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ABSTRACT This paper presents a rapidly direct algorithm (RDA) to calculate explicit Fréchet derivatives
(EFD) for marine controlled-source electromagnetic measurement (MCSEM) in a three-dimensional (1-D)
transversely isotropic (TI) formation. By discretizing the Helmholtz equations about coupled potentials on
Yee’s staggered grids by the 3-D finite volume method (FVM), we obtain a complex linear system about
the unknown potentials excited by a mass of moving electric current sources. To efficiently determine
electromagnetic (EM) fields, we introduce an interpolation operator and projection operator per receiver
by using the direct solver PARDISO and 3-D Newtown interpolation. Based on this, the perturbation in goal
conductivity is expressed as a piece-wise constant function according to block or pixel model. The spatial
scattered electric currents will be decomposed into a series of electric current elements distributed on Yee’s
grids due to the conductivity perturbation. We then discretize the scattered electric currents by 3-D FVM
and obtain the new right-hand terms about the unknown scattered potentials. This allows for fast production
of the linear relationship between the changes in the EM fields and the relative conductivity perturbation
per block or pixel, ultimately resulting in the EFD of MCSEM responses. Numerical results demonstrate the
efficiency and accuracy of this method. The 3-D pixel sensitivities are presented to further investigate the
response characteristics of MCSEM in several cases.

INDEX TERMS Marine controlled-source electromagnetic measurement, Fréchet derivatives, finite volume
method, projection operator.

I. INTRODUCTION
The marine controlled-source electromagnetic measurement
(MCSEM) is mainly applied in seabed structure exploration,
characteristic identification, and quantitative evaluation of
offshore oil and gas reservoirs to help reduce offshore blind
drilling rate and exploration costs. The typical measurement
method is to use the low-frequency (0.1-10 Hz) horizontal
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electric dipole transmitting antenna, which is towed by a ship,
to continually excite alternating EM fields. The receivers,
which are laid on the seafloor, are used to measure the
induction EMfields withmulti-frequency andmulti-offset for
determination of the spatial distribution of underground con-
ductivity [1], [2]. Due to the complex topographic structure
of the seabed and the inhomogeneous conductivity distribu-
tion of the sediments, a lot of numerical simulation, Fréchet
derivatives (FD) calculation, and inversion are required
in the optimization design of signal acquisition and the
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interpretation of MCSEM data. Therefore, in recent decades,
the corresponding theories and methods of MCSEM have
been developed rapidly [3], [4].
In the forward modeling of MCSEM, analytical and

numerical methods both have been widely studied and
applied. For example, analytic methods, such as the transmis-
sion line method (TLM) [5], the propagation matrix method
(PMM) [6], and the numerical mode matching method
(NMM) [7], can be used to simulate the MCSEM responses
with high accuracy in 1-D layered models or some axisym-
metric models. For the arbitrary 3-D models, various 3-D
numerical methods are usually required. The numerical algo-
rithms chiefly include the 3-D finite element method (FEM)
[8], the 3-D finite volume method (FVM) [9], [10], and
the integral equation method (IEM) [11]. In terms of the
inversion of CSEM data, the various iterative methods (such
as conjugate gradient or Gauss-Newton techniques) are often
applied to realize the best fit between the theoretical synthetic
data and the actual input data. Up to now, almost all inversion
methods have been systematically studied in MCSEM and
a lot of corresponding literatures have been published. For
example, several representative papers about 1-D inversion
include [12], [13], [14], and those about 2-D and 3-D inver-
sions do [15], [16], [17], [18], [19], [20]. During conductivity
inversion imaging, the two different inversion models: pixels
and blocks are usually used to describe the spatial distribu-
tion of formation conductivity [20], [21], [22]. Furthermore,
it must be pointed out that determining the descent direction
of the objective function has been the key technique in EM
inversion. Except that the FD in 1-D stratified formations and
2-D axisymmetric conductivity formations can be effectively
and accurately calculated by the analytical method [13], [14],
[23] or semi-analytical methods [24], the FD in the 2-D
and 3-D EM inversion are usually determined by only some
approximate methods, such as nonlinear conjugate gradient
(NLCG) or quasi-Newton techniques [4], [20], [25], [26],
[27] because the accurate algorithm of FD of EM response
is usually much time-consuming.

In this paper, we will utilize the 3-D FVM of coupled
potentials and a direct solver to establish a set of accurate and
efficient algorithms of explicit Fréchet derivatives (EFD) for
the 3-D pixel or blockmodel ofMCSEM in a 3-D transversely
isotropic (TI) formation. We firstly discretize the Helmholtz
equations about coupled potentials on Yee’s staggered grids
by the 3-D FVM and obtain a complex linear system about
the unknown coupled potentials excited by a mass of moving
electric current sources. To efficiently determine EM fields,
we will introduce an interpolation operator and a projection
operator per receiver by the combination of the direct solver
PARDISO with the 3-D Newtown interpolation. Based on
this, the perturbation in goal conductivity is expressed as a
piece-wise constant function for both block and pixel models.
The scattered electric current density can be decomposed
into a series of electric current elements distributed on Yee’s
staggered grids. Each scattered current element is represented
by the product of the relative perturbation in conductivity

with the electric current elements on the grid. To establish
a rapidly direct algorithm (RDA) of EFD, we then discretize
the equations about scattered EM fields and obtain the new
right-hand terms about the unknown scattered potentials.
By using a projection operator per receiver, we achieve the
linear relationship between the changes in the EM fields
and the relative perturbation in conductivity on each block
or pixel, which ultimately results in the EFD for MCSEM
responses. We apply numerical results to validate the effi-
ciency and accuracy of this new method. The 3-D pixel
EFD are presented to further investigate the characteristics
of MCSEM in several different cases.

II. THEORY
In this section, we first study the discretization and direct
solution of coupled potential equations by the 3-D FVM of
MCSEM in 3-D TI formation. Especially, we will introduce
an interpolation operator and a projection operator through
3-D Newtown interpolation to enhance the efficiency of 3-D
forward modeling. We then give the expressions of scattered
electric currents according to block and pixel models and dis-
cretize the equations about scattered EMfields. By projection
operator per receiver, we establish a rapidly direct approach
of block and pixel EFD of MCSEM responses.

A. 3-D FINITE VOLUME FORWARD MODELING AND
PROJECTION OPERATOR
In order to overcome the low induction number problem,
we introduce the coupled potentials (A, φ) and obtain the
following Helmholtz equations (the eiωt is assumed) [10]:

1A(r, rS) − iωµ0σ̄
∗(r)[A(r, rS) + ∇φ(r, rS)]

= iωµ0JSδ(r − rS), (1)

and

∇ ·
[

¯σ ∗(r) (A(r, rS) + ∇φ(r, rS))
]

= −∇ · [JSδ(r − rS)].

(2)

Here, JS = ILêx , IL is the electric dipole moment of the
horizontal transmitting antenna, êx is a unit vector in the
x-direction, 1 = ( ∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
) is the Laplace operator,

and σ̄ ∗(r) = diag(σH(r)+ iωε, σH(r)+ iωε, σV(r)+ iωε) is
the complex conductivity tensor. σH and σV are respectively
the horizontal and vertical conductivity. ε is the dielectric
constant. µ0 is the vacuum permeability. ω = 2π f is the
angular frequency. rS is the transmitter position.

We use the symbol � to denote a sufficiently large compu-
tation region. On its outer boundary ∂�, n̂×A(r, rS) |∂� = 0
and φ(r, rS) |∂� = 0 are assumed. Here, n̂ is the unit nor-
mal vector on ∂�. The domain � is divided into a series
of staggered grids Vi+1/2,j,k , Vi,j+1/2,k , Vi,j,k+1/2, and Vi,j,k .
We then define the three mutually orthogonal components
Axi+1/2,j,k , A

y
i,j+1/2,k , A

z
i,j,k+1/2 of the vector potential A(r) at

the centers of the grids Vi+1/2,j,k , Vi,j+1/2,k , and Vi,j,k+1/2,
and the scalar potential φi,j,k at the center of the grid Vi,j,k .
We further calculate the equivalent conductivities σ̄ ∗

i+1/2,j,k ,
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σ̄ ∗

i,j+1/2,k , σ̄ ∗

i,j,k+1/2 and σ̄ ∗
i,j,k of σ̄ ∗(r) in all cells by the

volume average [28].
By using the 3-D FVM, we can discretize (1) and (2)

into the following linear algebraic equation about unknown
coupled potentials [10], [28]:

F̄x(rS) = b(rS). (3)

Here, F̄ is a N × N complex sparse asymmetric coeffi-
cient matrix, x(rS) is the N -dimensional unknown column
vector composed of all discrete potentials Axi+1/2,j,k (rS),
Ayi,j+1/2,k (rS), A

z
i,j,k+1/2(rS), and φi,j,k (rS). N = m1 + m2 +

m3 + m4 is the total number of unknowns where m1 =

(Nx + 1)NyNz, m2 = Nx(Ny + 1)Nz, m3 = NxNy(Nz + 1),
and m4 = NxNyNz. b(rS) represents the discrete vector of the
right-hand terms of (1) and (2).

Because the MCSEM usually adopts moving sources,
JSδ(r − rS,k ), (k = 1, 2, · · · ,K ), the right-hand terms in (3)
can be combined to form aN×K -order sparse banded matrix
B̄ =

(
b(rS,1),b(rS,2), · · · ,b(rS,K )

)
. Similarly, all unknown

vectors consisting of the left side of (3) are combined into
a N × K -order matrix X̄ =

(
x(rS,1), x(rS,2), · · · , x(rS,K )

)
.

Since the matrix F̄ is fixed in the domain �, we can solve the
coupled potentials of all the transmitters simultaneously by
PARDISO [29]:

X̄ = F̄−1B̄ (4)

Here, the inverse matrix F̄−1 is obtained by PARDISO.
In addition, we assume that rR,l, l = 1, 2, · · · ,L are all
receiver positions in � and L ≪ K . According to the central
difference formula, we can discretize the following equations:

E(r) = A(r) + ∇φ(r), H(r) = ∇ × A(r)/iωµ0, (5)

at rR,l . We then obtain the interpolation operator QEx (rR,l)
and QHy (rR,l), (l = 1, 2, · · · ,L), to compute the values
of Ex(rR,l) and Hy(rR,l) from the coupled potentials X̄.
Therefore, the values of Ex(rR,l) and Hy(rR,l) at rR,l by all
transmitters are given by:

E(rR,l) =
(
Ex(rR,1, rS,1) Ex(rR,2, rS,2) · · · Ex(rR,l, rS,K )

)
= QEx (rR,l)X̄,

H(rR,l) =
(
Hy(rR,1, rS,1) Hy(rR,2, rS,2) · · · Hy(rR,l, rS,K )

)
= QHy (rR,l)X̄. (6)

Substituting (4) into (6) yields:

E(rR,l) = PEx (rR,l)B̄,H(rR,l) = PHy (rR,l)B̄. (7)

Here,

PEx (rR,l) =

{
[F̄T ]−1QT

Ex (rR,l)
}T

,PHy (rR,l)

=

{
[F̄T ]−1QT

Hy (rR,l)
}T

(8)

are respectively the electric and magnetic projection opera-
tors and as well the N -dimensional row vectors.
Because above interpolation operator in (6) and projection

operator in (8) are independent of the transmitter position,

we can calculate them in advance and apply them repeatedly.
Especially, under the condition of L ≪ K , (7) can largely
enhance the simulation efficiency.

B. THE SOLUTION OF THE PERTURBATION EQUATION
AND THE EFD
When the conductivity happens to small perturbation δσ̄ (r) =

diag( δσH (r) δσH (r) δσV (r) ), we use the perturbation prin-
ciple to obtain the following Helmholtz equations about the
scattered potentials δA(r, rS) and δφ(r, rS):

1δA(r, rS) − iωµ0σ̄
∗(r)[δA(r, rS) + ∇δφ(r, rS)]

= iωµ0δJ(r, rS), (9)

and

∇ ·
[
σ̄ ∗(r) (δA(r, rS) + ∇δφ(r, rS))

]
= −∇ · [δJ(r, rS)].

(10)

Here, δJ(r, rS) = δσ̄ (r)E(r, rS) is the scattered electric
currents generated by δσ̄ (r). It is easy to see that the left-hand
terms of (9) and (10) are the same as that of (1) and (2).We try
to only discretize the right-hand sides of (9) and (10) by 3-D
FVM on the same Yee’s grids because the discretized matrix
of the left-hand term of (9) and (10) is also equal to F̄ in (3).

FIGURE 1. Formation model and two different model spaces:
(a) Inhomogeneous formation model and grids, (b) Pixel model,
(c) Block model.

Fig. 1 is a schematic diagram of the inhomogeneous forma-
tionsmodel. Here, the formation is assumed to include several
anomalous bodies �γ with known conductivity σ̄Block,γ (r),
(γ = 1, 2, · · · , 0) in known background media σ̄ bk(r) in
Fig. 1(a). The spatial distribution of conductivity can be
described by two different models: the pixel model shown
in Fig. 1(b) and the block model shown in Fig. 1(c) [20],
[21]. In the pixel model, we suppose the integer grid Vi,j,k on
Yee’s staggered grid as a basic pixel element. Its conductivity
σ̄ i,j,k per pixel is also mutually independent. In the block
model, the known conductivities σ̄Block,γ (r) is distributed in
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0 different 3-D regions Vγ , (γ = 1, 2, · · · , 0), and each
region Vγ may include multiple different basic pixels with
the same conductivity.

1) EFD IN THE PIXEL MODEL
For the pixel model in Fig. 1(b), we assume that in the
anomalous bodies or target domains there are M = Mx ×

My × Mz different pixels Viα1 ,jα2 ,kα3
. Their conductivities

are denoted by σ̄ iα1 ,jα2 ,kα3
, (α1 = 1, 2, · · · ,Mx , α2 =

1, 2, · · · ,My, α3 = 1, 2, · · · ,Mz). The small perturbation
δσ̄ iα1 ,jα2 ,kα3

in the conductivity of Viα1 ,jα2 ,kα3
will lead to a

change in the conductivity function:

δσ̄ (r) =

δ∑
α1,α2,α3

σ̄ iα1 ,jα2 ,kα3
4(r,Viα1 ,jα2 ,kα3

). (11)

Here, 4(r,Viα1 ,jα2 ,kα3
) =

{
1, r ∈ Viα1 ,jα2 ,kα3
0, r /∈ Viα1 ,jα2 ,kα3

is the char-

acteristic function in Viα1 ,jα2 ,kα3
. Letting δνH,iα1 ,jα2 ,kα3

=

δσH,iα1 ,jα2 ,kα3
/σH,iα1 ,jα2 ,kα3

and δνV,iα1 ,jα2 ,kα3
=δσV,iα1 ,jα2 ,kα3

/

σV,iα1 ,jα2 ,kα3
, which are respectively the relative vari-

ables in horizontal and vertical conductivities, the scat-
tered currents in (9) and (10) can be described as
follows, where,

∣∣∣Viα1+1/2,jα2 ,kα3

∣∣∣, ∣∣∣Viα1 ,jα2+1/2,kα3

∣∣∣ and∣∣∣Viα1 ,jα2 ,kα3+1/2

∣∣∣ are the volumes of the corresponding stag-
gered grids, respectively, while Jx(riα1+1/2 ,jα2 ,kα3

, rS) =

σH,iα1+1/2 ,jα2 ,kα3
Ex(riα1+1/2 ,jα2 ,kα3

, rS), Jy(riα1+1/2 ,jα2 ,kα3
, rS)=

σH,iα1 ,jα2+1/2 ,kα3
Ey(riα1+1/2 ,jα2 ,kα3

, rS), and Jz(riα1+1/2 ,jα2 ,kα3
,

rS) = σV,iα1 ,jα2 ,kα3+1/2
Ez(riα1+1/2 ,jα2 ,kα3

, rS) are the current
densities at the center of half-integer grids.
Substituting (12), as shown at the bottom of the next page,

into (9) and integrating on Vi+1/2,j,k , Vi,j+1/2,k and Vi,j,k+1/2
respectively give the following discretized right-hand terms
of (9):

δbi+1/2,j,k (rS)

=
iωµ0∣∣Vi+1/2,j,k

∣∣
∫
Vi+1/2,j,k

δJx(r, rS)dV

= iωµ0δνH,iα1 ,jα2 ,kα3
Jx,iα1 +1/2,jα2 ,kα3

(rS)δiα1+1/2,i+1/2δjα2 ,j

× δkα3 ,k , (13a)

δbi,j+1/2,k (rS)

=
iωµ0∣∣Vi,j+1/2,k

∣∣
∫
Vi,j+1/2,k

δJy(r, rS)dV

= iωµ0δνH,iα1 ,jα2 ,kα3
Jy,iα1 ,jα2+1/2,kα3

(rS)δiα1 ,iδjα2+1/2,j+1/2

× δkα3 ,k , (13b)

δbi,j,k+1/2(rS)

=
iωµ0∣∣Vi,j,k+1/2

∣∣
∫
Vi,j,k+1/2

δJz(r, rS)dV

= iωµ0δνV,iα1 ,jα2 ,kα3
Jz,iα,jα,kα+1/2(rS)δiα1 ,iδjα2 ,j

× δkα3+1/2,k+1/2. (13c)

Here, δiα,i
=

{
1, iα = i
0, iα ̸= i

. Similarly, integral on Vi,j,k yields:

Because δνH,iα1 ,jα2 ,kα3
and δνV,iα1 ,jα2 ,kα3

in (13) and (14),
as shown at the bottom of the next page, are any variables
enough small, we can properly sort out the above discrete
results and obtain a compact form.

δb(rS) = V̄(rS)δν. (15)

Here,

δν = ( δνH,i1,j1,k1 δνV,i1,j1,k1 · · · δνH,iMx ,jMy,kMz δνV,iMx ,jMy ,kMz )
T

is a 2M -dimensional column vector, and composed of relative
perturbations in horizontal and vertical conductivities in M
pixels, V̄(rS) is a N × 2M -order matrix derived from the
discrete coefficients in(13) and (14). We then apply aN×2M
order of unknown matrix δx(rS) to represent the discrete
scattered potentials of the transmitter at rS due to the relative
perturbation δν. Finally, we obtain the following system of (9)
and (10):

F̄δx(rS) = V̄(rS)δν. (16)

Insertion of (8) into (16) yields the following linear
relationship of both δEx(rR,l, rS,k ) and δHy(rR,l, rS,k )
with δν:

δEx(rR,l, rS,k )

= PEx (rR,l)V̄(rS,k )δν = SPixel,Ex (rR,l, rS,k )δν,

δHy(rR,l, rS,k )

= PHy (rR,l)V̄(rS,k )δν = SPixel,Hy (rR,l, rS,k )δν. (17)

Here,

SPixel,Ex (rR,l, rS,k ) = PEx (rR,l)V̄(rS,k ),

SPixel,Hy (rR,l, rS,k ) = PHy (rR,l)V̄(rS,k ) (18)

are the 2M -dimensional row vectors and respectively rep-
resent the pixel EFD of δEx(rR,l, rS,k ) and δHy(rR,l, rS,k )
(l = 1, 2, · · · ,L, k = 1, 2, · · · ,K ) with respect to δν.

2) EFD IN THE BLOCK MODEL
For the block model in Fig. 1(c), the conductivities in block
abnormal bodies �γ , (γ = 1, 2, · · · , 0) are assumed to be
constant σ̄Block,γ = diag( σH,Block,γ σH,Block,γ σV,Block,γ ).
The relative perturbations in horizontal and vertical conduc-
tivities are denoted by νH,Block,γ = δσH,Block,γ /σH,Block,γ
and νV,Block,γ = δσV,Block,γ /σV,Block,γ , respectively. Then
the perturbations in conductivities of all anomalous bod-
ies can also be expressed as the piece-wise constant
function:

δν̄Block(r) =

0∑
γ=1

δν̄Block,γ 4(r, �γ ). (19)

Here, δν̄Block,γ = diag( νH,Block,γ νH,Block,γ νV ,Block,γ ),
4(r, �γ ) is the characteristic function of�γ . In addition, it is
assumed that in the anomalous body �γ there are the integer
grids V (γ )

iα,jα,kα , (α = 1, 2, · · · ,Mγ ) of Yee’s staggered grid.
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Then the scattered currents on the right-hand side of (9) can
be approximately expressed as:

δJBlock(r, rs)

= δν̄Block(r)J(r, rS ) =

0∑
γ=1

δν̄Block,γ

Mγ∑
α=1

×


Jx(riα+1/2,jα,kα , rS )

∣∣∣V (γ )
iα+1/2,jα,kα

∣∣∣ δ(r−riα+1/2,jα,kα )

Jy(riα,jα+1/2,kα , rS )
∣∣∣V (γ )

iα,jα+1/2,kα

∣∣∣ δ(r−riα,jα+1/2,kα )

Jz(riα,jα,kα+1/2, rS )
∣∣∣V (γ )

iα,jα,kα+1/2

∣∣∣ δ(r−riα,jα,kα+1/2)

 .

(20)

Similarly, plugging of (20) into (9) and (10) and discretization
by FVM give:

F̄δxBlock(rS) = V̄Block(rS)δνBlock, (21)

Here, δxBlock(rS) is an unknownmatrix of orderN×0, whose
column vector corresponds to the discrete scattered potentials
due to the perturbation in conductivity of �γ . δνBlock =

( δνH,Block,1 δνV,Block,1 · · · δνH,Block,0 δνV,Block,0 )T is the
0-order column vector composed of relative perturbation
in conductivities of all block bodies, and V̄Block(rS) is the
N × 20-order matrix formed by the combination of discrete
coefficients in the right-hand side of (9) and (10).
By using (7) and (8), we obtain the block EFD of

δEx(rR,l, rS,k ) and δHy(rR,l, rS,k ) with respect to δνBlock:

SBlock,Ex (rR,l, rS,k ) = PEx (rR,l)V̄Block(rS,k ),

SBlock,Hy (rR,l, rS,k ) = PHy (rR,l)V̄Block(rS,k ). (22)

The linearization formula of δEx(rR,l, rS,k ) and δHy(rR,l,

rS,k ) with respect to δνBlock can be expressed as

δEx(rR,l, rS,k ) = SBlock,Ex (rR,l, rS,k )δνBlock,

δHy(rR,l, rS,k ) = SBlock,Hy (rR,l, rS,k )δνBlock. (23)

It must be pointed out that the difference between pixel
EFD and block EFD lies in that the former describes the
influence of relative perturbation in conductivities of the
single integer grid Viα1 ,jα2 ,kα3

, (α1 = 1, 2, · · · ,Mx , α2 =

1, 2, · · · ,My, α3 = 1, 2, · · · ,Mz) on Ex(rR,l, rS,k ) and
Hy(rR,l, rS,k ), while the latter does the influence of relative
perturbation in conductivities of blocks including multiple
integer grids on Ex(rR,l, rS,k ) and Hy(rR,l, rS,k ).

3) EFD OF AMPLITUDE AND PHASE
In MCSEM, the amplitude and phase of EM fields are often
used as output results. For example, the horizontal electric
intensity is expressed by:

Ex(rR,l, rS,k ) = AEx (rR,l, rS,k )eiθEx (rR,l ,rS,k ), (24)

where AEx (rR,l, rS,k ) and θEx (rR,l, rS,k ) are the amplitude
and phase of Ex(rR,l, rS,k ), respectively.

Differentiating the following equation:

lnEx(rR,l, rS,k ) = lnAEx (rR,l, rS,k ) + iθEx (rR,l, rS,k ),

(25)

with respect to δν yields the EFD of AEx(rR,l, rS,k ) and
θEx(rR,l, rS,k )

1
AEx (rR,l, rS,k )

∂AEx (rR,l, rS,k )
∂ν

= Re[
1

Ex(rR,l, rS,k )
δEx(rR,l, rS,k )

∂ν
],

δθEx (rR,l, rS,k )
∂ν

= Im[
1

Ex(rR,l, rS,k )
δEx(rR,l, rS,k )

∂ν
]. (26)

Inserting (17) into (26) results in the following pixel EFD
SPixel,AEx and SPixel,θEx of the amplitude and phase of
Ex(rR,l, rS,k ) with respect to δν in the pixel model

SPixel,AEx (rR,l, rS,k )

δJ(r, rS) = δσ̄ (r)σ̄−1(r)σ̄ (r)E(r, rS)

≈

∑
α1,α2,α3


δνH,iα1 ,jα2 ,kα3

Jx(riα1 ,jα2 ,kα3+1/2
, rS)

∣∣∣Viα1+1/2 ,jα2 ,kα3

∣∣∣ δ(r − riα1+1/2 ,jα2 ,kα3
)

δνH,iα1 ,jα2 ,kα3
Jy(riα1 ,jα2+1/2,kα3

, rS)
∣∣∣Viα1 ,jα2+1/2 ,kα3

∣∣∣ δ(r − riα1 ,jα2+1/2 ,kα3
)

δνV,iα1 ,jα2 ,kα3
Jz(riα1 ,jα2 ,kα3+1/2 , rS)

∣∣∣Viα1 ,jα2 ,kα3+1/2

∣∣∣ δ(r − riα1 ,jα2 ,kα3+1/2
)

 , (12)

δbi,j,k (rS) = −
1∣∣Vi,j,k ∣∣

∫
Vi,j,k

∇ · [δJ(r, rS)]dV

= −


δνH,iα1 ,jα2 ,kα3

Jx,iα1+1/2,jα2 ,kα3
(rS)[ δ

iα1 ,i

hxiα1
−

δ
iα1+1,i

hxiα1+1
]δjα2 ,jδkα3 ,k

+δνH,iα1 ,jα2 ,kα3
Jy,iα1 ,jα2+1/2,kα3

(rS)[ δ
jα2 ,j

hyjα2
−

δ
jα2+1,j

hyjα2+1
]δiα1 ,iδkα3 ,k

+δνV,iα1 ,jα2 ,kα3
Jz,iα1 ,jα2 ,kα3+1/2(rS)[ δ

kα3 ,k

hzkα3
−

δ
kα3+1,k

hzkα3+1
]δiα1 ,iδjα2 ,j

 (14)
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=
1

AEx (rR,l, rS,k )
∂AEx (rR,l, rS,k )

∂ν

= Re[
SPixel,Ex (rR,l, rS,k )
Ex(rR,l, rS,k )

],

SPixel,θEx (rR,l, rS,k )

=
δθEx (rR,l, rS,k )

∂ν
= Im[

SPixel,Ex (rR,l, rS,k )
Ex(rR,l, rS,k )

]. (27)

Similarly, block EFD SBlock,AEx and SBlock,θEx of the ampli-
tude and phase of Ex(rR,l, rS,k ) with respect to δνBlock in the
block model can be expressed as:

SBlock,AEx (rR,l, rS,k ) = Re[
SBlock,Ex (rR,l, rS,k )

Ex(rR,l, rS,k )
],

SBlock,θEx (rR,l, rS,k ) = Im[
SBlock,Ex (rR,l, rS,k )

Ex(rR,l, rS,k )
], (28)

The EFD of the amplitude and phase of Hy(rR,l, rS,k ) can be
obtained by a similar method. For brevity, their corresponding
contents will be ignored.

III. NUMERICAL EXAMPLES
In this section, we first give the numerical results of block
EFD of the amplitude and phase of Ex and Hy in the block
model by the previous RDA and finite difference algorithm
(FDA), respectively, to validate RDA and investigate the vari-
able characteristics and computational efficiency of the EFD.
In addition, the validity of the FVM employed in the forward
simulation has been rigorously assessed through comparisons
with both TLM and NMM [7]. Then, we present several
numerical results of pixel EFD of the amplitude and phase
of Ex with respect to the horizontal and vertical conduc-
tivity under the seafloor at different frequencies and offsets
to further investigate the spatial distribution and variable
characteristics of EFD of Ex . Unless otherwise stated, the
transmitting antenna is always placed 50m above the seafloor
and moves along the y = 0 main line. The electric dipole
moment IL is assumed to be equal to 1 A·m. All the numerical
results are calculated on the workstation with the CPU model
of Intel Xeon Platinum 8269CY.

FIGURE 2. Model of 3-D MCSEM.

TABLE 1. The distribution and spacing of grids.

A. VALIDATION
To validate the previous RDA about EFD, we apply the
model shown in Fig. 2. The model consists of a three-layer
background and a single abnormal body. The background
includes air (RAir = 106�·m), seawater (RSeawater = 0.3�·m
and 1km thick), and sediment (RH, Sedm = 1� · m with
several different anisotropic coefficients λSedm) from up to
down. The single abnormal body is regarded as a simplified
hydrocarbon reservoir. Its lengths in x, y, and z directions are
3 km, 3 km, and 0.3 km, respectively, the central position is
placed at (0,0,1) km, and the resistivity is RH = 100� · m
and RV = 200� ·m. The computation domain � in x, y, and
z direction is 100km × 100km × 100km, and divided with
(Nx ,Ny,Nz) = (134, 34, 70) grid nodes. The distribution and
spacing of grids are given in Table 1. Uniform grids with
a spacing of 250 m in x-direction range from -10 km to
21 km, uniform grids with a spacing of 250 m in y-direction
range from -3 km to 3 km, and grids with spacings of 100 m
and 25 m in z-direction range from -1.1 km to 2 km. Near
the seawater surface, the seafloor, and the abnormal body,
the mesh spacing is reduced to 25 m in the z-direction for
enhancement of discretization precision of (1) and (2). The
outermost several gradient grids are selected by Lebedev
grids [28]. The total of discrete vector and scalar potentials is
N = 1291996. The positions of the receiver and transmitter
are shown in Fig. 2. The fixed receiver canmeasure horizontal
EM components Ex and Hy at (-4,0,0) km. The transmitter
moves from -6 km to 22 km along the x-axis with an interval
of 250 m and operates at three frequencies: 0.25 Hz, 0.5 Hz,
and 1 Hz.

In Fig. 3, we compare the block EFD of amplitude
and phase of Ex : ∂AEx/(AEx ∂νH, Block), ∂AEx/(AEx ∂νV, Block),
∂θEx/∂νH, Block, and ∂θEx/∂νV, Block computed by the RDA
with that by FDA in the model shown in Fig. 2. Here, the
results by RDA are identified with lines, and those by FDA
are labeled by scatter symbols. The results by RDA and FDA
are well in agreement. From the results, we can see that
the EFD of Ex with respect to the horizontal conductivity
of the abnormal body are about three orders of magnitude
less than that of the vertical conductivity. Therefore, it can
be inferred that Ex is much more sensitive to the change
in vertical conductivity of the abnormal body. Furthermore,
by comparison of FD from different frequencies, we can see
that operating frequency has an obvious influence on the
detection range of Ex . The higher frequency, the smaller the
detection range. In Fig. 4, the relative errors of the FD of
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amplitude and phase of Ex by RDA and that by FDA are
almost less than 1% except for the case of the transmitter
position larger than 16 km, where the FD have become very
small.

Fig. 5 shows the comparison of the block EFD
of amplitude and phase of Hy: ∂AHy/(AHy∂νH, Block),
∂AHy/(AHy∂νV, Block), ∂θHy/∂νH, Block, and ∂θHy/∂νV, Block
by the RDA with that by FDA with respect to horizontal and
vertical conductivity of a block abnormal body in the same
model. Here, the results by RDA are identified with lines,
and those by FDA are labeled by scatter symbols.

FIGURE 3. The comparison of the block EFD of amplitude and phase of Ex
obtained by RDA and FDA: (a) ∂AEx /(AEx ∂νH, Block) (b) ∂θEx /∂νH, Block,

(c) ∂AEx /(AEx ∂νV, Block), (d) ∂θEx /∂νV, Block.

FIGURE 4. The relative error of the block EFD of amplitude and phase
of Ex obtained by RDA and FDA: (a) ∂AEx /(AEx ∂νH, Block) (b) ∂θEx /

∂νH, Block, (c) ∂AEx /(AEx ∂νV, Block), (d) ∂θEx /∂νV, Block.

The results by RDA and FDA are well in agreement.
Similarly, we can observe that the EFD of Hy with respect
to horizontal conductivity are largely less than that of vertical
conductivity. Therefore,Hy is also much more sensitive to the
change in vertical conductivity. The operating frequency has
an obvious influence on the detection range of Hy. In Fig. 6,
the relative errors of the four FD of Hy between RDA and
FDA are almost less than 1% except for the case of the
transmitter position larger than 16 km, where the FD have
become very small as well.

Fig. 4 and Fig. 6 demonstrate that the relative errors of
FD for the vertical conductivity of the abnormal body are
smaller and more stable compared to those for the horizontal
conductivity, particularly in the section larger than 12 km.
This is due to a difference of three orders of magnitude in
value. Regarding the relative error of FD for the horizontal
conductivity of the abnormal body, it can be observed from
Fig. 3 (a) (b) and Fig. 5 (a) (b), specifically in the range
between 12km-16km, that FD gradually diminishes to nearly
zero across all three frequencies, corresponding to relative
errors shown in Fig. 4 (a) (b) and Fig. 6 (a) (b), respectively.
We can see that the relative error of 1.0Hz is the largest,
but the absolute difference of the part with the relative error
greater than 10% is very small, close to 0, thereby the refer-
ence significance of the relative error is reduced.

FIGURE 5. The comparison of the block EFD of amplitude and phase
of Hy obtained by RDA and FDA: (a) ∂AHy /(AHy ∂νH,Block ), (b) ∂θHy /

∂νH,Block (c) ∂AHy /(AHy ∂νV ,Block ), (d) ∂θHy /∂νV ,Block .

FIGURE 6. The relative error of the block EFD of amplitude and phase
of Hy obtained by RDA and FDA: (a) ∂AHy /(AHy ∂νH, Block), (b) ∂θHy /

∂νH,Block (c) ∂AHy /(AHy ∂νV, Block), (d) ∂θHy /∂νV, Block.

Table 2 gives the comparison of computing time spent by
RDA and FDA. From Table 2, we can see the computation of
F̄−1 by the directive solver PARDISO takes 11.03 min, which
costs the longest time of all operators. When we use RDA to
calculate the responses and FD of MCSEM, we need to call
PARDISOonly one time. However, by using FDA to calculate
the responses and FD of MCSEM, we need to call PARDISO
three times to determine EM responses at three different
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TABLE 2. Comparison of computing time by RDA and FDA.

models: (δvH, Block, δvV, Block) = 0, (δvH, Block, δvV, Block) =

(0.005, 0), and (δvH, Block, δvV, Block) = (0, 0.005). The
results prove that the computational efficiency of the RDA is
enhanced more than triples. Obviously, when the dimension
of δνBlock or δνPixel increases a large value, FDA will become
impractical.

B. BLOCK EFD IN SEDIMENT WITH VARIABLE
ANISOTROPIC COEFFICIENTS
The above results prove that the block EFD of amplitude and
phase of Ex and Hy are chiefly influenced by the vertical
conductivity in the abnormal body. In this section, we will
investigate the influence of different anisotropic coefficients
of the sediment on the block EFD of Ex andHy. We still apply
the same mode in Fig. 2. The horizontal resistivity of the
sediment is fixed at RH, Sedm = 1� · m while its anisotropic
coefficients λSedm will be equal to three different values
of 1, 2, and 3. The operating frequency is equal to 0.25 Hz.
Fig. 7 shows the block EFD of Ex : ∂AEx/(AEx ∂νH, Block),
∂AEx/(AEx ∂νV, Block), ∂θEx/∂νH, Block, and ∂θEx/∂νV, Block by
the RDA with respect to horizontal and vertical conductivity
of the block abnormal body in sediments with three different
anisotropic coefficients. From the results, we can see that
the block EFD of Ex is much sensitive to the change in
anisotropic coefficients of sediment. The larger anisotropic
coefficient of sediment, the slower the decay of block EFD
with the increase of distance between transmitter and receiver.
That is because in the sediment with a large anisotropic
coefficient, EM fields decay more slowly and travel farther.
However, we also see that the size of EFD near the abnormal
body clearly decreases with the increase of anisotropic coef-
ficients of sediment because induction currents in formation
become smaller with the increase of the anisotropic coeffi-
cients of sediment.

Fig. 8 shows the block EFD of amplitude and
phase of Hy: ∂AHy/(AHy∂νH, Block), ∂AHy/(AHy∂νV, Block),
∂θHy/∂νH, Block, and ∂θHy/∂νV, Block with respect to horizon-
tal and vertical conductivity of the abnormal body in the same

FIGURE 7. The block EFD of amplitude and phase of Ex with respect to
horizontal and vertical conductivity of the block abnormal body in
sediments with RH,Sedm = 1� · m and different anisotropic coefficients.
(a) ∂AEx /(AEx ∂νH, Block) (b) ∂θEx /∂νH, Block, (c) ∂AEx /(AEx ∂νV, Block),
(d) ∂θEx /∂νV, Block.

FIGURE 8. The block EFD of amplitude and phase of Hy with respect to
horizontal and vertical conductivity of the block abnormal body in
sediments with RH,Sedm = 1� · m and different anisotropic coefficients.
(a) ∂AHy /(AHy ∂νH, Block), (b) ∂θHy /∂νH, Block, (c) ∂AHy /(AHy ∂νV, Block),
(d) ∂θHy /∂νV, Block.

model as Fig. 7. From the results, we can see that the block
EFD of Hy have similar characteristics to that of Ex .

TABLE 3. The distribution and spacing of grids.

C. PIXEL SENSITIVITY IN ANISOTROPIC MODEL
Finally, we will give a spatial distribution of the pixel EFD of
amplitude and phase ofEx to understand the pixels at different
positions on the influence of the Ex . For brevity, the relevant
results of the horizontal component Hy will be ignored.
We still apply the model in Fig. 2. The resistivity of sed-

iments is assumed as RH, Sedm = 1� · m with two different
anisotropic coefficients of λSedm = 1 and 2, and operating
frequencies of 0.25 Hz. The computation domain � in x, y,
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and z directions is 100 km×100 km×100 km, and divided
with (Nx ,Ny,Nz) = (74, 74, 90) grid nodes. The distribution
and spacing of grids are given in Table 3. Uniform grids with
a spacing of 250m in the x and y directions range from−8 km
to 8 km, and grids with spacings of 100 m, 50 m, and 25 m
in the z-direction range from −1.1 km to 3 km. Near the
interface between air and seawater, seawater and the seafloor,
themesh spacing is reduced to 25m, and around the abnormal
body, the spacing is reduced to 50 m. The outermost several
gradient grids are selected by Lebedev grids [23]. The total
of discrete vector and scalar potentials is N = 1990156.
The receiver and transmitter are located at (−3,0,0) km and
(3,0,0.05) km, respectively.

The sub-domain (−5, 5)km × (−5, 5)km × (0, 2)km of
the computation domain � is divided into M = 40 × 40 ×

40 = 64000 pixels. The lengths in the x- and y- directions
per pixel are 250 m, and that in the z-direction is 50 m.
We then compute the pixel EFD of Ex : ∂AEx/(AEx ∂νH, Pixel),
∂AEx/(AEx ∂νV, Pixel), ∂θEx/∂νH, Pixel, and ∂θEx/∂νV, Pixel with
respect to horizontal and vertical conductivity per pixel with
λSedm = 1 and 2.

FIGURE 9. The pixel EFD of the magnitude of Ex on the different vertical
cross sections: (a) ∂AEx /(AEx ∂νH, Pixel) with λSedm = 1, (b) ∂AEx /

(AEx ∂νV, Pixel) with λSedm = 1, (c) ∂AEx /(AEx ∂νH, Pixel) with λSedm = 2,

(d) ∂AEx /(AEx ∂νH, Pixel) with λSedm = 2.

Fig. 9 gives the distribution of pixel FD ∂AEx/(AEx ∂νH, Pixel)
and ∂AEx/(AEx ∂νV, Pixel) on the vertical cross sections of y =

0, ±2 km, ±4 km, and ±6 km. Here, Fig. 9(a) and 9(b) show
the results of ∂AEx/(AEx ∂νH, Pixel) and ∂AEx/(AEx ∂νV, Pixel)
with λSedm = 1, while Fig. 9(c) and 9(d) do that with λSedm =

2. From the results, we can see that FD ∂AEx/(AEx ∂νH; Pixel)
is much less than ∂AEx/(AEx ∂νV; Pixel). The sizes of pixel
FD on the vertical cross sections of y = 0 km are obvi-
ously larger than those on the other vertical cross sections.

Furthermore, the pixel FD with λSedm = 1 is larger than that
with λSedm = 2.

Fig. 10 shows the distribution of pixel FD ∂θEx/∂νH, Pixel
and ∂θEx/∂νV, Pixel on the vertical cross sections of y = 0,
±2 km, ±4 km, and ±6 km. We can see that FD of the phase
of Ex have similar characteristics to that of the magnitude of
Ex .

FIGURE 10. The pixel EFD of the phase of Ex on the different vertical
cross sections: (a) ∂θEx /∂νH,Pixel with λSedm = 1, (b) ∂θEx /∂νV, Pixel with
λSedm = 1, (c) ∂θEx /∂νH, Pixel with λSedm = 2, (d) ∂θEx /∂νV, Pixel with
λSedm = 2.

The total CPU consumption of explicit sensitivity and
forward results of the model is 61 minutes, and the maximum
memory occupied is 152 GB.

IV. CONCLUSION
In this paper, we apply the 3-D FVM of coupled potentials
in Yee’s staggered grids to establish an efficient algorithm of
numerical modeling and EFD for marine controlled-source
EM measurements in a 3-D TI formation. The interpolation
operator and projection operator per receiver obtained by
the direct solver PARDISO and 3-D Newtown interpolation
can greatly enhance the efficiency of forward modeling of
MCSEM with a mass of moving electric current sources.

Furthermore, the goal conductivity can be expressed as
a piece-wise constant function according to the block or
pixel model. The scattered electric currents caused by small
perturbations in the conductivity can be decomposed into
the superposition of a series of electric current elements
distributed on Yee’s grids. Through 3-D FVM on Yee’s grid,
the new discretized system about the scattered potentials can
be acquired in terms of block or pixel models. Similar to
the forward modeling of MCSEM, by using a projection
operator per receiver we can rapidly determine the linear
relationship between the changes in the EM fields and the
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relative perturbation in conductivities per block or pixel, and
ultimately obtain the EFD of EM responses.

The numerical results show that the EFD can better eval-
uate the characteristics and detection ability of the MCSEM
with different offsets and operating frequencies. For a single
anomalous body model, the maximum offset of the effec-
tive sensitivity of horizontal EM fields can reach about
10 km at the operating frequency of 0.25 Hz. The EFD
are more sensitive to the change in vertical conductivity of
abnormal body and influenced by the changes in anisotropic
coefficients of sediment. The larger the anisotropic coef-
ficient of sediment, the slower the decay of block EFD
with the increase of distance between transmitter and
receiver.
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