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ABSTRACT Owing to the small size of the defect pixel area and poor defect-background contrast issues
in industrial images, noise and missed detection can easily occur. Therefore, automated defect detection
is both necessary and challenging. To address these issues, with parallel attention mechanism (PAM) and
dual-channel spatial pyramid pooling-fast block (DC_SPPF), a novel defect detection network, namely,
PDDD-Net, is proposed in this paper. First, to make the detection network emphasize small defect areas
better, the PAM block is proposed to be embedded into YOLOv5 to obtain more low-level visual features and
improve the detection accuracy of microdefects. Meanwhile, by fusing multi-channel features, the DC_SPPF
block is proposed to replace the raw spatial pyramid pooling-fast block to acquire richer discriminative
features of the defect areas. Finally, The soft non-maximum suppression (Soft-NMS) module is used to
undertake the feature candidate box filtering task in YOLOv5 to reducemissed detection. Two public datasets
are adopted for the model evaluation: the Tianchi aluminum profile defects dataset (APDDD) and the power
line insulator dataset (CPLID). The experimental results indicate that the proposed PDDD-Net network
exhibits remarkable defect detection performance compared with other related detection methods.

INDEX TERMS Defect detection, parallel attention mechanism, spatial pyramid pooling-fast, deep learning,
attention fusion.

I. INTRODUCTION
In intelligent industrial manufacturing scenarios [1], [2], [3],
the product surface is inevitably affected by factors such
as the processing technology, environmental temperature
and manual operation errors, which lead to porosity and
scratches. Therefore, defect detection is an important step
in evaluating the quality of industrial products [3]. Through
automatic defect detection, problematic products can be
effectively prevented from entering the market and caus-
ing major accidents [4]. In the real world, defect detection
tasks are mostly completed through manual visual inspec-
tion. However, such detection methods are time-consuming
and labor-intensive [5]. In addition, manual visual inspection
relies heavily on the expert’s experience in defect detection,
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which can easily lead to noise and missed detection. There-
fore, developing an automated defect detection network to
provide objective and effective quality control and perfor-
mance evaluation will contribute to the intelligent production
of industrial products.

Currently, computer vision (CV)-based methods are fre-
quently used to automatically detect defects in industrial
images. Existing CV-based defect detection methods are
mainly divided into two categories: 1) machine learning-
based methods, and 2) deep learning-based methods.
Machine learning-based methods often use artificial features
such as edges, HOG [6], [7], SIFT [8], [9], etc. to achieve
defect detection. However, artificial features mostly rely on
subjective experience. Meanwhile, there is great similarity
among the various defect features, which makes it diffi-
cult to find the best artificial features to describe different
defects. Deep learning-based methods do not require human
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FIGURE 1. The framework of the proposed defect detection network.

intervention in the feature extraction process [10], [11] and
can automatically extract discriminative features from defect
areas through a convolutional neural network (CNN) to
detect defects. Therefore, deep learning-based methods have
achieved outstanding results in industrial defect detection
tasks.

There are two main types of defect detection meth-
ods based on deep learning: one-stage framework-based
method and two-stage framework-based method. The one-
stage framework-based detection method adopts a shared
network strategy to perform defect localization and identifi-
cation tasks. The typical framework is the YOLO-family [12],
[13], [14], such as YOLO, YOLOv5, YOLOv8, etc. The
YOLO-family has a fast detection speed and can satisfy the
basic detection accuracy requirements of industrial defect
detection tasks. To achieve effective defect detection, the
two-stage framework-based detection method consists of two
sub-networks: candidate box extraction block, validation and
classification block. The two-stage framework-based detec-
tion method can achieve good defect detection accuracy [15],
[16], [17]. However, its detection efficiency is far from
meeting the industrial requirements. In addition, a detection
method with a tightly coupled two-stage framework can only
achieve good detection performance when the features of the
object area and background are significantly different. How-
ever, this restriction is difficult to achieve in actual industrial

defect detection scenarios. Therefore, one-stage framework-
based methods are more suitable for the detection of defects
in industrial images.

One-stage framework-basedmethods have been applied for
industrial defect detection. Among them, YOLOv5 [18], [19]
is a widely used network with high detection efficiency and
detection accuracy on datasets such as COCO and PASCAL
Visual Object Class (VOC). Therefore, YOLOv5 is adopted
as the baseline network for the defect detection in this study.
However, there are two challenges in defect detection on
the industrial product surface: 1) The defect-background
contrast is poor. 2) The pixel area of the defect is small.
Considering these two challenges, the features obtained via
YOLOv5 are difficult to fully represent the location and
semantic information of defects, which can easily lead to
noise and missed detection. Therefore, it is important to
design a multi-attention fusion mechanism to obtain more
discriminative features and achieve sound detection perfor-
mance by overcoming the aforementioned limitations of the
existing detection methods.

To address these issues, a defect detectionmethod based on
a PAM block and a DC_SPPF block, namely, the PDDD-Net,
is proposed, as illustrated in Fig. 1. On the public datasets
APDDD and CPLID, the PDDD-Net network performs better
for defect identification and defect location with small defect
areas and poor defect-background contrast issues compared
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with other advanced detection methods. The main contribu-
tions of this paper are as follows:

1) With a YOLOv5 structure, an end-to-end defect detec-
tion network is designed for accurate defect identifica-
tion and location.

2) A pluggable PAM block is proposed and inserted
into the feature extraction process of the proposed
PDDD-Net to obtain more low-level features and
enhance the detection performance against small defect
areas issue.

3) To fully utilize the local feature maps, the DC_SPPF
block is proposed to replace the original SPPF block to
maximize the preservation of the discrimination of the
extracted features to improve the detection accuracy.

4) Soft_NMS is set as the screening module for can-
didate detection boxes in the proposed PDDD-Net
to output the object locations. In addition, the pro-
posed PDDD-Net is applied to two public datasets
APDDD and CPLID with small defect areas and poor
defect-background contrast issues to demonstrate com-
petitive performance.

The remainder of this paper is organized as follows.
Section II briefly describes related work. Section III describes
the proposed network in detail. Section IV discusses the
experimental results and analysis. The conclusions are pre-
sented in Section V.

II. RELATED WORK
The related works are reviewed in two aspects in this
section. Firstly, the development of machine learning-based
defect detection methods is overviewed briefly, then the
researches of deep learning-based defect detection methods
are summarized.

A. MACHINE LEARNING-BASED DEFECT DETECTION
METHODS
Machine learning-based defect detection methods are often
used in the field of industrial automation quality control.
Sha et al. [20] combined HOG and optimized support
vector machines (SVM) to design an intelligent diagnosis
method. Faced with curvilinear surface defects,Ma et al. [21]
proposed a surface defect detection method based on
improvedGabor filters and achieved good detection accuracy.
Daghigh et al. [22] employed the k-nearest neighbor (k-NN)
algorithm to provide a model for predicting the size, thick-
ness, and location of penny-shaped defects in composite
laminates. Aiming at the surface defects of industrial mate-
rials, Liu et al. [23] proposed a Haar-Weibull-variance model
for steel surface defect detection in an unsupervised man-
ner. Zhang et al. [24] proposed an on-line defect detection
method for aluminum alloys in robotic arc welding based
on the random forest and arc spectrum. To quickly satisfy
defect recognition, Liu et al. [25] proposed a classification
model based on OTSU and the random forest algorithm.
Machine learning-based defect detection methods exhibit

high computational efficiency and good detection accuracy to
reduce the workload of inspectors. However, these methods
can only achieve good defect detection performance when
the background, shooting angle, and global threshold of
the industrial images are consistent. This indicates that the
environmental conditions significantly affect the effective-
ness of defect detection. In addition, machine learning-based
methods rely on special prior knowledge, which also affects
the detection results. Therefore, machine learning-based
defect detection methods cannot effectively satisfy the cur-
rent defect detection requirements in the field of intelligent
manufacturing.

B. DEEP LEARNING-BASED DEFECT DETECTION
METHODS
Deep learning-based methods have achieved significant per-
formance in the field of object detection [26], [27]. This
can render defect feature extraction of industrial images
more objective and effective. Typically, convolutional neu-
ral network (CNN) based architectures are widely adapted
for feature extraction and defect localization. Therefore,
a deep learning-based method is used in this paper to achieve
feature extraction and defect detection in industrial defect
images. Deep learning-based defect detection methods are
used to achieve object localization and identification, which
are mainly divided into two categories: two-stage framework-
based methods, and one-stage framework-based methods.

The most famous two-stage framework is the R-CNN
family [28], [29], [30]. The methods in the R-CNN family
recommend thousands of candidate boxes for detection in
the region proposal network, which is very time-consuming.
Chen et al. improved the faster region-based convolutional
neural network (Faster R-CNN) by embedding Gabor ker-
nels, which can effectively alleviate the problem of unclear
textures [31]. Guo et al. proposed a method based on an
improved Mask R-CNN to detect defects on the surface
of photovoltaic panels [32]. To monitor the occurrence of
maize spodoptera frugipeda in a timely manner, an end-to-
end detection model, namely, the Pest Region CNN (Pest
R-CNN) was proposed, which yielded good insect detection
performance [33]. The methods in the R-CNN family have
high detection accuracy, but the detection speed cannot meet
industrial requirements. Meanwhile, the images should have
significant difference in the feature representations between
the background and defect areas to guarantee the detection
accuracy. If the feature representations of the previous two
areas are relatively similar, then the detection effect is poor.

The typical detection method based on the one-stage
framework is the YOLO family [34]. The methods in the
YOLO family divide images into small grids for the regres-
sion and prediction of bounding boxes to obtain the object
frames. Shi et al. used the Bayesian model to optimize
YOLOv3 for facial recognition [35]. Mekhalfi et al. used
YOLOv5 to conduct research on crack circle detection and
counting [36]. These studies indicate that YOLOv5 exhibits
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excellent detection potential for both within-domain and
cross-domain scenarios. Therefore, we adopt YOLOv5 as
the basic method for defect detection in industrial images
However, the methods in the YOLO family may overlook
some detailed features. To address this issue, researchers have
attempted to add attention mechanisms to these methods.

The attention mechanism can extract different features and
utilize contextual information, which helps to analyze com-
plex scene information quickly and efficiently. Qi et al. [37]
added the Squeeze and Excitation module (SE) [38] to
YOLOv5 and proposed an improved SE-YOLOv5 network
for the recognition of tomato virus diseases, effectively
improving the recognition performance. Zhou et al. proposed
an object detection method based on YOLOv5 and the convo-
lutional block attention module (CBAM), which effectively
improved the detection accuracy for construction waste [39].
The CBAM module [40], [41] can serialize attention feature
map information from both the channel attention module
(CAM) and the spatial attention module (SAM), and can
be embedded into any backbone network to improve per-
formance. Dong et al. proposed a parallel hybrid attention
mechanism based on the YOLO network (PHAM-YOLO)
for automatic defect detection [42]. PHAM-YOLO includes
two parallel attention mechanism,which is CBAM module
and coordinate attention module. However, the CBAM block
fixes the processing order of the attention mechanism. In the
serial attention mechanism, the former one filters out some
features, which makes the feature maps that the latter focuses
on already missing some defect information, causing CBAM
to easily lose key features. Therefore, this study makes a
major contribution to research on the defect detection net-
work combined with the parallel attention mechanism of
CAM and SAM.

In addition, YOLOv5 often uses datasets with low-
resolution images (such as CIFAR-10) and generates good
detection results. However, in industrial scenarios, defect
detection is usually performed on high-resolution images,
which leads to a poor detection performance of YOLOv5.
One of the reasons is that the spatial pyramid pooling-fast
module (SPPF) in YOLOv5 only use max-pooling branches
to achieve an adaptive size output. Rather than improving the
detection accuracy, astrous SPPF (ASPPF) [43] and simpli-
fied SPPF (SimSPPF) [44] have been proposed to improve
the detection speed performance of SPPF. To improve the
detection accuracy, we adopt a dual-channel approach to
improve the SPPFmodel to preserve more image information
while scaling the image size.

III. PROPOSED METHOD
A. NETWORK ARCHITECTURE
Inspired by the high-precision detection effect of YOLOv5,
a novel defect detection method, PDDD-Net, has been pro-
posed for automatic industrial defect detection. Fig. 1 shows
the entire network architecture of the proposed defect detec-
tion method.

As shown in Fig. 1, PDDD-Net consists of three parts: a
baseline network, a PAM block, and a DC_SPPF block. The
baseline network consists of a combination of the backbone,
neck, and head. Backbone is adopted to extract multi-level
features from the input images through convolutional neural
networks. Neck is a module that processes and fuses features
extracted by the backbone. Themain body of the headmodule
consists of three detectors that perform defect detection based
on featuremaps of different scales output by the neckmodule.
The PAM block is proposed to obtain more discriminative
features and make PDDD-Net networks pay more attention
to defect areas. The DC_SPPF block is proposed to fully
integrate the features of the spatial pyramids.

B. BASELINE NETWORK
YOLOV5 is a typical deep defect detection network that
achieves excellent detection results in various scenarios.
Here, it is used as the baseline network of the proposed
PDDD-Net defect detection network, consisting of the back-
bone, neck, and head, as shown in Fig. 1.

The backbone module consists of C3 module and Conv
module. A combination of slicing and gradient calculation is
applied to feature maps to achieve deep-level feature extrac-
tion and reduce computational costs.

The neck module is a structure that combines the FPN
block and the PANblock. First, the FPN block is used to trans-
mit high-level semantic features from top to bottom through
upsampling. Then, the PAN block is used to transfer low-level
localization features from bottom to top for cross-stage hier-
archical feature fusion to enhance the descriptive ability of
the features.

In the head module, generalized intersection over
union (GIoU) loss and non-maximum suppression (NMS) are
combined to detect prediction boxes with different scales.

C. PAM BLOCK
Although YOLOv5 has achieved excellent detection results,
it exhibits various limitations in scenarios with small defect
areas and poor defect-background contrast issues. To over-
come these issues and enable PDDD-Net to focus better on
defect areas, the PAM block is proposed to extract more
discriminative features from the defect areas.

In a deep detection network, the quality of the features
extracted from the defect areas affects the detection accuracy
for small defects. The convolutional block attention mod-
ule (CBAM) has shown high values for classification and
recognition tasks. However, CBAM sequentially generates
attention feature maps from the perspectives of channel and
space, which causes the later attention mechanism to focus
on feature maps that have already lost some information. This
serialized attention mechanism causes CBAM tomiss the key
features. Therefore, a parallel attention mechanism (PAM)
that includes a spatial attention module (SAM) and a channel
attention module (CAM) is proposed to capture discrimina-
tive features. Fig 2 shows the network architecture of the PAM
block.
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FIGURE 2. Network structure of the PAM block.

1) SPATIAL ATTENTION MODULE
To better utilize and fuse the cross spatial information of
different local feature maps, as shown in Fig. 2(a), the feature
maps are applied with the global average pooling opera-
tion (GAP) andmaximumpooling operation (MAP) along the
channel direction of each feature point. These feature maps
are then stacked to generate an effective feature descriptor,
which is sequentially convolved and connected using the
standard convolutional layers and sigmoid activation function
to yield a two-dimensional spatial attention weight. Finally,
the weight matrix is fused with the raw feature maps to obtain
spatial attention feature maps through matrix multiplication.

2) CHANNEL ATTENTION MODULE
As shown in Fig. 2(b), both GAP and MAP are performed
on the input feature maps simultaneously. Then, the shared
fully connected layer (Shared MLP) and sigmoid activation
function are used to fuse these two pooling results to generate
the channel attentionweight. Finally, the raw featuremaps are
fused with the weight matrix through matrix multiplication to
form channel attention feature maps.

3) RESIDUAL SHORTCUT LINK
Inspired by ResNet [45], [46], two attention channels are
added to the raw feature maps through a residual shortcut link
to maximize the feature parameter information.

4) PARALLEL MECHANISM
To eliminate the impact of the order in which the attention
mechanisms are executed, the serialization operation order of
CBAM is changed to the parallel mode, as shown in Fig. 2(c).
To overcome the problem of inconsistent dimensions, the spa-
tial attention feature maps and the channel attention feature
maps are matrix multiplied with the raw feature maps through
a residual shortcut link. Finally, the feature maps of the two
parallel branches are fused to form the PAM feature maps.

D. DC_SPPF BLOCK
Because the object of interest may generate the maximum
pixel value, MAPmay effectively preserve the area of interest
in the image. However, in spatial pyramid pooling-fast block,
using only MAP channels results in singularity and loss of
features. GAP can preserve the global features of an image
to highlight background information. When encountering a
poor defect-background contrast issue, the DC_SPPF block is
proposed based on MAP and GAP to achieve the advantages
of two pooling operations, as shown in Fig. 3.

FIGURE 3. The network structure of the DC_SPPF block.

As shown in Fig. 3, the GAP branch is added to the tradi-
tional SPPF block. By parallelizing the branches of MAP and
GAP in spatial pyramid pooling-fast block, discriminative
features can be obtained to improve the detection accuracy
of defects with poor defect-background contrast issue.

E. SOFT-NMS BLOCK
The redundancy removal operation of the detection box is an
important part of defect detection networks, which directly
affects the training effectiveness. NMS filters the prediction
boxes based on a fixed threshold, as shown in (1). Using
threshold judgment, object detection boxes with high con-
fidence are reserved, whereas false detection boxes with
low confidence are suppressed. When the spatial distance
between the predicted detection box and the detection box
in the optimal detection box set M is small, NMS filters out
the prediction box with higher mutual coverage. However,
in industrial scenarios, a situation in which multiple defect
areas are crowded together is prone to occur, resulting in
missed detection.

si =

{
si, iou(M , bi) < Nt
0, iou(M , bi)≥ N t

(1)

where iou(·) is used to calculate the intersection and union
ratios of two detection boxes. Si is the score calculated by
using the classifier for each box.M denotes the set that stores
the optimal detection boxes. bi is the current detection box
and Nt is the filtering threshold.

By contrast, Soft-NMS abandons the hard threshold mech-
anism of NMS. Soft-NMS multiplies the scores of different
prediction boxes using a weight function, as shown in (2).
This function attenuates the score of the detection box that
overlaps the optimal detection box in M . The higher the
overlap with the optimal detection box in M , the more
severe is the attenuation of the current detection box score.
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Therefore, when two defect areas are adjacent, the detection
box for the defect is missed owing to the excessive overlap-
ping area.

si =

{
si, iou(M , bi) < Nt
siG(iou(M , bi)), iou(M , bi)≥ N t

(2)

where the Gaussian function is used as the weight func-
tion G(·).

IV. EXPERIMENT RESULTS AND ANALYSIS
The proposed PDDD-Net detection network is designed
with PyTorch 1.13 and CUDA10.1. Meanwhile, to acceler-
ate the training and learning process of the deep learning
models, relevant experiments were conducted under an
NVIDIA GeForce 2080Ti card with 11GB memory. The
detailed parameter settings of the proposed network are
listed in Table 1. Through a detailed experimental analysis
and comparison, the detection performance of the proposed
PDDD-Net defect detection network has been evaluated.

First, details of the experimental dataset and evaluation
indicators are provided. Second, the proposed PDDD-Net
detection network is evaluated through an ablation study.
Third, the effectiveness of the PAM block, DC_SPPF block
and Soft_NMS is discussed. Meanwhile, the time consump-
tion analysis of the method is also conducted. Finally, the
effectiveness of the proposed defect detection method is com-
pared with that of the current advanced methods.

TABLE 1. Parameter settings for the proposed PDDD-Net.

A. DATASETS
To evaluate the defect detection effectiveness and scalability
of the proposed PDDD-Net defect detection method, two
public datasets are used for various detection experiments:
the aluminum profile surface detection database (APDDD)
and the power line insulator dataset (CPLID). These are
two typical defect datasets with small defect areas and poor
defect-background contrast issues.

APDDD: APDDD is a public dataset collected in a real
industrial environment, with 3005 defect images. This dataset
has 10 types of defects: non-conductive, jet, scratch, mottled,
orange peel, paint bubble, bottom leakage, dirty spots, corner
leakage, and pit. The number of images in each category
ranges from 240 to 370.

CPLID: CPLID is a public dataset that includes two cat-
egories of insulators: normal insulators and insulators with
defects. The number of normal insulator images is 600. The
number of images of defective insulator images is 248.

The sample images for the APDDD and CPLID are shown
in Fig. 4 and Fig. 5, respectively. For model training and
evaluation, they are divided into a training set and a testing
set at a ratio of 60:40.

FIGURE 4. Sample images of APDDD.

FIGURE 5. Sample images of CPLID.

B. IMAGE PREPROCESSING
The training process for deep detection networks requires a
large amount of data. However, the raw data of these two
datasets could not satisfy the training requirements of the
model. Therefore, image preprocessing is performed on the
images within the dataset, including general data augmenta-
tion technology and Mosaic technology.

General data augmentation technology: This technology
includes image flipping, image rotation, and adjustment of
the contrast and brightness.

Mosaic: Four images are randomly selected and cropped
into four sub-images. Subsequently, only one sub-image from
each image is selected. Finally, these four sub-images are
concatenated into a new defect image.
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Image preprocessing technology is applied to APDDD and
CPLID. Fig. 6 and Fig. 7 shows the sample images after
image preprocessing.

FIGURE 6. Sample images of APDDD after image preprocessing.

FIGURE 7. Sample images of CPLID after image preprocessing.

C. EVALUATION INDICATORS
To better validate the detection performance of the proposed
PDDD-Net model, some evaluation indicators are introduced
for model evaluation, namely precision (P), recall (R) and
mean average precision (mAP). These evaluation indicators
are defined as follows:

P =
Tp

Tp + Fp
(3)

R =
Tp

Tp + Fn
(4)

AP =

∫ 1

0
PRdR (5)

mAP =

∑n
i=0 AP(i)
n

× 100% (6)

where (Tp, Fp) denotes the numbers of true positives and
false positives, respectively. (Tn, Fn) denotes the numbers
of true negatives and false negatives, respectively. Addition-
ally, n denotes the class number. It should be noted that
mAP@0.5:0.95 is used in this study, which represents the
average area of all P-R curves when their iou(·) results are
between 0.5 and 0.95.

FIGURE 8. The training loss curve of PDDD-Net detection network on
APDDD.

FIGURE 9. The training loss curve of PDDD-Net detection network on
CPLID.

D. GENERALIZATION EXPERIMENT
To some extent the generalization ability of the defect detec-
tion networks is related to the epoch. We simply study effects
of different training epochs of the PDDD-Net detection net-
work on the training loss. Fig. 8 and Fig. 9 show that the
loss value of the defect detection model tends to stabilize
for APDDD and CPLID datasets when the epoch is 200.
Moreover, the difference between the loss value when the
epoch is 250 and the loss value when the epoch is 200 is
very small, indicating that their training effects are almost the
same. However, the cost of training duration and parameter
capacity has increased significantly with the increase of
epoch. Therefore, setting the epoch to 200 is appropriate.
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E. EFFECTS OF THE PAM BLOCK
To better demonstrate the feature extraction performance of
the proposed PAM block, some advanced attention mecha-
nisms, including Squeeze and Extraction (SE) and CBAM,
are inserted into YOLOv5 for comparison.

From Table 2 and Table 3, the PAM block exhibits the
highestmAP, which indicates that the PAM block has a better
detection ability for defects with only a small proportion of
pixels. For defect detection in the industrial field, indicator R
is more important than indicator P. In addition, from Fig. 10
and Fig. 11, we can observe that the R value of the PAM
block has certain advantages, indicating that the PAM block
has better recall and can more comprehensively detect defect
areas.

TABLE 2. The evaluation indicators of different attention blocks on
APDDD.

TABLE 3. The evaluation indicators of different attention blocks on CPLID.

FIGURE 10. The P-R curve of different attention mechanisms on APDDD.

F. ABLATION STUDY
To better evaluate the detection performance of the proposed
PDDD-Net detection network, an ablation study is conducted
for the effectiveness analysis in the paper. The PAM block
is adopted to fully utilize the advantages of the two parallel
attention mechanisms to better address the issue of small
defect pixel area. DC_SPPF is adopted to fully utilize the
advantages of the two pooling operations to address the
poor defect-background contrast issue. Soft-NMS is used to
address the issue of missed detection. The effects of Soft-
NMS, PAM block, and DC_SPPF block on APDDD and

FIGURE 11. The P-R curve of PDDD-Net detection network on CPLID.

CPLID is evaluated through an ablation study. Table 4 and
Table 5 list the defect detection results for fair experimental
comparison.

TABLE 4. Ablation study on APDDD.

TABLE 5. Ablation study on CPLID.

The experimental results show that the proposed PDDD-
Net with different settings sacrifices only a small amount
of time efficiency and achieves the highest mAP. Combined
with Soft-NMS, PAMblock or DC_SPPF block, the proposed
PDDD-Net detection network acquire higher mAP values,
indicating that integrating these blocks into the PDDD-Net
can improve detection capabilities.
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Meanwhile, combined with the Soft-NMS, PAM block and
DC_SPPF block, the proposed PDDD-Net detection network
generates the highestmAP onAPDDDandCPLID, indicating
the effectiveness of the proposed detection network in small
defect areas and poor defect-background contrast issues.

Moreover, defect detection experiments are conducted
using different improved models, as shown in Fig. 12.
It can be seen that YOLOv5 and some improved models
(line 4 - line 7 in Fig. 12) yield noise and missed detec-
tion. In contrast, the proposed PDDD-Net detection network
combined with Soft-NMS, PAM block and DC_SPPF block
achieves the best detection effect.

FIGURE 12. The defect detection results generated by different models.

G. PERFORMANCE VISUALIZATION AND COMPARISON
To better demonstrate the defect detection performance
of the proposed PDDD-Net detection network, various
advanced defect detection models have been used as
comparative methods, such as Faster R-CNN, YOLOv3,
YOLOv5, YOLOv7, and YOLOv8. To fairly evaluate the
detection performance, the same runtime environment and
experimental data are applied to the model evaluation. Mean-
while, samples from the test sets in APDDD and CPLID are
used as the experimental data for the performance analysis.

TABLE 6. Comparison experiments on different detection models on
APDDD and CPLID.

Table 6 and Fig. 13 show the defect detection results of
different detection methods on APDDD and CPLID. From
Fig. 13, we can observe that the images in APDDD exhibit
small defect areas and poor defect-background contrast
issues. Fig. 13(a) - (c) shows that other advanced models are
prone to exhibit noise detection and missed detection. Com-
pared to other methods, the proposed PDDD-Net can more
accurately locate defects in aluminum profile surface images,
even if the defect area is small. The images in CPLID have
a complex-background issue, whereas PDDD-Net can accu-
rately locate the position of insulators or defects, as shown in
Fig. 13(d) - (f).

In addition, Table 6 shows that compared to other advanced
detectionmodels, the proposed PDDD-Net detection network
has higher mAP values on APDDD and CPLID, indicating
that the proposed method is feasible for object detection tasks
with small defect areas and poor defect-background contrast
issues.

H. DISCUSSION OF THE PAM BLOCK
To better combine the local and spatial information of the
image, parallel operations on the SAM and CAM branches
are adopted in the PAM block. Table 2 and Table 3 indi-
cates that the PAM block is helpful for defect detection,
mainly because the attention mechanism can fully utilize the
advantages of SAM and CAM to focus on more key features
related to the defect areas.

To illustrate the feature extraction effect of the PAM block,
heatmaps are used to exhibit the regions of interest of differ-
ent attentionmechanisms. Fig. 14 reveals that if the image has
a complex background or poor defect-background contrast
issue, the attention area of the SE block for the image is
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FIGURE 13. The defect detection performance on APDDD and CPLID.

easily affected and becomes more divergent. CBAM block
is susceptible to complex background or small defect area
issue, leading to missed detection. In contrast, the PAM
block proposed in this paper can effectively focus on the
defect areas. For images with small defect areas and poor
defect-background contrast issues in the APDDD set, the
PAM block can focus on the defect areas of the aluminum
profile surface. For images with complex backgrounds in the
CPLID set, the PAM block can filter out interference areas
and noise, and focus more on insulators and defect areas.

I. TIME CONSUMPTION ANALYSIS
Computational efficiency is also a key indicator for defect
detection. The processing time of the proposed PDDD-Net
detection network is analyzed in this paper. An ablation study
is conducted based on APDDD and CPLID datasets, and the

processing time of each module are listed in Table 4 and
Table 5, respectively. According to Table 4 and Table 5,
we can observe that the processing time of PDDD-Net on
the aluminum profile surface defect image is 90 FPS and the
processing time of PDDD-Net on the power line insulator
image is 76 FPS, which are slightly longer than those of the
baseline network.

Meanwhile, with the proposed PAM block and DC_SPPF
block, the defect detection accuracy is significantly improved
without sacrificing excessive computational efficiency.
Table 6 indicates that although some advanced methods
have significant advantages in terms of processing efficiency,
they sacrifice significant detection accuracy in exchange for
detection efficiency, resulting in poor detection accuracy.
However, the detection efficiency of the proposed PDDD-Net
network not only meets the basic processing requirements of
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FIGURE 14. The heatmaps of the regions of interest obtained via different attention mechanisms.

industrial detection tasks, but also achieves the best detection
accuracy compared to other advanced methods.

V. CONCLUSION
To facilitate the quality control of industrial products and the
development of defect repair plans, a new detection method
called PDDD-Net is proposed in this paper to automati-
cally perform defect detection task. On two public datasets,
APDDD and CPLID, the proposed PDDD-Net shows excel-
lent defect detection performance against small defect areas
and poor defect-background contrast issues. The main contri-
butions of this paper are as follows.

1) With YOLOv5 network structure and Soft_NMS,
an end-to-end defect detection network is designed to auto-
matically and accurately detect defects.

2) To enable the detection network to focus better on the
pixel-level features of small defects, a pluggable PAM block
is proposed to obtain more discriminative features from local
feature maps to improve the detection accuracy of small
defects.

3) To fully utilize the local feature maps, the DC_SPPF
block containing two pooling operations is proposed for
incorporation into PDDD-Net to obtain richer features and
improve the detection accuracy.

In the future, we will proceed this research to build a
high-precision and efficient defect detection network.
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