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ABSTRACT In the era of artificial intelligence, the development of an efficient bearing, fault diagnosis
method is of vital importance to ensure smooth production operations and avoid major economic losses.
To this end, this paper proposes a bearing fault diagnosis method based on biphasic currents. The method
first performs wavelet denoising on the biphasic current signal, then extracts its features by simple vector
representation and algebraic operations, and finally, combines the CBAR model of Convolutional Block
Attention Module (CBAM) and Residual Network (ResNet) for bearing fault diagnosis. The experimental
results show that the highest accuracy rate reaches 100% in both single-point fault and single-point mixed
with multiple faults conditions on the open source current bearing fault diagnosis dataset, respectively.
Compared with other methods, the method proposed in this paper has the advantage of simple data
processing, concise model structure, and high-fault diagnosis accuracy, which provides an effective way for
dual-phase current-based bearing fault diagnosis. It is worth emphasizing that based on wavelet denoising,
this paper uses the simplest vector representation and algebraic operations to preprocess the signal (WP),
making the method more efficient and easy to implement. (Some experiment-related code is posted on the
Code Open Source Repository website. https://github.com/LTbig/LT_Bearing_Fault)

INDEX TERMS Fault diagnosis, WP post-processing, biphasic current, CBAR model.

I. INTRODUCTION
The operating condition of the motor plays an essential
role in the operation of the entire rail transportation system
in the field of rail transportation, and the bearing is an
important component indispensable to the operation of
various types of equipment, and its health status directly
affects the performance and service life of the motor. Failures
are unavoidable, however, since bearings are subjected to
high-load operation for a prolonged amount of time. Failure
to repair deficiencies in a timely way can result in financial
losses as well as significant safety issues. As a result, bearing
diagnosis is quite crucial.

Li et al. used continuous wavelet transform to convert
vibration signals into 2D time-frequency images. They then
applied a convolutional neural network to extract features
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and used maximum mean difference (MMD) to align the
global distribution of features for fault diagnosis [1]. Kafeel
et al. obtained a three-dimensional vibration signal dataset
in a significant induction motor representing both healthy
and faulty states, and a hybrid combination of temporal
and spectral features using a support vector machine with a
Gaussian kernel for classification yielded superior diagnostic
results [2]. Altaf et al. developed the time, frequency, and
spectral power domain feature vectors of vibration signals
and transmitted these feature vectors to the K-nearest neigh-
bor, support vector machine, and kernel linear discriminant
analysis for identifying and classifying bearing faults [3]. Zuo
et al. introduced a fault diagnosis method for rolling bearings
using multi-scale weighted visibility graph (MSWVG) and
multi-channel graph convolution network (MCGCN). The
method converts vibration signals into multiple weighted
graphs and uses MCGCN to extract local node feature
and global topology information [4]. These technologies,
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however, can only identify problems that have already
occurred. Additionally, the vibration signal-based method
cannot be used in machine systems when additional sensors
are too expensive, inaccessible, or both. Using current signals
for defect diagnosis, on the other hand, offers various
advantages; it allows for online detection and is quite
affordable. As a result, there have been studies that have
used current signals to diagnose faults. Current signals offer
several advantages over vibration signals in the context of
equipment monitoring and fault diagnosis:

• Robustness: Current signals are generally less suscep-
tible to environmental noise and disturbances compared
to vibration signals. For example, in a noisy industrial
environment, vibration signals may be affected by
background noise, while current signals may remain
more stable and reliable.

• Real-time monitoring: Current sensors typically offer
faster response times compared to vibration sensors,
enabling more real-time monitoring of equipment
performance. This non-intrusive approach to moni-
toring is especially beneficial for promptly detect-
ing sudden changes or abnormalities in equipment
operation.

• Fault diagnosis: Current signals can provide valuable
insights into the internal operating status and fault
characteristics of the equipment. For instance, abnormal
current patterns may indicate issues such as bearing
wear, electrical faults, or mechanical problems, allowing
for more accurate and timely fault diagnosis.

• Ease of data acquisition: In some cases, acquiring
current signals may be more convenient and cost-
effective than obtaining vibration signals. Current sig-
nals can be directly accessed through the equipment’s
electrical interface, eliminating the need for additional
sensor equipment and simplifying the data acquisition
process.

Overall, the robustness, real-time monitoring capabilities,
diagnostic potential, and ease of acquisition make current
signals a valuable and reliable source of information for
equipment condition monitoring and fault diagnosis. Thus,
there have been studies that have employed current signals
for fault diagnosis. An et al. proposed an unsupervised
contrast domain adaptive network (UCDAN) for bearing fault
diagnosis under variable operating conditions [5]. Tang et al.
propose a discriminative fault diagnosis method that inte-
grates Robust Principal Component Analysis (RPCA) and
multiple kernels into deep neural networks. The method
outperforms traditional machine learning and classical deep
learning approaches when tested on laboratory signals and
structural failure data [6]. Zhukovskiy et al. presented
induction motor bearing defect detection based on stator
current singular value decomposition [7].
Chen et al. proposed a new deep learning based clas-

sification of bearing fault diagnosis methods from the
perspective of target domain data attributes divided by
labels, machines and faults [8]. Combining the compre-

hensive attention mechanism and the characteristics of
domain adaptive neural networks, Cai et al. proposed a
multi-fault detection method for series battery packs based
on category-reinforced domain adaptive networks, which can
diagnose multiple types of faults [9]. Sun et al. developed a
method for diagnosing mechanical faults in induction motors
using stator current signals. Their approach enhances the
signal-to-noise ratio through intelligent noise cancellation
and reconstruction modeling, leading to high diagnostic
accuracy, even with sample variations [10]. Yin et al.
introduced a novel method, Fault Feature Proxy Transfer
(FFPT), to transfer fault features between different operating
condition domains using raw current signals [11]. Zhang et
al. proposed a new nonconvex penalty called generalized
logarithmic (G-log) penalty, which enhances sparsity and
reduces noise interference [12]. Mohammed et al. developed
a semi-supervised domain adaptation method for cross-
machine troubleshooting, combining model optimization and
Generative Adversarial Networks (GANs) to connect the
source and target domains [13]. Chen et al. developed a
phase space reconstruction algorithm for fault diagnosis in
current signals, selecting reconstruction parameters using the
first-order forward differencemethod andmutual information
method. The method constructs a fault feature set using over-
all and local inflection point features [14]. Wu et al. proposed
a real-time open-circuit fault diagnosis method for T-type
rectifiers based on median current analysis. The method
uses three-phase currents to obtain the median current for
diagnosis [15]. In addition to that, there is some remarkable
work in the field. In 2023, Qian et al. proposed a novel
Relational Transfer (RT) diagnostic framework aimed at
indirectly measuring and reducing distributional differences
between source and unseen target domains [16]. The authors
utilized the widely used MaximumMean Difference (MMD)
metric, which is based on the mean statistic, as well as a novel
metric called Maximum Mean Square Deviation (MMSD),
to comprehensively capture regenerated kernel Hilbert space
mean and variance information of the data samples in the
regenerated kernel Hilbert space in order to enhance domain
confounding [17]. Additionally, Qian et al. introduced the
Improved Joint Distribution Adaptation (IJDA) mechanism
to enhance distributional alignment, as well as a new
I-Softmax loss that optimizes feature learning and facilitates
the learning of more separable features. They combined
the IJDA mechanism and the I-Softmax loss to construct a
Deep Discriminative Transfer Learning Network (DDTLN)
for fault diagnosis [18].

Bearing fault detection methods have primarily focused on
vibration signals for fault identification, with limited explo-
ration of current-based methods, particularly for biphasic
currents, which are less common in the literature. Current
signal-basedmethods are increasingly prevalent but often rely
heavily on specialized knowledge and are perceived as chal-
lenging to implement. Simplicity in method design is crucial
for practical engineering applications. To address this gap,
this study proposes a novel approach for diagnosing bearing
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defects. The approach incorporates wavelet denoising [19]
and biphasic current preprocessing, along with the CBAR
neural network model adapted from the CBAM-ResNet
model [20]. The method aims to enhance the signal quality
by applying wavelet denoising to the current signal. It further
utilizes biphasic current vector representation and algebraic
computation as data preprocessing (WP post-processing)
before extracting features. This preprocessing step aims to
optimize the robustness and accuracy of feature extraction
in fault diagnosis. Finally, the CBAR model is employed to
analyze and categorize the obtained data, enabling efficient
identification of bearing faults.

Another common challenge is ensuring communication
security and addressing noise interference issues in data.
Kou et al. proposed an offshore wind power encryption
algorithm based on a two-dimensional lag complex logic
mapping (2D-LCLM) and Zhouyi Bagua [21]. Additionally,
Al-Hazaimeh et al. proposed a new image encryption algo-
rithm that utilizes the Chen system and Bogdanov graph anti-
synchronization [22]. Fortunately, however, current signal
characterization is a non-intrusive bearing fault diagnosis
method, using the motor control system has sensors through
the drive process to obtain the signal containing bearing
fault information, not only can avoid the installation of
additional acceleration or acoustic emission sensors, etc., and
the sensor by external factors and the installation location of
the influence of the smaller, to a large extent, to reduce the
investment and maintenance workload. In addition, this type
of method can be well combined with embedded systems,
which is conducive to engineering implementation.

In summary, this study presents an improved approach for
bearing defect diagnosis by combining wavelet denoising,
biphasic current preprocessing, and the CBAR neural net-
work model. The improved CBARmodel achieves high accu-
racy with an uncomplicated model architecture compared to
other complex models. In conclusion excellent diagnostic
results were achieved on the bi-directional current dataset
through uncomplicated modeling and data preprocessing
(WP post-processing).

II. FAULT DIAGNOSIS METHOD
A. WAVELET DENOISING
The wavelet transform [23] and thresholding [24] are
the foundations of wavelet denoising. The wavelet trans-
form decomposes the signal into numerous wavelet coef-
ficients [25] of varying scales and frequencies and depicts
it as a linear combination of a collection of wavelet basis
functions (Daubechies, Db) [26]. The wavelet transform can
convey information about a signal in both the frequency and
temporal domains [27] allowing for a better comprehension
of the signal’s characteristics. Thresholding is an essential
step in wavelet denoising. It is based on the statistical features
of wavelet coefficients, with bigger coefficients retained and
lower coefficients set to 0. This processingmethod effectively
removes noise while preserving local features and detailed

signal information.

y(t) =

J∑
j=1

2j−1∑
k

dj,kψj,k (t) +

N−1∑
k=0

ωkψJ ,k (t) (1)

The wavelet denoising mathematical theory is particularly
expressed in equation, where y(t) is the original signal, dj,k
is the wavelet coefficient with a scale j and frequency k ,
ωk is the high-frequency noise coefficient, and ψJ ,k (t) is the
wavelet basis function.

The denoised completed signal is acquired by inverse
transformation after a newwavelet coefficient d ′

j,k is obtained
by thresholding the wavelet coefficients, as described by
equation (2).

y′(t) =

J∑
j=1

2j−1∑
k

d ′
j,kψj,k (t) +

N−1∑
k=0

ωkψJ ,k (t) (2)

The threshold processing formula is given by equation (3).
where λj is the threshold value, and either a fixed or adaptive
threshold can be chosen. As a result, wavelet denoising is an
excellent signal processing method for removing noise while
retaining signal detail information.

d ′
j,k =

{
dj,k ,

∣∣dj,k ∣∣ > λj

0,
∣∣dj,k ∣∣ ≤ λj

(3)

B. TWO-PHASE CURRENT
Biphasic current is a type of alternating current that consists
of two sinusoidal currents with a phase difference of
90 degrees, and Figure 1 depicts a simplified diagram of
a two-phase alternator. A complex number can be used to
represent a biphasic current, with the real part representing
one sinusoidal current and the imaginary part representing the
other.

FIGURE 1. A simplified diagram of a two-phase alternator.

For example, a biphasic current can be written as I1 + jI2,
where I1 and I2 are the amplitudes of the two sinusoidal
currents, respectively, and j is an imaginary unit. Biphasic
currents are often calculated in the complex plane [28], where
this complex number can be composed as a vector whose
mode length indicates the amplitude of the current and the
phase angle represents the phase of the current.

If there is a normal biphasic current with magnitude I1 is
u(A) and phase angle 0 degrees and magnitude I2 is v(A)
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and phase angle 90 degrees, the biphasic current I may be
expressed as equation (4).

I = u+ jv (4)

It has a mode length of
√
u2 + v2 and a phase angle of

(arctan v/u) degrees. The origin serves as the beginning point
for this vector, and the position of the endpoint in the complex
plane reflects the amplitude and phase of the biphasic current.

First of all, it is known that when the bearing fails, this
vector will change correspondingly, and then it is feasible to
identify whether the bearing has failed based on this change.
Further, a defect in a two-phase circuit generally results in a
phase change or amplitude change of the current, which may
be stated as follows:

• 1. Phase difference: The phase difference between two
currents in a two-phase circuit is normally 90 degrees.
If a fault occurs in the circuit, the phase of one of the
currents may change, causing the phase difference to
change, and the magnitude and direction of the phase
shift may be described in terms of the phase angle.

• 2. Change in amplitude: A defect can also produce a
change in the amplitude of the current.

A combination of phase and amplitude variations is
required to determine the location and kind of fault in
a biphasic circuit. However, in data-oriented analysis, the
problem may be simplified by assuming that both phase and
amplitude fluctuations are based on the two-phase current
data I1 and I2. So, disregarding previous inherent a priori
knowledge and physical terminology, we can simply express
the amplitude change by adding I1 and I2, subtracting
I1 and I2, and multiplying I1 and I2, whereas the phase
change is expressed by the phase angle of I1 and I2. If these
values vary in comparison to the usual condition, the bearing
failure can be identified.

Why not utilize one of the two-phase currents for problem
diagnosis? This is undoubtedly conceivable, and there
are academics working on it. However, much as humans
can, in certain situations, employ only a single eye to
monitor a target and presume that this eye combines several
complicated statistical discriminative qualities in order to
properly assess the object, However, even the most powerful
monocular is sometimes not as easy to sweep as the simplest
binocular. Thus, bi-phase currents may be better suited for
fault diagnostics than single-phase currents. Furthermore,
because there may be significant differences in the signal
characteristics of phase currents in the case of a bearing
fault, these differences may not be fully reflected when
using one-phase current alone; however, a calculation using
two-phase currents can more clearly reflect these differences
and thus more accurately determine whether a bearing is
faulty.

In summary, as illustrated in Figure 2, the vector rep-
resentation and algebraic operation of the biphasic current
can reflect the bearing’s fault situation and so aid in fault
diagnosis.

FIGURE 2. Vector representation and algebraic operations (WP
post-processing).

C. CBAR NETWORK MODEL
CBAR consists of 3 main components. including traditional
Convolutional Neural Networks (CNNs) [29], Convolutional
Block Attention Module (CBAM) [30], [31], and (Deep
Residual Learning for Image Recognition, ResNet) [32].
Among them, CNNs are used to extract image features,
CBAMs are used to enhance the expressiveness of features
and distinguish different features, while ResNet is used to
reduce the gradient disappearance problem during model
training.

Convolutional neural networks include three primary struc-
tures: convolution, pooling, and fully connected layers [33].

CBAM is a computer vision attention method that
increases model performance and stability by adaptively
altering the relevance of each channel in the feature map.
Figure 3 depicts the operation of CBAM, which is separated
into two steps: channel attention [34] and spatial atten-
tion [35]. The attention mechanism [36] is a key strategy for
increasing the performance and resilience of convolutional
neural networks.

FIGURE 3. Theory of CBAM.

The channel attention module is primarily used to learn
the weights of several channels in order to better capture
the correlation between them. Each convolutional layer of
a convolutional neural network generates a feature map,
which typically has many channels, each corresponding to a
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distinct feature. The channel attention module can improve
network performance by learning the weights of each channel
in order to boost valuable characteristics and lessen the effect
of worthless features.

The channel attention mechanism is often implemented in
CBAM by global pooling of the feature graph [37]. Each
channel in the feature graph is compressed into a vector that
indicates its relevance via global pooling. To generate the
weight coefficients for each channel, these vectors are fed
into a sigmoid [38] function through a fully linked layer.
To achieve channel attention, these weight factors are applied
to each channel in the feature map.

The spatial attention module is primarily used to learn
weights between various places in order to better capture spa-
tial connections. Each convolutional layer in a convolutional
neural network generates a feature map, which typically has
numerous spatial locations, each corresponding to a distinct
pixel. The spatial attention module can improve network
performance by learning the weights of each location in order
to boost relevant pixels and diminish the effect of unnecessary
pixels.

The particular implementation of its spatial attention
module will change depending on the job. In this study,
we simply utilized a convolutional layer to extract each
position in the feature map and then executed Softmax [39]
operations on each position to obtain the weight coefficients
of the corresponding locations. This method of obtaining
weight coefficients can minimize calculation time and the
number of parameters.

ResNet, as seen in Figure 4, is a deep neural network
architecture whose main purpose is to overcome the gradient
disappearance and gradient explosion [40] problems in deep
neural networks.

FIGURE 4. ResNet.

D. BEARING FAULT DIAGNOSIS METHOD
The bearing defect detection technique is made up of
various components, including wavelet denoising, biphasic
current, the CBAR model, an optimization function, and a
loss function, among others. It may also be separated into
two parts: data pre-processing and network modeling in
general.

The data pre-processing section contains two parts,
as illustrated in Figure 5. The first step is to use wavelets

to denoise the biphasic current signal. To generate the
wavelet coefficients (WC) array, the input raw signal
is decomposed into four layers based on Db8. The
high-frequency components of the wavelet coefficients are
then adjusted to zero to reduce noise and high-frequency
interference before reconstructing the WC.

After wavelet denoising, the current signal is preprocessed
by biphasic current algebraic operations or vector (WP post-
processing) in the second stage to acquire more accurate
bearing fault features. These data are standardized, as shown
in equation (5), to make the model more stable during
training.

y =
2 (x − xmin)

xmax − xmin
− 1 (5)

We choose to normalize the data in this work to a value
between plus and minus 1, where is the value after the current
algebraic operations, xmin is the smallest value, xmax is the
highest value, and y is the normalized value.

The CBAR model is employed in the network model
component, as illustrated in Figure 6, to feature extract and
categorize the pre-processed biphasic current data in order
to perform automated detection of bearing problems. The
model is made up of two components: a feature extractor
and a classifier. The preprocessed one-dimensional vector is
fed into a two-dimensional convolutional neural network by
the feature extractor, and the 1∗2560-dimensional vector is
up-dimensioned [41] to produce a 40∗64-dimensional vector.
The feature extractor also performs two independent feature
extraction processes.

A convolutional layer, a batch layer, a parametric rectified
linear unit (PReLu) [42] activation function, a CBAM
attention mechanism, a maximum pooling layer, and residual
blocks are used in the autonomous feature extraction process.
The retrieved features are then submitted to the classifier
(completely connected layer and Softmax classifier), and the
defect diagnostic category is returned.

The batch layer is utilized for feature normalization [43] on
top of the convolutional layer for feature extraction to boost
network stability.

As illustrated in equation (6), the PReLU(parametric
rectified linear unit) function is a modified linear unit
function. When x < 0, the PReLU function multiplies by
a tiny positive integer to keep the gradient of the negative
portion from disappearing and the linearity of the positive
part maintained, and when x ≥ 0, the PReLU function is the
same as the (Rectified Linear Unit, ReLU) [44] function.
When compared to the commonly used ReLU function, the
PReLu activation function not only boosts nonlinearity but
also allows the network to retain more neurons, allowing it to
solve complicated problems more effectively.

f (x) =

{
ax, if x < 0
x, otherwise

(6)
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FIGURE 5. Signal preprocessing.

FIGURE 6. CBAR network model.

The model was trained using optimization algorithms
Stochastic Gradient Descent (SGD) [45] and Cross Entropy
Loss Function (CLF) [46].

III. EXPERIMENT
A. DATA SET PROCESSING
The experimental data utilized in this research from the
rolling bearing condition monitoring bench at the University
of Paderborn(UPB) [47], Germany.

Figure 7 shows the experimental setup, which contains the
test motor, measurement shaft, bearingmodule, flywheel, and
load motor. The bearings were all type 6203 and the current
signal was captured at 64 kHz for 4 seconds per sample.
The experimental damage types were divided into single
damage, repetitive damage, and multiple damages, where
multiple damages includes repetitive harm. Fatigue, wear,
corrosion, galvanic corrosion, plastic deformation, fracture,
and cracking were the six primary damage mechanisms
identified. In the UPB data literature [47], the precise UPB

FIGURE 7. Experimental platform.

data-related experimental setup and operating techniques are
given in depth.

For method testing, this work cross-selects an arti-
ficial single-point fault in the UPB current signal and
the multi-damage fault bearing derived after an acceler-
ated lifetime test to enrich the experimental condition.
K001 denotes the normal state; KI01 (artificial single
damage [47]) denotes inner ring failure; KA01 (artificial
single damage) denotes outer ring failure; KB24 (multiple
damage for accelerated life test) and KB27 (multiple damage
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TABLE 1. Manual single point of failure and real multiple failure
information.

for accelerated life test) denote combined inner and outer
ring failure. The inner ring of KB24 was the most damaged,
whereas KB27’s inner and outer rings were about equally
damaged. Table 1 shows the specifics.

OR, IR, OR+(IR), IR+OR, and NORMAL denote
the outer ring, inner ring, outer ring+(inner ring), inner
ring+outer ring, and normal, respectively. The diagnostic
categories of the faults are shown in Table 2. Table 3 shows
how the experiments were divided into four groups based on
the testing conditions’ speed, torque, and radial load.

TABLE 2. Fault Category.

TABLE 3. Experimental conditions.

2560 data points are selected as samples for each set of
tests, and the raw current signal data are sliced and diced to
obtain 10014 cases of N09-M07-F10 data, 10028 cases of
N15-M01-F10 data, 10015 cases of N15-M07-F04 data, and
10012 cases of N15-M07-F10 data. As shown in Figure 8,
the data were assigned at random under these distinct working

FIGURE 8. Random splitting.

circumstances, with 80% of the data serving as the training set
and 20% serving as the test set.

Figure 9 depicts the waveforms of the biphasic current
signal for each fault type under N15-M07-F10 operating
conditions with one unit sample for algebraic multiplication
and normalized to between plus and minus 1.

FIGURE 9. Algebraic multiplication operation waveform.

Figure 9 shows that the waveforms of the current signals
following the biphasic current algebraic operations havemore
visible changes between fault and normal situations under
this operating environment. As a result, the biphasic current
algebraic procedures are highly beneficial for extracting the
characteristics of the current signal, which can subsequently
be utilized to better train the model in the experiment.

B. EXPERIMENTAL PLATFORMS
The experiment is based on windows 10 system for training
the model and validating the method. The processor is 12th
Gen Intel(R) Core(TM) i7-12700H 2.30GHz. Then theGPUs
are RTX-3060 6GB and RTX-3090 24GB.

C. EXPERIMENTAL RESULTS
For each operational state, experiment with one algebraic
operation and one vector representation. To confirm the trust-
worthiness of the experimental results, 20 sets of experiments
were undertaken, with 10 trials completed for each set, for a
total of 200 experiments, each containing 200 iteration steps.
The test set was subjected to an accuracy examination. The
results of all tests are presented in Figure 10’s radar map,

FIGURE 10. Radar chart of experimental results.
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TABLE 4. Experimental results of algebraic addition (WP-A).

TABLE 5. Experimental results of algebraic subtraction (WP-S).

TABLE 6. Experimental results of algebraic multiplication (WP-M).

TABLE 7. Experimental results of algebraic phase angle (WP-P).

TABLE 8. Experimental results of vector representation (WP-V).

and it can be observed macroscopically that the results of
each experiment are almost over 99.0%, and most of them
are close to 100% accuracy, with the greatest accuracy rate
approaching 100%.

Tables 4-8 contain the complete experimental statistics.
The statistical results of each group of experiments show
that all four algebraic operations and vector representations
(WP post-processing) are effective in diagnosing bearing
faults, with the algebraic multiplication (WP-M) method

achieving the highest accuracy of 100% under all four
working conditions.

To see the model’s convergence during training and the
diagnosis findings for each sort of defect more clearly.
Figures 11, 12, and 13 illustrate the accuracy variation curve,
loss curve, and confusion matrix at the greatest accuracy for
the algebraic multiplication operation(WP-M).

FIGURE 11. Algebraic multiplication operation accuracy curve.

FIGURE 12. Algebraic multiplication operation loss curve.

FIGURE 13. Confusion matrix for algebraic multiplication operations
under N09-M07-F10.

D. EXPERIMENTAL WORKING CONDITION DISCUSSION
It may be required to examine the N09-M07-F10 operating
state independently while doing the analysis. When the
experimental data is obtained in this circumstance, the speed
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reduces dramatically, and the recorded bearing fault informa-
tion is conveyed to the current signal more weakly.

In the N09-M07-F10 operating condition, the feature
distinction between different fault signals is not so obvious
compared with other operating conditions. Simply calculate
the average correlation coefficient between each fault, and
the average correlation coefficient is calculated as shown in
equation (7).

Cor =
1
n2

n∑
i=1

n∑
j=1

∣∣ρij∣∣ (7)

In (7), n specifies the size of the correlation coefficient
matrix, ρij denotes the i-th row and j-th column entries, and
Cor is the average correlation coefficient. The greater the
average correlation coefficient, the more similar the series
are.

N09-M07-F10, N15-M01-F10, N15-M07-F04, and
N15-M07-F10 had correlation values of 0.74, 0.63, 0.68,
and 0.71, respectively. The strongest correlation coefficient
is N09-M07-F10, which helps explain why the link between
the characteristics of this condition is so strong and difficult to
separate. Figure 14 depicts the correlation coefficient matrix
of N09-M07-F10. Of course, the above description is based
only on the CBAR model for training; if other models are
employed, the results may change.

FIGURE 14. N09-M07-F10 correlation coefficient matrix.

And in order to consider most working situations, the
number of data points for each data sample was set to 2560 in
the experiment, whereas the number of data points gathered
for one rotation of the bearing under N09-M07-F10 working
conditions was roughly 4266 [48]. Despite the drawbacks
faced, this disadvantage may be significantly addressed by
the algebraic operations or vector representation (WP post-
processing) of the two-phase current, which strongly link the
two-phase currents to each other, and the experimental results
obtained by preprocessing the current data are still strong.

E. HYBRID FEATURE EXTRACTION
Although single-feature extraction is a straightforward and
efficient approach for data preprocessing, it may have

limitations in capturing the full complexity of the underlying
data. To overcome this, feature fusion techniques have
gained attention in recent years [49]. Feature fusion involves
combining information from multiple feature sources to
enhance model performance and resilience, while mitigating
the risks of overfitting and underfitting [50].
In this study, we conducted experiments to explore

the potential of feature fusion by utilizing four algebraic
operational features (WP-A, WP-S, WP-M, WP-P) proposed
in WP, along with vector representation (WP-V). The feature
fusion is illustrated in Fig. 16, and our objective is to improve
the robustness of the classification model by leveraging the
complementary information from each feature source. The
experimental results are promising, as shown in Figure 15
demonstrating the effectiveness of feature fusion in improv-
ing the accuracy of the classification model. Classification
model accuracy. In the four operational scenarios was
99.60%. This significant improvement is attributed to the
ability of feature fusion to capture different aspects of the
data and provide a more comprehensive characterization and
provide a more comprehensive representation.

FIGURE 15. Feature fusion accuracy distribution.

FIGURE 16. Schematic of feature fusion.

Furthermore, the use of hybrid feature extraction
approaches, which combine both single-feature extraction
and feature fusion techniques, offers a more robust and
scalable solution. By incorporating the strengths of both
approaches, hybrid feature extraction can further enhance
the performance of the classification model and ensure its
adaptability to different datasets and operating conditions.
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Overall, the findings of this study highlight the importance
of feature fusion as a powerful technique for data pretreat-
ment. It not only maximizes the utilization of information
from multiple feature sources but also improves the overall
performance and resilience of the classification model.
This research contributes to the advancement of feature
engineeringmethods and provides valuable insights for future
studies in the field of machine learning and data analysis.

IV. EXPERIMENTAL COMPARISON
It is important to note that the focus of this paper is on
the diagnosis of two-phase current bearing faults. Therefore,
other fault diagnostic signals, such as vibration signal
comparisons, have been widely recognized, vibration signals
will be covered in this paper, but are not the focus of the
comparison in this paper. As mentioned in the introduction,
vibration signals have some limitations,so the comparison
experiments in this paper primarily focus on bidirectional
current and some classic basic network models. Additionally,
the effectiveness of wavelet denoising techniques will be
evaluated.

A. PHASE CURRENT COMPARISON EXPERIMENT
N09-M07-F10, which is somewhat challenging in this paper,
was selected as the working condition for the experiments.
In the earlier tests of two-phase current algebraic operations
and vector representation (WP post-processing), various
damage faults KB24 and KB27 in the dataset were picked in
order to enrich the diversity of faults. while in the comparative
studies, these many damage flaws were omitted and the data
size was extended in order to make the experiments more
intuitive, intelligible and convincing. The artificial faults in
the UPB dataset were selected as experimental data and were
simply classified as outer ring faults (OR), inner ring faults
(IR), and normal (NORMAL).

TABLE 9. Test bearings with artificial damage.

Table 9 shows the bearing defect information and fault
categories, and the three sets of tests were run 10 times
each with 200 training cycles. Meanwhile, the algebraic
multiplication operation(WP-M) that produced the greatest
experimental results in this research was chosen as data
preprocessing.

TABLE 10. Phase current comparison experimental results.

Table 10 shows the detailed experimental statistics, Fig. 17
and Fig. 18 show the comparison curves of the change of
accuracy and the change of loss value, respectively, and
then Fig. 19 shows the distribution of the experimental
accuracy. From these plots, it can be seen that the two-phase
current after algebraic multiplication operation is obviously
better than the single-phase current, and the accuracy of
the two-phase current after preprocessing by algebraic
multiplication operation is improved by about 3 percentage
points.

FIGURE 17. Phase current accuracy change comparison curve.

B. NEURAL NETWORK MODEL COMPARISON
EXPERIMENT
Model comparison experiments are separated into two
experiments. The models evaluated in the first comparison
experiment are listed as follows:

(1) Shallow neural network with one hidden layer using
original signals as input (BPNN)

(2) Deep belief network with 4 hidden layers using original
signals as input (DBN)

(3) Deep belief network with more hidden layers using
WP-M signals as input (1D-CNNs) [51]
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FIGURE 18. Phase current loss value change comparison curve.

FIGURE 19. Phase current accuracy distribution.

(4) Signals are converted to time-frequency distribution
(TFD), deep Convolutional Neural Network (DCNN) and
fusion of vibration and current signals(Multi-signal) [52]

(5) CBAR+LSTM [53]
(6) Vision Transformer [54] (VIT)
(7) Swin Transformer [55] (ST)
The experimental settings of the first comparison experi-

ment are identical to those of the phase current comparison,
and the experimental findings are reported in Table 11.
And the confusion matrix of the CBAR model is shown in
Figure 20.
According to the experimental data, the CBAR model

is more accurate than the CBAR+LSTM, CNNs, and VIT
models. Based on the experimental data, the CBAR model
demonstrates higher accuracy compared to the BPNN, DBN,
CBAR+LSTM, CNNs, TFD + DCNN (multi-signal), and
VIT models. Although the CBAR+LSTM model shows
similar accuracy to the CBAR model, the inclusion of
LSTM does not significantly improve accuracy and demands
additional training resources. The VIT model also exhibits
limited accuracy and requires extensive training resources.
Standard BPNN, DBN, and 1D-CNNs models offer faster
processing but lower accuracy. The TFD + DCNN method
appears to closely match the accuracy of CBAR, but it is
relatively more complex.

TABLE 11. Comparison of experimental results of network models under
N09-M07-F10 operating conditions.

FIGURE 20. Confusion matrix for the CBAR model.

TABLE 12. CBAR and ST models compared experimental results.

It is worth mentioning that the accuracy of the ST model
under N09-M07-F10 operating circumstances is higher than
that of the CBAR model, up to 100%. For this reason,
the second model comparison experiment between CBAR
and ST models under four operating circumstances is done
in this research, and the results are provided in Table 12.
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The experimental findings reveal that the accuracy of the ST
model is drastically lowered under N15-M07-F04 operating
circumstances. In addition, the STmodel requiresmore costly
training compared to the CBAR model. Although the ST
model works well in many projects, especially in large-scale
data tasks, the CBAR model-based bearing fault detection
approach is more stable and cost-effective in the current fault
diagnosis task.

C. COMPARATIVE EXPERIMENTS ON DENOISING
TECHNIQUES
This paper employs wavelet denoising as the signal denoising
technique. To validate the effectiveness of this method, a
comparison experimental group and a processing experimen-
tal group are established: the comparison group comprises
the original signal without wavelet denoising(WD), while the
processing group includes the signal processed with wavelet
denoising.

The results presented in Table 13 demonstrate an enhance-
ment in diagnostic outcomes following the application of
wavelet denoising. Although the improvement is modest,
it does not have a negative impact. This provides further
evidence that bidirectional current preprocessing (WP-M)
remains effective even in the presence of noise. Additionally,
it reaffirms the robustness of fault diagnosis based on current
signals compared to methods based on other signals.

TABLE 13. Comparative experimental results of wavelet denoising.

FIGURE 21. Two-dimensional visualization of fault characteristics.

D. FEATURE VISUALIZATION
T-SNE [56], [57] (t-distributed stochastic neighbor embed-
ding) is a dimensionality reduction technique that is
commonly used for visualizing high-dimensional data. In the
context of the CBAR model, T-SNE is applied to the features
extracted from the last hidden layer of the model after
normalization. Figure 21 displays the results of the T-SNE
visualization, showcasing the patterns and relationships
present in the defect data. This visualization enables a
quick and intuitive understanding of the data, making it
easier to identify clusters or similarities among the data
points. By reducing the dimensionality of the data while
preserving its structure, T-SNE allows for a more compre-
hensive analysis and interpretation of the CBAR model’s
outputs.

V. CONCLUSION
This work proposes a biphasic current-based bearing defect
diagnostic technique. The approach begins by pre-processing
the current signal with features using wavelet denoising,
biphasic current algebraic operation, or vector representa-
tion(WP). Then, a CBAR neural network model is built
to intelligently recognize the characteristics and, ultimately,
diagnose bearing defects.

The limitations of bidirectional current detection for
bearing fault diagnosis include:

• Dependency on bearing’s working state: Detection
accuracy may be affected if the bearing is not in
operation or under a light load.

• Environmental interference: Surrounding factors such
as electromagnetic interference and temperature vari-
ations can impact the accuracy of the detection
results.

• Inability to pinpoint fault location: The method can
indicate the presence of a fault but cannot precisely
locate its specific position, necessitating complementary
diagnostic techniques.

• Inability to differentiate fault types: The detection
method can identify the presence of faults within the
bearing but cannot distinguish between different types
of faults, such as wear, cracks, or loosening.

The successful experience gained from the fault diagnosis
approach using two-phase current signals can provide
valuable insights and ideas for fault detection in three-phase
AC [58], [59], and multi-phase AC systems. Specifically,
the approach of linking the collected synchronous signals
together instead of analyzing individual signal aspects in
isolation offers important insights and directions for future
research. In addition, there is a vast scope for future research
in the areas of feature extraction methods, transferability,
model migration learning and unsupervised deep migration
learning. These areas have the potential to drive further
progress and innovation in the field of bearing defect
diagnosis.
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