorem 2 [30]: Let ( , G) and ( , G) be two STBR from
a non-empty set 1 and 2 and µ1, µ2 be non-empty Fsst of
1. Then for all u∈G, we have:

1) µ1≤ µ2 ⇒
µ1 (u)≤µ2 (u);

2) µ1≤ µ2 ⇒
µ1 (u) ≤

µ2 (u);

3)
(

µ1 ,G
)

∩

(
µ2 ,G

)
⊇

(
µ1∩µ2 ,G

)
;

4)
(
µ1 ,G

)
∩

(
µ2 ,G

)
=

(
µ1∩ µ2 ,G

)
;

5)
(
µ1 ,G

)
∪

(
µ2 ,G

)
⊇

(
µ1∪ µ2 ,G

)
;

6)
(

µ1 ,G
)

∪

(
µ2 ,G

)
=

(
µ1∪ µ2 ,G

)
;

7)
(

, G
)

⊆
(

, G
)
implies

(
µ1 ,G

)
⊆

(
µ1 ,G

)
;

8) ( , G)⊆( , G)implies
(
µ1 ,G

)
⊇

(
µ1 ,G

)
.

Theorem 3 [30]: Let ( , G) and
(

, G
)
be STBR from 1

to 2. If β is a Fsst of 2. Then

(
( ∩ )

β
, G

)
⊆

(
β
, G

)
∩

(
β
, G

)
;(

( ∩ )β , G
)

⊇

(
β
, G

)
∪

(
β , G

)
.

Proof: The proof is simple and obtained by parts 4 and 5 of
Theorem 2.

The equality in the preceding Theorem 3 is disproved by
the example that follows.
Example 2: Assume Q1 = {L, , T} and Q2 ={

L′, , ,T′
}

be two complete lattices shown in Fig. 2(a)
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FIGURE 2. (a) Description of Q1 (b) Description of Q2

TABLE 5. Left action subject to 1.

TABLE 6. Left action subject to 2.

and Fig. 2(b) respectively where 1 and 2 on Q1 and Q2 are
associative binary operations and defined as :

1) a 1b = a
2) a 2b = L′

By 1 and 2 , we have Q1 and Q2 are quantales, respec-
tively and 1 and 2 are quantale modules by Table 5
and Table 6.

Consider G = {u1, u2} and : G −→P
(

1 ×M2
)
, :

G −→ P
(

1 ×M2
)
be defined by:

(u1) =

{
( L,L′), ( , ), (T, ), ( ,T′)
(L,T′), (L, ), ( , ), ( L, )

}
(u1) =

{
(L, L′), ( , ), (T, ), ( ,L′), (T, T′)

(L, ), ( L, ), ( , ), ( ,T′)

}
( ∩ )(u1) =

{
( L,L′), ( , ), ( , )
( ,T′), (L, ), ( L, )

}
The aftersets w.r.t (u1) and (u1) are as follows:

L (u1) =
{
L′, , , T′

}
, (u1) = { , , T′

}

and T (u1) = { } .

L (u1) = {L′, , }, (u1) = {L′, , , T′
}

and T (u1) =
{

, T′
}
.

The aftersets w.r.t ( ∩ )(u1) are as follows :

L
(

∩
)
(u1) =

{
L′, ,

}
, ( ∩ )(u1) = { , , T′

}

and T
(

∩
)
(u1) = f.

Define β1 : 2 → [0, 1] by,

β1 =
0.6
L′

+
0.7

+
0.5

+
0.3
T′

Then β1 is a Fsst of 2.

β1
(u1) =

0.7
L

+
0.7

+
0.5
T

β1 (u1) =
0.7
L

+
0.7

+
0.7
T

( ∩ )
β1 (u1) =

0.7
L

+
0.7

+
0
T

This shows that
β1

(u1) ∩
β1

(u1) ̸=
(

∩
)β1

(u1) .

Now, define β2 : 2 → [0, 1] by,

β2 =
0.2
L′

+
0.5

+
0.7

+
1
T′

Then β2 is a Fsst of 2 .

β2 (u1) =
0.2
L

+
0.5

+
0.7
T

β2 (u1) =
0.2
L

+
0.2

+
0.5
T

( ∩ )β2 (u1) =
0.2
L

+
0.5

+
0
T

This shows that β2 (u1) ∪
β2 (u1) ̸=

(
∩

)β2 (u1) .

Theorem 4 [30]: Let ( , G) and ( , G) be a STBR from a
non-empty set 1 to 2. If µ is a Fsst of 1 then,(

µ
(

∩
)
,G

)
⊆

(
µ ,G

)
∩

(
µ ,G

)
;(

µ( ∩ ),G
)

⊇
(
µ ,G

)
∪

(
µ ,G

)
.

Proof: The proof is simple and obtained by parts 4 and 5
of Theorem 2.

The equality in the preceding Theorem 4 is disproved by
the example that follows.
Example 3: Examine about the quantales from Example 2.

LetG = {u1, u2} and : G →P
(

1 × 2
)
, : G →P( 1×

2) be the STBR defined by :

(u1) =

{
( L, L′), ( , ), (T, ), ( ,T′)
(L,T′), (L, ), ( , ),( L, )

}
(u1) =

{
( L, L′), ( , ), (T, ), ( ,L′), (T,T′)

(L, ), ( L, ), ( , ), ( ,T′)

}
( ∩ )(u1) =

{
( L, L′), ( , ), ( , )
( ,T′), (L, ),( L, )

}
The foresets w.r.t (u1) and (u1) are as follows:

(u1) L′
= {L} , (u1) = {L, } ,

(u1) = {L, , T}, (u1) T′
= {L, } .

(u1)L′
= {L, }, (u1) = {L, , T} ,

(u1) = {L, }, (u1) T′
= { , T} .

The foresets w.r.t ( ∩ )(u1) are as follows:

( ∩ )(u1)L′
= {L}, ( ∩ )(u1) = {L, },
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( ∩ )(u1) = {L, },
(

∩
)
(u1) T′

= { } .

Define µ1 : 1 → [0, 1] by,

µ1 =
0.4
L

+
0.3

+
0.5
T

Then µ1 is a Fsst of 1. But,

µ1 (u1) =
0.4
L′

+
0.4

+
0.5

+
0.4
T′

µ1 (u1) =
0.4
L′

+
0.5

+
0.4

+
0.5
T′

µ1 ( ∩ )(u1) =
0.4
L′

+
0.4

+
0.4

+
0.3
T′

This shows that µ1 (u1)∩µ1 (u1)̸=µ1
(

∩
)
(u1).

Define µ2 : 1 → [0, 1] by, µ2 =
0.4
L +

0.6
+

0
T

Then µ2 is a Fsst of 1. But,

µ2 (u1) =
0.4
L′

+
0.4

+
0

+
0.4
T′

µ2 (u1) =
0.4
L′

+
0

+
0.4

+
0
T′

µ2 ( ∩ )(u1) =
0.4
L′

+
0.4

+
0.4

+
0.6
T′

This shows that µ2 (u1)∪µ2 (u1)̸=µ2 ( ∩ )(u1).

IV. ROUGH FUZZY SUBSTRUCTURES IN QUANTALE
MODULE BY SOFT RELATIONS
By using two distinct quantale modules, we are considering
STCR in the following section. The fuzzy substructures of
quantale module 2 are taken and approximated by aftersets
to produce the fuzzy substructures of 1. Furthermore, the
lower and upper approximation of fuzzy substructures of 1
by foresets gives fuzzy substructures of 2.
Definition 16: Let Q be a quantale and 1 be Q− module

and η beFsst of 1. Then η is said to be fuzzyQ− submodule,
if for any ∈ 1 and ∈Q, the followin hold :

1) η (∨i∈I i) ≥ ∧i∈Iη ( i)

2) η ( 1 ) ≥ η(e).
Definition 17: Let Q be a quantale and 1 be Q− module

and η be Fsst of . η is said to be fuzzy Q− submodule ideal,
if the following conditions hold:
1) ≤ ⇒ η ( ) ≤ η

( )
;

2) η
( ∨ )

≥ η ( )
∧

η( );
3) η ( 1 ) ≥ η(e) ∀ , ∈ 1, ∈Q.

Definition 18: Let
(

, G
)
be a STBR from 1 to 2 and β

be a non-empty Fsst of 2. Then β is termed as generalized
upper rough (GUR) fuzzy quantale sub-module (URF QSM )
of 1 w.r.t aftersets if UPAP(

β
, G) is a F QSM of 1.

Definition 19: Let
(

, G
)
be a STBR from 1 to 2 and β

be a non-empty Fsst of 2. Then β is termed as generalized
upper rough (GUR) fuzzy left (right) QID (quantale sub-
module ideal) of 1 w.r.t aftersets if UPAP(

β
, G) is fuzzy

left (right) QID of 1.
Definition 20: Let

(
, G

)
be a STBR from 1to 2 and µ

be a non-empty Fsst of 1. Then µ is termed as generalized

upper rough (GUR) fuzzy quantale sub-module (URF QSM )
of 2 w.r.t foresets if UPAP(µ ,G) is F QSM of 2.
Definition 21: Let

(
, G

)
be a STBR from 1 to 2 and µ

be a non-empty of Fsst 1. Then µ is termed as generalized
upper rough (GUR) fuzzy left (right) QID (quantale sub-
module ideal) of 2 w.r.t foresets ifUPAP(µ ,G) is fuzzy left
(right) QID of 2.
Theorem 5: Let

(
, G

)
be a STCR and β be a FQSM of

2. Then β is a GUR FSTQSM of 1 w.r.t aftersets.
Proof: As β is a FQSM of 2. So, we have β

(∨
i∈I i

)
≥∧

i∈Iβ ( i) and β ( 2 ) ≥ β ( ) ∀ ∈Q and , i ∈ 2.

Since ( , G) be a STCR so, we have (u)∨ (u) ⊆

( ∨ ) (u) for all u∈G and , ∈ 1.

Let i ∈ 1 for some i ∈ I . Then∧
i∈I

β
(u) ( i)

=
β
(u) ( 1) ∧

β
(u) ( 2) , . . . ,

β
(u) ( i)

=

( ∨
1∈ 1 (u)

β ( 1)
)

∧

(∨
2∈ 2 (u)

β ( 2)
)

∧, . . . ,∧
( ∨

i∈ i (u)
β( i)

)
=

∨
1∈ 1 (u),... i∈ i (u)

[β ( 1) ∧β ( 2) ∧, ..,∧β( i)]

=

∨
1∨ 2∨,...,∨ i∈ 1 (u)∨ 2 (u)∨,...,∨ i (u)

[∧
i∈Iβ( i)

]
=

∨
∨i∈I i ∈ ( 1∨ 2∨,...,∨ i) (u)

[
∧
i∈Iβ( i)]

=

∨
∨i∈I i∈ ∨i∈I i (u)

[
∧
i∈Iβ( i)]

≤

∨
∨i∈I i∈∨i∈I i (u)

β(
∨
i∈I ( i))

=

∨
c ∈ ∨i∈I i (u)

β(c)

=
β
(u)(∨i∈I i)

Hence
β
(u) (∨i∈I i) ≥

∧
i∈I

β
(u)( i) ∀ i ∈ 1 and for

all u∈G.

As ( , G) be a STCR. So, we have (u) 2
(u)⊆( 1 ) (u) ∀ ∈Q, ∈ 1 and for all u∈G.

Consider ∈Q, ∈ 1 and
β
(u) ( ) =

∨
∈ (u)

β( )

≤

∨
∈ (u)

β( 2 )

=

∨
2 ∈ 2 (u)

β( 2 )

≤

∨
2 ∈( 1 ) (u)

β( 2 )

=

∨
c∈( 1 ) (u)

β(c)

=
β
(u)( 1 )

Hence
β
(u) ( 1 ) ≥

β
(u) ( ) ∀ ∈Q, ∈ 1. Thus,

β
(u) is a FQSM of 1. Consequently β is a GUR FSTQSM

of 1 w.r.t aftersets.
Theorem 6: Let

(
, G

)
be a STCR and µ be a FQSM of

1. Then µ is a GUR FSTQSM of 2 w.r.t foresets.

145904 VOLUME 11, 2023



S. M. Qurashi et al.: Rough Fuzzy Substructures of Quantale Module Under Soft Relations

FIGURE 3. (a) Description of Q1 (b) Description of Q2.

TABLE 7. Left action subject to 1.

TABLE 8. Left action subject to 2.

Proof: The proof is obvious.
Now we consider an Example for our better understanding

to show that converse of Theorem 5 and 6 is not true.
Example 4: Assume Q1 = {L, , , T} and Q2 =

{L′, ′, ′, ′ , T′
} be two complete lattices as shown in

Fig. 3(a) and Fig. 3(b), respectively. Then 1 and 2 on Q1
and Q2 are associative binary operations defined as :

1) a 1b = a ∧ b
2) a 2b = L′

Then Q1 and Q2 are quantales by 1 and 2 , respectively
and 1 and 2 are quantale modules by Table 5 and Table 6.
Consider G = {u1, u2} and : G −→ P

(
1 ×M2

)
be

defined by:

(u1) =


(
L,L′

)
,
(

, ′
)
,
(

, ′
)
,
(
L, ′

)
,
(
L, ′

)(
L, ′

)
,
(
T,T′

)
,
(
L,T′

)
,
(

, T′
)(

, ′
)
, (T,L′), ( , L′), ( ,L′)


(u2) =

{
(T,L′), ( , ′), ( , ′), (T, ′), ( , ′)

( , ′), (L, ′), (L, ′), (L, ′)

}
Then ( , G) is a STCR. Aftersets w.r.t (u1) and u2) are as
follows :

L (u1) =
{
L′, ′, ′, ′, T′

}
, (u1) = {L′, ′, ′

},

(u1) =
{
L′, ′, T′

}
, T (u1) =

{
L′, T′

}
L (u2) = {

′, ′, ′
}, (u2) = {

′, ′
}

(u2) = {
′, ′

}, T (u2) =
{
L′, ′

}
.

Let β : 2 → [0, 1] be defined by,

β =
1
L′

+
0.5

′
+

0.4
′

+
0.3

′
+

0.2
T′

Then β is not a FQSM of 2 . However,

β
(u1) =

1
L

+
1

+
1

+
1
T

β
(u2) =

0.5
L

+
0.5

+
0.4

+
1
T

This shows that
β
(u1) and

β
(u2) are FQSM of 1 but β

is not a FQSM of 2.

Hence β isgeneralized upper rough FSTQSM of 1 w.r.t
aftersets.

Foresets w.r.t (u1) and (u2) are as follows:
(u1) L′

= {L, , , T} , (u1) ′
= { L, } , (u1) ′

=

{L, , }, (u1) ′
= {L}, (u1)T′

= {L, , T}

(u2)L′
= {T}, (u2) ′

= { L, }, (u2) ′
=

{L, }, (u2) ′
= {L, , , T}, (u2) T′

= f.
Let µ : 1 → [0, 1] be defined by,

µ =
1
L

+
0.5

+
0.7

+
0.3
T

Then µ is not a FQSM of 1. However,

µ (u1) =
1
L′

+
1
′
+

1
′
+

1
′
+

1
T′

µ (u2) =
0.3
L′

+
1
′
+

1
′
+

1
′
+

0
T′

This shows that µ (u1) and µ (u2) are FQSM of 2 but µ is
not a FQSM of 1.

Hence µ is GUR, FSTQSM of 2 w.r.t foresets.
Definition 22: Let

(
, G

)
be a STBR from 1 to 2 and β

be a non-empty Fsst of 2. Then β is termed as generalized
lower rough fuzzy quantale sub-module (LRF QSM ) of 1
w.r.t aftersets if LOAP(

β
, G) is a F QSM of 1.

Definition 23: Let
(

, G
)
be a STBR from 1 to 2 and β

be a non-empty Fsst of 2. Then β is termed as generalized
lower rough (GLR) fuzzy left (right) QID (quantale sub-
module ideal) of 1 w.r.t aftersets if LOAP(

β
, G) is fuzzy

left (right) QID of 1.
Definition 24: Let

(
, G

)
be a STBR from 1 to 2 and

µ be a non-empty Fsst of 1. Then µ is termed as gener-
alized lower rough (GLR) fuzzy quantale sub-module (LRF
QSM ) of 2 w.r.t foresets if LOAP(µ ,G) is F QSM of 2.
Definition 25: Let

(
, G

)
be a STBR from 1 to 2 and µ

be a non-empty of Fsst 1. Then µ is termed as generalized
lower rough (GLR) fuzzy left (right) QID (quantale sub-
module ideal) of 2 w.r.t foresets if LOAP(µ ,G) is fuzzy left
(right) QID of 2.
Theorem 7: Let ( , G) be a STCMR and β be a FQSM of
2. Then β is a GLR FSTQSM of 1 w.r.t aftersets.
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Proof: As β is a FQSM of 2. So, we have β
(∨
i∈I i

)
≥∧

i∈Iβ ( i) and β ( 2 ) ≥ β ( ) ∀ ∈Q and , i ∈ 2.

Since ( , G) be a STCMR. So, we have (u)∨ (u) =

( ∨ ) (u) for all u∈G and g, ∈ 1. Let i ∈ 1 for some,
i ∈ I . Consider

β (u)
(∨
i∈I i

)
=

∧
∈(∨i∈I i) (u)

β( )

=

∧
∈ 1 (u) ∨ 2 (u) ∨, . . . ,∨ i (u)

β( )

Since ∈ 1 (u) ∨ 2 (u)∨, . . . ,∨ i (u) so there have
1 ∈ 1 (u), 2 ∈ 2 (u), . . . , i ∈ i (u) such that
=

∨
i∈I i. Hence,

β (u)
(∨
i∈I i

)
=

∨
i∈I i ∈ 1 (u) ∨ , . . . ,∨ i (u

∧
β(

∨
i∈I i)

≥

∨
i∈I i ∈ 1 (u) ∨ 2 (u)∨, . . . ,∨ i (u

∧∧
i∈I

β( i)

=

∧
1∈ 1 (u),,..., i∈ i (u)

[β ( 1) ∧ β ( 2) ∧, . . . ,∧ β( i)]

=

( ∧
1∈ 1 (u)

β( 1)
)

∧

( ∧
2∈ 2 (u)

β ( 2)
)

∧, . . . ,∧
( ∧

i∈ i (u)
β( i)

)
=

β (u) ( 1) ∧
β (u) ( 2) ∧, . . . ,∧

β (u) ( i)

=

∧
i∈I

β (u)( i)

Hence β (u) (∨i∈I i) ≥

∧
i∈I

β (u)( i) ∀ i ∈ 1 and for
all u∈G. As ( , G) be a STCMR. So, we have 2 (u) =

( 1 ) (u) ∀ ∈Q, ∈ 1 and for all u∈G.

Consider ∈Q, ∈ 1 and

β (u) ( 1 ) =

∧
∈( 1 ) (u)

β( )

=

∧
∈ 2 (u)

β( )

As w∈ 2 (u), so there have ∈ (u) such that =

2 .

β (u) ( 1 ) =

∧
2 ∈ 2 (u)

β( 2 )

≥ 2 ∈ 2 (u)
∧

β( )

=

∧
∈ (u)

β( )= β (u) ( )

Hence, β (u) ( 1 ) ≥
β (u) ( ) ∀ ∈Q, ∈ 1. Thus,

β (u) is a FQSM of 1. Consequently, β is a GLR FSTQSM
of 1 w.r.t aftersets.
Theorem 8: Let ( , G) be a STCMR and µ be a FQSM of
1. Then µ is a GLR, FSTQSM of 2 w.r.t foresets.
Proof:The proof is obvious.
Now we consider an Example for our better understanding

to show that converse of Theorem 7 and 8 are not true.

Example 5: Consider the quantale modules in Example
IV.9. Let G = {u1, u2} and : G →P( 1 × 2) be defined
by,

(u1) =


(
L,L′

)
,
(
L, ′

)
,
(
L, ′

)
,
(
L, ′

)
,
(

,L′
)
,

( , ′), ( , ′), ( , ′)( ,L′), ( , ′),(
, ′

)
,
(

, ′
)
,
(
T,L′

)
,
(
T, ′

)
,
(
T, ′

)
,

(T, ′)


(u2) =


(
L,L′

)
,
(
L, ′

)
,
(
L, ′

)
,
(

,L′
)
,(

, ′
)
,
(

, ′
)
, ( , L′), ( , ′),

( , ′), (T,L′), (T, ′), (T, ′)


Now, aftersets w.r.t (u1) and (u2) are given below;

L (u1) =
{
L′, ′, ′, ′

}
, (u1) = {L′, ′, ′, ′

}

(u1) =
{
L′, ′, ′, ′

}
, T (u1) = {L′, ′, ′, ′

}

L (u2) = {L′, ′, ′
}, (u2) = {L′, ′, ′

}

(u2) = {L′, ′, ′
}, T (u2) =

{
L′, ′, ′

}
.

Then ( , G) is a STCMR w.r.t aftersets.
Define β : 2 → [0, 1] by,

β =
1
L′

+
0.7

′
+

0.5
′

+
0.3

′
+

0.8
T′

Then β is not a FQSM of 2. But

β (u1) =
0.3
L

+
0.3

+
0.3

+
0.3
T

β (u2) =
0.3
L

+
0.3

+
0.3

+
0.3
T

This shows that β (u1) and
β (u2) are FQSM of 1.

Hence β is generalized lower rough FSTQSM of 1 w.r.t
aftersets.

Now define : G →P( 1 × 2). Then

(u1) =

{
(L,L′), (L, ′), (L, ′), (L, ′), (L,T′)
( ,L′), ( , ′), ( , ′), ( , ′), ( ,T′)

}
(u2) =

{
(L,L′), (L, ′), (L, ′), (L, ′), (L,T′)
( ,L′), ( , ′), ( , ′), ( , ′), ( ,T′)

}
Now, foresets w.r.t 0(u1) and 0(u2) are as follows :

(u1) L′
= { L, } , (u1) ′

= { L, } , (u1) ′
=

{ L, } , (u1) ′
= { L, }, (u1)T′

= { L, }

(u2)L′
= { L, }, (u2) ′

= { L, }, (u2) ′
=

{ L, }, (u2) ′
= { L, }, (u2) T′

= { L, } .

Then ( , G) is a STCMR wr.t foresets.
Define µ : 1 → [0, 1] by,

µ =
1
L

+
0.4

+
0.5

+
0.3
T

Then µ is not a FQSM of 1. But

µ (u1) =
0.4
L′

+
0.4

′
+

0.4
′

+
0.4

′
+

0.4
T′

µ (u2) =
0.5
L′

+
0.5

′
+

0.5
′

+
0.5

′
+

0.5
T′

Thus µ (u1) and µ (u2) are FQSM of 2. Hence, µ is GLR,
FSTQSM of 2 w.r.t foresets.
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Proposition 1: Let ( , G) be a STCR. Let β be a Fsst of
2. Then for each α∈[0, 1], the following hold:

(
β
(u))α =

βα
(u);

( β (u))α =
βα (u);

Proof: 1. Let ∈(
β
(u))α ⇐⇒

β
(u)( )≥α ⇐⇒∨

∈ (u)
β( )≥α ⇐⇒ β( )≥α for some ∈ (u)⇐⇒

(u)
⋂

βα ̸= ⇐⇒ ∈
βα
(u).

2. Let ∈( β (u))α ⇐⇒
β (u)( )≥α ⇐⇒∧

∈ (u)
β(a)≥α ⇐⇒ β( )≥α for all ∈ (u)⇐⇒ (u)

⊆βα ⇐⇒ ∈
βα (u).

Remark 1: The Proposition 1 also holds w.r.t foreset.
Theorem 9: Let β be a FQSM of 2 and ( , G) be a

STCMR. Then β (u), [
β
(u)] is a FSTQSM of 1 w.r.t

aftersets if and only if for each α∈[0, 1], βα (u), [
βα
(u)

where βα ̸=φ], is a FQSM of 1 for all u∈G.
Proof:1. Let β (u) is a FSTQSM of 1 and ρi ∈

βα (u)
for some i ∈ I . Then β (u) (ρi) ≥ α ∀i ∈ I . But β (u) is a
FSTQSM . So, we have β (u)

(
∨
i∈Iρi

)
≥

∧
i∈I

β (u) (ρi) ≥ α this
implies that β (u)

(
∨
i∈Iρi

)
≥ α.Consequently, ∨i∈Iρi ∈

βα (u).
2. Let ρ ∈

βα (u) and ∈Q, then β (u) (ρ) ≥ α. Since
β (u) is aFSTQSM .So, we have β (u) ( 1ρ) ≥

β (u) (ρ) ≥

α H⇒
β (u) ( 1 ρ) ≥ α. Consequently, 1ρ ∈

βα (u).
Hence, βα (u) is a FQSM of 1 for all u∈G.

Converse part is obvious.
Theorem 10: Let

(
, G

)
be a STCMR and β be a FQID of

2. Then β is a GUR, FSTQID of 1 w.r.t aftersets.
Proof: 1. As β is a FQID of 2. So, we have β

(
∨

)
=

β ( ) ∧ β
( )

and β ( 2 ) ≥ β ( ) ∀ ∈Q, , ∈ 2.

Since ( , G) be a STCMR. So, we have (u)∨ (u) =

( ∨ ) (u) for all u∈G and , ∈ 1. Consider,
β
(u) ( ∨ ) =

∨
∈ ( ∨ ) (u)

β( )

=

∨
∈ (u)∨ (u)

β( )

Since ∈ (u)∨ (u), so there is ∈ (u)and ∈ (u)
such that = ∨ . Consequently,

β
(u) ( ∨ ) =

∨
∨ ∈ (u)∨ (u)

β( ∨ )

=

∨
∨ ∈ (u)∨ (u)

[
β( )∧β( )

]
=

[ ∨
∈ (u)

β ( )
]
∧

[ ∨
∈ (u)

β
( )]

=
β
(u) ( ) ∧

β
(u) ( )

Hence
β
(u) ( ∨ ) =

β
(u) ( )∧

β
(u) ( ) ∀ , ∈ 1

and ∀ u∈G.

2. As
(

, G
)
be a STCMR. So, we have (u) 2 (u) =

( 1 ) (u) ∀ ∈Q, ∈ 1 and ∀ u∈G.

Consider ∈Q, ∈ 1 and
β
(u) ( ) =

∨
∈ (u)

β( )

≤

∨
∈ (u)

β( 2 )

=

∨
2 ∈ 2 (u)

β( 2 )

=

∨
2 ∈( 1 ) (u)

β( 2 )

=

∨
c∈( 1 ) (u)

β(c)=
β
(u)( 1 )

Hence
β
(u) ( 1 ) ≥

β
(u) ( ) ∀ ∈Q, ∈ 1. Thus,

β
(u) is a FQID of 1. Consequently, β is a GUR, FSTQID

of 1 w.r.t aftersets.
Theorem 11: Let

(
, G

)
be a STCMR and µ be a FQID of

1. Then µ is a GUR, FSTQID of 2 w.r.t foresets.
Proof:The proof is obvious.
Now we consider an Example for our better understanding

to show that converse of Theorem 10 and 11 is not true.
Example 6: Consider the quantale modules in Example

III.7 Let G = {u1, u2} and : G →P( 1 × 2) be defined
by :

(u1) =


(
L, L′

)
,
(
L,

)
, (L, ) ,

(
L,T′

)
,(

, L′
)
,
(

,
)
, ( , ) , ( ,T′),

(T, L′), (T, ), (T, )(T,T′)


(u2) =

{
(L, L′), (L, ), (L,T′), ( , L′), ( , )

( ,T′), (T, L′), (T, ), (T,T′)

}
Now, the aftersets in terms of (u1) and (u2) are as follows;

L (u1) = {L′, , , T′
}, (u1) = {L′, , , T′

}

T (u1) = {L′, , , T′
}

L (u2) =
{
L′, , T′

}
, (u2) =

{
L′, , T′

}
T (u2) =

{
L′, , T′

}
.

Then
(

, G
)
is a STCMR w.r.t aftersets.

Let β : 2 → [0, 1] be defined by,

β =
0.4
L′

+
0.7

+
0.6

+
0.2
T′

Then β is not a FQID of 2 .But

β
(u1) =

0.7
L

+
0.7

+
0.7
T

β
(u2) =

0.6
L

+
0.6

+
0.6
T

This shows that
β
(u1) and

β
(u2) are FQID of 1 but β is

not a FQID of 2.

Hence β is GUR, FSTQID of 1 w.r.t aftersets.
Now define : G →P( 1 × 2) by :

(u1) =

{
(L, L′), ( ,L′), (L, ), ( , )
(L, ), ( , ), (L,T′), ( ,T′)

}
(u2) =

{
( , L′), (T,L′), ( , ), (T, )
( , ), (T, ), ( ,T′), (T,T′)

}
Now, foresets w.r.t (u1) and (u2) are as follows :

(u1) L′
= {L, } , (u1) = {L, } , (u1) = {L, }
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and (u1)T′
= {L, }

(u2) L′
= { , T} , (u2) = { , T} , (u2)

= { ,T } and (u2) T′
= { , T} .

Then ( , G) is a STCMR wr.t foresets.
Let µ : 1 → [0, 1] be defined by,

µ =
0.6
L

+
0.4

+
1
T

Then µ is not a FQID of 1. But

µ (u1) =
0.6
L′

+
0.6

+
0.6

+
0.6
T′

µ (u1) =
1
L′

+
1

+
1

+
1
T′

This shows that µ (u1) and µ (u2) are FQID of 2 but µ is
not a FQID of 1.

Hence, µ is GUR, FSTQID of 2 w.r.t foresets.
Theorem 12: Let ( , G) be a STCMR and β be a FQID of
2. Then β is a GLR, FSTQID of 1 w.r.t aftersets.
Proof: 1. As β is a FQID of 2. So, we have

β( ∨ )≥β( )∧β( )andβ
(

2
)

≥ β
( )

∀ ∈Q, , ∈ 2.

Since ( , G) be a STCMR. So, we have (u)∨ (u) =

( ∨ ) (u)forallu∈Gand , ∈ 1. Consider

β (u) ( ∨ ) =

∧
∈ ( ∨ ) (u)

β ( )

=

∧
∈ (u)∨ (u)

β( )

Since, ∈ (u)∨ (u), so there is ∈ (u) and ∈ (u)
such that = ∨ . Consequently

β (u) ( ∨ )

=

∧
∨ ∈ (u)∨ (u)

β( ∨ )

=

∧
∨ ∈ (u)∨ (u)

[
β( )∧β( )

]
=

[ ∧
∈ (u)

β( )
]

∧

[ ∧
∈ (u)

β( )
]

=
β (u) ( ) ∧

β (u) ( )

Hence, β (u) ( ∨ ) =
β (u) ( ) ∧

β (u) ( ) ∀ , ∈ 1
and ∀ u∈G.

2. As ( , G) be a STCMR. So, we have 2 (u) =

( 1 ) (u) ∀ ∈Q, ∈ 1 and ∀ u∈G.

Consider ∈Q, ∈ 1 and

β (u) ( 1 ) =

∧
∈( 1 ) (u)

β( )

=

∧
∈ 2 (u)

β( )

As ∈ 2 (u), so there have ∈ (u) such that = 2 .

β (u) ( 1 ) =

∧
2 ∈ 2 (u)

β( 2 )

≥

∧
2 ∈ 2 (u)

β( )

=

∧
∈ (u)

β( )= β (u) ( )

Hence, β (u) ( 1 ) ≥
β (u) ( ) ∀ ∈Q, ∈ 1. Thus,

β (u) is a FQID of 1. Consequently, β is a GLR, FSTQID
of 1 w.r.t aftersets.
Theorem 13: Let ( , G) be a STCMR and µ be a FQID of
1. Then µ is a GLR, FSTQID of 2 w.r.t foresets.
Proof: The proof is clear.
Theorem 14: Let β be a FQID of 2 and ( , G) be a

STCMR. Then β (u) [
β
(u)] is a FSTQID of 1 w.r.t aftersets

if and only if for eachα∈[0, 1], βα (u), [
βα
(u) whereβα ̸=φ]

is an FQID of 1 for all u∈G.

Proof: Let β (u) is a FSTQID of 1.
1. Let , q ∈

βα (u). Then β (u)( )≥α and β (u) ( ) ≥

α. Since β (u) is a FSTQID of 1. So, we have
β (u) ( ∨ ) =

β (u) ( ) ∧
β (u) ( ) ≥ α H⇒

β (u) ( ∨ ) ≥ α. Consequently, ∨ ∈
βα (u).

2. Let ρ ∈
βα (u) and ∈Q, Then β (u) (ρ) ≥ α. Since

β (u) is a FSTQID, So, we have
β (u) ( 1ρ) ≥

β (u) (ρ) ≥

α H⇒
β (u) ( 1 ρ) ≥ α. Consequently, 1ρ ∈

βα (u). With similar arguments, we have ρ 1 ∈
βα (u).

Hence, βα (u) is a FQID of 1 for all u∈G.

Conversely, let βα (u) is a FQID of 1.
1. Let , ∈ 1.
Consider

β (u) ( ∨ t) =

∧
∈ ( ∨t) (u)

β(d)

=

∧
d ∈ (u)∨t (u)

β(d).

Since, ∈ (u)∨ (u), so there have ∈ (u)and ∈ (u)
such that = ∨ .

Consequently,
β (u) ( ∨ ) =

∧
∨ ∈ (u)∨ (u)

β( ∨ )

=

∧
∨ ∈ (u)∨ (u)

[
β( )∧β( )

]
=

[ ∧
∈ (u)

β( )
]

∧

[ ∧
∈ (u)

β( )
]

=
β (u) ( ) ∧

β (u) ( )

Hence, β (u) ( ∨ t) =
β (u)(s)∧ β (u)(t) ∀ , ∈ 1 and

∀ u∈G. 2. As ( , G) be a STCMR. So, we have 2 (u) =

( 1 ) (u) ∀ ∈Q, ∈ 1 and ∀ u∈G.

Consider ∈Q, ∈ 1 and
β (u) ( 1 ) =

∧
∈( 1 ) (u)

β( )

=

∧
∈ 2 (u)

β( )

As ∈ 2 (u), so there is ∈ (u) such that = 2 .
β (u) ( 1 ) =

∧
2 ∈ 2 (u)

β( 2 )

≥ 2 ∈ 2 (u)
∧

β( )

=

∧
∈ (u)

β( ) =
β (u) ( )

Hence β (u) ( 1 ) ≥
β (u) ( ) ∀ ∈Q, ∈ 1. Thus,

β (u)
is a FSTQID of 1.
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V. HOMOMORPHISM PROBLEMS ON GENERALIZED
ROUGH FUZZY SUBSTRUCTURES
Some interesting problems on homomorphism of quantale
module are introduced here by using rough fuzzy soft sub-
structures of quantale modules.
Definition 26 [1]: Consider

(
1 , 1

)
and

(
2 , 2

)
be

two Q− modules. A map H : 1 −→ 2 is called a weak
Q− module homomorphism

(
W H

)
if

1) H ( ∨ h̄) = H ( ) ∨ H(h̄) ;

2) H (λ 1 ) = λ 2 H ( ) .

for all λ∈Q and , ∈̄ 1.

We say a weak quantale homomorphism H : 1 −→ 2
is said to be an epimorphism if H is on to 2 if H is one-one
then it is called called a monomorphism. If H is bijective,
then it is called an isomorphism.
Lemma 1: Let H : 1 −→ 2 be a surjec-

tive W H and ( 2, G) be a STBR on 2. Set
1(u) =

{
( , ) ∈ 1 × 1 : (H ( ) , H ( )) ∈ 2(u)

}
for all u∈G. Then for all u∈G :

1) ( 1, G) is STCR if ( 2, G) is STCR.
2)

(
1, G

)
is STCMR w.r.t aftersets (w.r.t foresets)if (

2, G) is STCMR w.r.t aftersets (w.r.t foresets)and H is
one-one.

3) H(
R

1 (u)) =
H(R)

2 (u)for R⊆ 1.

4) H( R
1(u))⊆

H(R)
2 (u) for all u∈G and if H is one −

one, then H ( R
1(u)) =

H(R)
2 (u).

5) Let H : 1 −→ 2 be one-one. Then H ( ) ∈

(
R

1 (u)) ⇐⇒ ∈(
R

1 (u)).
Proof: 1 and 2 are obvious.
3) Let γ∈H(

R

1 (u)) for some γ ∈ 2. Then

there exists ∈ 1 such that ∈
R

1 (u) and H ( ) =

γ. Since, ∈
R

1 (u) H⇒ 1(u)∩R̸=φ. Thus, there
exists ∈ 1(u)∩R such that ( , ℓ) ∈ 1(u) and ∈R.

This shows that (H ( ) , H (ℓ)) ∈ 2(u)H⇒ H (ℓ) ∈

H ( ) 2(u). Moreover, H (ℓ) ∈H (R) . Thus, H (ℓ) ∈

H ( ) 2(u)∩H (R) ⇒H ( ) 2(u)∩H (R) ̸=φ. Hence, γ =

H ( ) ∈
H(R)

2 (u). Consequently, H(
R

1 (u))⊆
H(R)

2 (u).

Conversely, let ∈
H(R)

2 (u).Then 2(u)∩H (R) ̸=φ,

so, there exists ∈ 2(u)∩H (R) such that ( , ) ∈ 2(u)
and ∈H (R) . Since, H is onto so there is ∈R and

∈ 1 such that = H ( ) and = H ( ) . Thus,
(H ( ) , H ( )) = ( , ) ∈ 2(u) H⇒ ( , ) ∈ 1(u).
This implies that ∈ 1(u)

⋂
R.

So, we have ∈
R

1 (u). i.e., = H ( ) ∈H(
R

1 (u)).

Cconsequently,
H(R)

2 (u)⊆H(
R

1 (u)). Hence, H(
R

1 (u)) =
H(R)

2 (u) for all u∈G.

4. Let ∈H( R
1(u)) for all u∈G. Then there exists

∈
R
1(u) such that 1(u)⊆R and H ( ) = . Let

∈ 2(u). Then there is ∈ 1 such that H ( ) =

, and H ( ) ∈H ( ) 2(u), i.e., (H ( ) , H ( )) ∈

2(u). Hence, ( , ) ∈ 1(u). i.e., ∈ 1(u)⊆R and
so H ( ) ∈H (R) and 2(u)⊆H (R) . This shows that

∈
H(R)
2 (u). Hence, H( R

1(u))⊆
H(R)
2 (u) for all u∈G.

Now ∈
H(R)
2 . Then there exists ℓ∈ 1 such that

H (ℓ) = and H (ℓ) 2(u)⊆H (R) . Let ∈ℓ 1(u),
i.e., (ℓ, ) ∈ 1(u). Then (H (ℓ) , H ( )) ∈ 2(u). i.e.,
H ( ) ∈H (ℓ) 2(u)⊆H (R) , and so ∈R Thus, ℓ 1(u)⊆R,

which gives ℓ∈
R
1(u).Hence = H (ℓ) ∈H( R

1(u)).Conse-
quently, H(R)

2 ⊆H( R
1(u)) for all u∈G.

5. Let x∈
R

1(u) for all u∈G. Then H ( ) ∈H(
R

1(u)) for

all u∈G. Conversely, suppose that H ( ) ∈H(
R

1(u)). Then

there is ′
∈

R

1 (u) such that H ( ) = H
(

′
)
. Since H is

one-one, we get x =
′
∈

R

1 (u).
Theorem 15: Let H be a surjective W H and

(
2, G

)
be

a STCR w.r.t aftersets on 2. Set

1 (u) =
{
( , ) ∈ 1 × 1 : (H ( ) , H ( )) ∈ 2 (u)

}
for all u∈G. Then for all φ ̸=R⊆ 1 and u∈G, the following
hold;

1)
R

1 (u)is QSMof 1 if and only if
H(R)

2 (u)is QSM
of 2for all u∈G.

2)
R

1 (u)is QIDof 1 if and only if
H(R)

2 (u) is QID of
2 for all u∈G.

Proof: 1. Let
R

1 (u) is QSM of 1 for all u∈G. Then we

have to show that
H(R)

2 (u) is QSM of 2 for all u∈G. By

Lemma 1(5), we haveH(
R

1(u)) =
H(R)

2 (u) forR⊆ 1 and
for all u∈G.

(i) Let γj∈H(
R

1(u)) and for all u∈G and for all j ∈ J .

Then µj ∈
R

1 (u) be such that H(µj) = γj. Since
R

1 (u)

is QSM . So, we have
∨
j∈Jµj ∈

R

1 (u). Then by Lemma

1(5), we have H(
∨
j∈Jµj) ∈H(

R

1(u)). Since H is W H .

So, we have
∨
j∈JH(µj) = H(

∨
j∈Jµj) ∈H(

R

1(u)). Hence,∨
j∈JH

(
µj

)
∈H(

R

1(u)). Consequently,
∨
j∈Jγj∈H(

R

1(u)).

(ii) Let ∈Q and ∈H(
R

1(u)). Then there is ∈
R

1 (u)

such that H ( ) = . Since
R

1 (u) is an QSM of 1.

So, we have 1 ∈
R

1 (u). By Lemma 1(5), we have

H( 1 )∈H(
R

1(u)). Since H is W H . So, we have

2H ( ) = H( 1 )∈H(
R

1(u)). This implies that

2 = 2H( )∈H(
R

1(u)). Hence 2 ∈H(
R

1(u)).

With similar arguments, we have 2 ∈H(
R

1(u)). Thus,

H(
R

1(u)) =
H(R)
2 (u) isQSM of 2 from (i)-(ii) for all u∈G.

Conversely, letH(
R

1 (u)) =
H(R)

2 (u) is anQSM of 2 for
all u∈G.

(i) Let ωj ∈
R

1 (u) for all u∈G. Then H( ωj)∈H(
R

1(u)).

Since H(
R

1(u)) is QSM . So, we have
∨
j∈JH( j)∈H(

R

1(u)).

Since, H is W H . So, we have H(
∨
j∈Jωj) =

∨
j∈J

H
(

j
)
∈H(

R

1 (u)). Hence, H(
∨
j∈Jωj)∈H(

R

1 (u)). Then by

Lemma 1(5), we have
∨
j∈Jωj ∈

R

1 (u).

(ii) Let ∈Q and ∈
R

1 (u). Then by Lemma 1(5),

we have H
( )

∈H(
R

1 (u)).Since H(
R

1 (u)) is QSM of
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2. So, we have 2H
( )

∈H(
R

1 (u)). Since H is

W H . So, we have H
(

1
)

= 2H( )∈H(
R

1 (u)).

Hence, H
(

1
)
∈H(

R

1 (u)). Then by Lemma 1(5),

we have 1 ∈
R

1 (u). With similar arguments, we have

1 ∈
R

1 (u). Thus,
R

1 (u) is QSM of 1 from (i)-(ii) for all
u∈G.

2. Let
R

1 (u) is QID of 1 for all u∈G. We have to show

that
H(R)

2 (u) is QID of 2 for all u∈G. By Lemma 1(5),

we have H(
R

1 (u)) =
H(R)

2 (u) for R⊆ 1 and ∀ u∈G.

(i) Let , ∈H(
R

1 (u)) for all u∈G. Then , ∈
R

1 (u) be

such that H ( ) = , H
( )

= . Since,
R

1 (u) is QID
and H is W H . So, we have ∨ = H ( ) ∨H

( )
=

H
(

∨
)
∈H(

R

1 (u)). Hence, ∨ ∈H(
R

1 (u)).

(ii) Let ≤ ∈H(
R

1 (u)). Then there exist ω1 ∈ 1

and ω2 ∈
R

1 (u) such that = H (ω1) and = H (ω2) .

Since H (ω1) ≤H (ω2) . So, we have H (ω1 ∨ ω2) =

H (ω1) ∨H(ω2) = H(ω2)∈H(
R

1 (u)). By Lemma 1(5),

we have ω1 ∨ ω2 ∈
R

1 (u). Since
R

1 (u) is QID and ω1 ≤

ω1 ∨ ω2, we have ω1 ∈
R

1 (u) and = H (ω1) ∈H(
R

1 (u)).

Hence, ∈H(
R

1 (u)).

(iii) Let ∈Q and ∈H(
R

1 (u)). Then there is ∈
R

1 (u)

such that H ( ) = . Since
R

1 (u) is QID of

1. So, we have 1 ∈
R

1 (u). By Lemma 1(5),

we have H( 1 )∈H(
R

1 (u)). Since H is W H . So,

we have 2H ( ) = H ( 1 ) ∈H(
R

1 (u)). This

implies that 2 = 2H ( ) ∈H(
R

1 (u)). Hence,

2 ∈H(
R

1 (u)). With similar arguments, we have

2 ∈H(
R

1 (u)). Thus, H(
R

1 (u)) =
H(R)
2 (u) is QID of

2 from (i)-(iii) for all u∈G.

Conversely, let H(
R

1 (u)) =
H(R)

2 (u) is QID of 2 for all
u∈G.

(i) Let , 2 ∈
R

1 (u) for all u∈G. Then H ( 1) , H ( 2)

∈H(
R

1 (u)). Since H(
R

1 (u)) is an QID. So, we have

H ( 1 ∨ 2) = H ( 1) ∨H ( 2) ∈H(
R

1 (u)). Then by

Lemma 1(5), we have ∨ 2 ∈
R

1 (u).

(ii) Let 1 ≤ 2 ∈
R

1 (u), then H ( 1) ≤H ( 2) ∈

H(
R

1 (u)). Since H(
R

1 (u)) is QID. So, we have H ( 1) ∈

H(
R

1 (u)). Thus, by Lemma V. 2(5), we have 1 ∈
R

1 (u). (iii) Let ∈Q and ∈
R

1 (u). Then by Lemma V.

2(5), we have H
( )

∈H(
R

1 (u)). Since H(
R

1 (u)) is QID

of 2. So, we have 2H
( )

∈H(
R

1 (u)). Since H is

W H . So, we have H
(

1
)

= 2H( )∈H(
R

1 (u)).

Hence, H
(

1
)
∈H(

R

1 (u)). Then by Lemma 1(5),

we have 1 ∈
R

1 (u). With similar arguments, we have

1 ∈
R

1 (u).

Thus,
R

1 (u) is QID of 1 from (i)-(iii) for all u∈G.

Proposition 2: Let H be a surjective W H and
(

2, G
)

be a STCR on 2. Set 1 (u) =
{
( , ) ∈ 1 × 1 :

(H ( ) , H ( )) ∈ 2 (u)
}

For all u∈G. Then for all φ ̸=R⊆ 1 and for all u∈G, we
have

1) R
1 (u) is QSM of 1 if and only if H(R)

2 (u) is QSM
of 2.

2) R
1 (u)is QID of 1 if and only if H(R)

2 (u) is QID
of 2.

Proof: The proof is simple and like Theorem 15.
Theorem 16: Let F : 1 −→ 2 be a surjective W H

and
(

2, G
)
be a STCR on 2 and µ be a Fsst of 1. Set

1(u) =
{
( , ) ∈ 1 × 1 : (F ( ) , F ( )) ∈ 2(u)

}
Then following hold for all u∈G :

1)
β

1 (u) is FQID of 1 if and only if
F(β)

2 (u) is FQID
of 2;

2)
β

1 (u) is FQSM of 1 if and only if
F(β)

2 (u) is FQSM
of 2. where

F (µ) ( ) =


∨

∈F−1( )

µ ( ) if F ( ) ̸=φ ∀ ∈ 2

0 otherwise

Proof: 1. Note that (F (β))α+ = F (βα+) for each α ∈

[0, 1] , also
(

β

1 (u)
)

α+
̸=φ if and only if

(F(β))α+

2 (u)̸=φ. Let
β

1 (u) is a FQID of 1, then
(F(β))α+

2 (u)̸=f if
βα+

1 (u)̸= for

all α ∈ [0, 1] .By Theorem IV.26, we have
βα+

1 (u) is a FQID

of 1.Also, by using Proposition 1, we obtain
(

β

1 (u)
)

α+
is a

FQID of 1.Now by Theorem 15 and Proposition 1, we have
(F(β))α+

2 (u) =

(
F(β)
2 (u)

)
α+

=
F(βα+)
2 (u) is FQID of 2.

Thus, by Theorem IV.26, we have
F(β)

2 (u) is a FQID of 2.

Conversely, suppose
F(β)

2 (u) is a FQID of 2. By The-

orem IV.26 and Proposition 1, we have
(F(β))α+

2 (u) =(
F(β)
2 (u)

)
α+

=
F(βα+)
2 (u) is an FQID of 2. Thus, from

Theorem V. 3, we have
βα+

1 (u) is a QID of 1. Hence by

Theorem 14, we have
β

1 (u) is a FQID of 1.

Theorem 14 provides a proof for 2 that is similar.
Theorem 15 provides similar proof for the following

Proposition.
Proposition 3: Let

(
2, G

)
be a STCRw.r.t aftersets on 2

and β be a Fsst of 2. Let F : 1 −→ 2 be a surjective
W H . Set

1(u) =
{
( , ) ∈ 1 × 1 : (F ( ) , F ( )) ∈ 2(u)

}
Then following hold for all u∈G;

1) β

1 (u) is an FQID of 1 if and only if F(β)
2 (u)

is a FQID of 2;

2) β

1 (u) is an FQSM of 1 if and only if F(β)
2 (u)

is a FQSM of 2.
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VI. APPLICATION IN DECISION-MAKING PROBLEM
In this section, soft binary relations-based decision-making
techniques are suggested. They are based on fuzzy soft rough
set theory. With this method, decision-makers’ data can be
used and no more information is needed. As a result, the
outcomes should avoid the paradoxical outcomes.
Algorithm 1:
Here, with respect to aftersets, is a description of an

algorithm for the solution of a decision-making problem.
Following is the decision-making algorithm:
1) Determine the lower fuzzy soft set approximation β

and upper fuzzy soft set approximation
β
of the fuzzy

set β w.r.t aftersets ;

2) Determine the sum. That is sum of lower approxima-

tion
3∑
i=1

β
(ui) (yj) and the sum of upper approximation∑3

i=1
β

(ui) (yj) corresponding to each i w.r.t aftersets
;

3) Determine the value that is choice value αj =

3∑
i=1

β
(ui) (yj)+

∑3
i=1

β
(ui) (yj), yj∈U w.r.t aftersets;

4) The best decision is yk = maxj
(
αj

)
;

5) The worst decision is yk = minj
(
αj

)
;

6) If k has more than one value, then select any one of yk1
and yk2 .
Algorithm 2:

Here, with respect to foresets, is a description of an
algorithm for the solution of a decision-making problem.
Following is the decision-making algorithm:
1) Find the approximation that is the lower fuzzy soft set

approximation µ and upper fuzzy soft set approxima-
tion µ of the fuzzy set µ w.r.t foresets ;

2) Find the sum. That is sum of lower approximation∑3
i=1

µ (ui) (yj) and the sum of upper approximation∑3
i=1

µ (ui) (yj) corresponding to each i w.r.t foresets
;

3) Determine the value that is choice value α′
j =∑3

i=1
µ (ui) (yj) +

∑3
i=1

µ (ui) (yj), yj∈U w.r.t fore-
sets ;

4) The best decision is yk = maxj
(
α′
j
)
;

5) The worst decision is yk = minj
(
α′
j
)
;

6) If k has more than one value, then select any one of yk1
and yk2 . by:

Example 7: Suppose Mr. Z wants to buy a refrigerator
for his house. Let 1 = {ℓ1, ℓ2, ℓ3, ℓ4} = the sets of all
available colors and 2 = { 1, 2, 3, 4, 5, 6} =

the models of all colors available and the set of attributes
G = {u1, u2, u3} = the set of brands = u1 = haier, u2 =

dawlance, u3 = pel}. Define : G −→ P
(

1 ×M2
)

(u1)

=


(ℓ1, 1) , (ℓ2, 3) , (ℓ3, 2) , (ℓ3, 6) , (ℓ2, 5) ,

(ℓ4, 5) , (ℓ4, 4) , (ℓ1, 3) , (ℓ1, 2) , (ℓ1, 6) ,

(ℓ1, 5) , (ℓ3, 5) , (ℓ1, 4) , (ℓ2, 4) , (ℓ3, 4)



(u2)

=

 (ℓ4, 6) , (ℓ4, 4) , (ℓ2, 4) , (ℓ3, 5) , (ℓ3, 2) ,

(ℓ1, 3) , (ℓ1, 6) , (ℓ4, 1) , (ℓ2, 1) , (ℓ1, 5) ,

(ℓ1, 2) , (ℓ3, 1) , (ℓ1, 1)


(u3)

=

{
(ℓ1, 5) , (ℓ1, 1) , (ℓ1, 3) , (ℓ1, 6) , (ℓ1, 2) ,

(ℓ2, 5) , (ℓ1, 4) , (ℓ2, 6) , (ℓ2, 2) , (ℓ2, 4)

}
which represents the relation between colors and models
available in brand ui for 1≤i≤3. Then

ℓ1 (u1) = { 1, 2, 3, 4, 5, 6} ,

ℓ2 (u1) = { 3, 4, 5} , ℓ3 (u1) = { 2, 4, 5, 6} ,

ℓ4 (u1) = { 4, 5} ,

ℓ1 (u2) = { 1, 2, 3, 5, 6} , ℓ2 (u2) = { 1, 4} ,

ℓ3 (u2) = { 1, 2, 5} , ℓ4 (u2) = { 1, 4, 6} ,

ℓ1 (u3) = { 1, 2, 3, 5, 6} ,

ℓ2 (u3) = { 1, 4, 5, 6} , ℓ3 (u3) = and ℓ4 (u3) = ,

where ℓi
(
uj

)
represents the models of the colors ℓi available

in brand uj.
Also,

(u1) 1 = {ℓ1} , (u1) 2 = {ℓ1, ℓ3} ,

(u1) 3 = {ℓ1, ℓ2} , (u1) 4 = {ℓ1, ℓ2, ℓ3, ℓ4} ,

(u1) 5 = {ℓ1, ℓ2, ℓ3, ℓ4} , (u1) 6 = {ℓ1, ℓ3} ,

(u2) 1 = {ℓ1, ℓ2, ℓ3, ℓ4} , (u2) 2 = {ℓ1, ℓ3} ,

(u2) 3 = {ℓ1} , (u2) 4 = {ℓ2, ℓ4} ,

(u2) ℓ 5
′
= {ℓ1, ℓ3} , (u2) 6 = {ℓ1, ℓ4} ,

(u1) 1 = {ℓ1} , (u1) 2 = {ℓ1, ℓ2} ,

(u1) 3 = {ℓ1} , (u1) 4 = {ℓ1, ℓ2} ,

(u1) 5 = {ℓ1, ℓ2} , (u1) 6 = {ℓ1, ℓ2} ,

where
(
uj

)
i represents the colors of the models i avail-

able in brand uj.
Define β : 2 → [0, 1] which represents the preference

of the models given by Mr. Z such that

β ( 1) = 0.5, β ( 2) = 0.8, β ( 3) = 1,

β ( 4) = 0.2, β ( 5) = 0.9, β ( 6) = 0.

Define µ : 1 → [0, 1] which represents the preference
of the colors given by Mr. Z such that

µ (ℓ1) = 0.6, µ (ℓ2) = 0.7, µ (ℓ3) = 0.5, µ (ℓ4) = 0.3.

After using the algorithm, take a look at the following table.
Here the choice value αj =

∑3
i=1

β
(ui) (yj) +∑3

i=1
β

(ui) (yj) is calculated w.r.t aftersets and the choice
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TABLE 9. The decision algorithm’s outputs with regard to aftersets.

TABLE 10. The decision algorithm’s outputs with regard to foresets.

value α′
j =

∑3
i=1

µ (ui) (yj) +
∑3

i=1
µ (ui) (yj) is calcu-

lated w.r.t foresets.
Since the maximum choice value is α = 3 = α1 so, the

decision is in favour of choosing the color ℓ1, Furthermore,
the color ℓ4 is totally ignored. Hence, Mr. Z will select the
refrigerator of color ℓ1 for his house and he won’t select the
color ℓ4 w.r.t the aftersets. Similarly, the maximum choice
value is α′

j = 3.7 = α3, so the decision is in favor of
choosing model 3. Furthermore, the model 4 and 6 are
totally ignored. Hence Mr. Z will select the refrigerator of
model 3 for his house.

VII. CONCLUSION WITH BENEFITS AND
DISADVANTAGES
In this paper, a novel concept of rough fuzzy subsets (sub-
structures) are proposed which is based on soft relations with
the aid of aftersets and foresets. The new planned study has
numerous fuzzy algebraic properties which are also thor-
oughly affirmed. A new approximation technique in quantale
module is employed and is based on soft compatible relation
and further soft complete. According to Section V, connec-
tions under homomorphism problems are totally affirmed,
sufficient conditions of rough fuzzy sub-modules and rough
fuzzy sub-module ideals are obtained, and they are all
thoroughly proved. Hence, the innovative generalization’s
approximation processing structure may be applied to differ-
ent algebraic data fields. The main advantages are

(a) A new definition of roughness of fuzzy subsets in quan-
tale module is proposed. This type of approach is not
applied before in quantale module.

(b) The rough fuzzy substructures are introduced and many
related examples are given to make the sense more clear.

(c) These rough fuzzy structures are presented under quan-
tale module homomorphism and discussed their rela-
tions.

(d) The proposed model are then subjected to decision mak-
ing problems to solve real word problems.

During the study of the proposed model, we have taken
the left action. If we consider the same model but with
right action then it will be difficult to proceed. This is
the main disadvantage of our work.

However, the following topics could be taken into consid-
eration for future scope as an extension of current work:

(1) Constructing rough fuzzy sets under soft relations to
other algebras, including groups, rings, hyperrings, and so
forth, that are connected to aftersets and foresets;

(2) Examining soft relations to study soft rough fuzzy
submodules. In other words, we can explore various charac-
terizations of soft rough fuzzy quantale module under soft
relations and swap out quantale module substructures for
fuzzy substructures in quantale module;

(3) Looking at several approaches to decision-making
based on fuzzy rough sets that have soft relationships to other
algebraic structures;
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