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ABSTRACT Nowadays, the growth of multimedia content over the web is exponential. The fingerprints
are inconspicuously embedded in multimedia content. The fingerprints can be exploited to trace divergent
information from multimedia resources. Sampling fingerprints, particularly from multimedia resources,
is challenging since they are complex, heterogeneous, and diverse. This research proposed an approach
to sample fingerprints from multimedia resources. Our approach partitions the multimedia content space
into converged clusters using variations of Canberra distance and identifies the most diverged samples
using Kullback-Leibler (KL) divergence. The resultant clusters represent the information belonging to
particular concepts and the diverged samples within the clusters represent multimedia fingerprints. The
fingerprint sampling process is leveraged using unsupervised learning algorithms, instantiated across various
multimedia descriptors, and tested over standard multimedia datasets. The average results obtained over
various standard visual and acoustic datasets reveal 80%, 77%, and 78% accuracy, precision, and recall,
respectively, surpassing most of the existing baseline clustering methods such as K-Means, Mean-Shift,
and DBSCAN. Furthermore, the rigorousness of the proposed algorithm clustering is evaluated using the
internal clustering stability silhouette coefficient and the fingerprint diversity scores. The results unveil a
maximum of 94% diversity score. The proposed variation of Canberra distance and KL divergence provides
the most stable performance (SD=0.02) and creates promising implications in future multimedia retrieval,
summarization, and exploration activities.

INDEX TERMS Algorithms, convergence, clustering, divergence, fingerprints, multimedia, unsupervised.

I. INTRODUCTION
Nowadays, exponential growth in the online production
of multimedia content has been observed [1], [2]. The
multimedia content in different media formats, i.e., text,
audio, image, video objects, etc., collectively accumulated
over massive multimedia resources [3]. Multimedia content
has associated textual, acoustic, and visual information
modalities [4]. Approximately 2.6 exabytes of multimedia
content are consumed, replicated, and explored over the
online multimedia resources [5]. Almost 82% of the global
data traffic over the web is multimedia-based [6]. The
contents in different media formats with multiple modalities
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are archived, retrieved, and interacted with by the web users
in everyday exploration activities via search applications [7].
Web users become overwhelmed with multimedia content,

causing information overload, which hinders multimedia
content exploration and access [8], [9]. Synthesizing vast
multimedia resources with an abundance of different media
formats and multiple information modalities via computing
technologies is challenging [10], [11]. Ensuring users can
access specific content from multimedia resources is a
challenging endeavor [12]. Additionally, retrieving relevant
information from immense piles of multimedia resources
over the web becomes cumbersome. The retrieved mul-
timedia content may include irrelevant, redundant, and
insignificant content, leading to a partial satisfaction of
information needs [4].
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The massive amount of information in multimedia
resources is undoubtedly invaluable in various user domains
and retrieval scenarios [13], [14]. The techniques to access
vast multimedia resources are becoming integral to user inter-
action and exploration scenarios [15], [16]. The exploration
scenarios require fingerprint sampling from multimedia
resources in the user’s exploration activities [17]. Fingerprint-
ing is about extracting information subsets from a divergent
information resource that may represent a concept as a
whole [18]. The fingerprints are inconspicuously embedded
in multimedia content resources and are used to trace precise
information from divergent resources [19], [20].
The existing literature broadly defines the multimedia

fingerprinting concept in the context of audio content and
copyright protection [21], [22]. The former is to provide
the effective matching of audio clips, and the latter is to
preserve the copyright of the multimedia content. However,
the main objective of multimedia fingerprinting is to facilitate
the precise identification of massive content via signature
matching [23]. In this research, we extended the idea of
fingerprinting to solve the problem of multimedia content
accessibility in retrieval and exploration contexts. We will
generalize the fingerprinting concept to identify the samples
from multimedia resources. The samples are fingerprints,
which may give a holistic representation of multimedia
resources.

This research proposes an approach to sample fingerprints
from multimedia resources containing audio-visual content.
Our approach initially clusters multimedia content instances
into a dynamic number of the most converged clusters. The
key representative samples are finally extracted from themost
diverged samples as fingerprints based on their convergence
in perspective clusters. We employed Canberra distance
and Kullback-Leibler divergence measures in clustering
and fingerprinting, respectively. The former is to distribute
multimedia resources into clusters and later to identify
fingerprints from them. We also proposed clustering and
fingerprint identification algorithms that employ the varia-
tions of Canberra distance and Kullback-Leibler divergence
measure, respectively.

Our proposed approach provides a baseline to extract
fingerprints from multimedia resources. To our knowledge,
we are the first to employ multimedia fingerprinting to
ease multimedia content accessibility and exploration. The
proposed approach was instantiated over diverse audio-visual
standard multimedia datasets. We extracted a variety of
audio-visual descriptors from the multimedia contents and
employed them in instantiation. The performance of our
proposed approach in terms of precision, recall, and
accuracy measures was revealed. We also used Mean-
Shift, K-Means, and DBSCAN as baseline algorithms
in a comparative evaluation. Our approach outperforms
other baseline methods. We found that our proposed
approach is more accurate and precision-oriented. The
silhouette coefficients analysis highlights cluster stability
across the different datasets and extracted descriptors.

Our proposed approach is generic and effective since the
approach is equally applicable across multiple datasets and
descriptors.

The rest of the discussion is organized as follows. Section II
provides a literature review. Section III discusses the pro-
posed approach. Section IV provides approach instantiation
details. Section VI explains the experimental details and
results. Section VII provides a comparative discussion.
Finally, section VIII concludes the discussion and highlights
future research directions.

II. LITERATURE REVIEW
A. MULTIMEDIA RESOURCES
In recent years, multimedia resources have converged over
the web due to the emergence and proliferation of advanced
computer and communication technologies [24]. The web
has become a vast distributed multimedia resource. The
multiple media objects have been accumulated over the web
as massive multimedia resources that enabled the exploration
of several different media types via advanced computing
applications, i.e., digital libraries, social media platforms,
knowledge-based systems, etc. [25], [26], [27]. The multime-
dia information resources enable access and interaction with
multiple media objects [28]. For example, Google1 provides
users interaction with more than 30 Trillion web pages
containing textual content; Flickr2 enables social interaction
with more than 10 billion images; SoundCloud3 contains
50 million tracks of audio content; YouTube4 contains more
than 800 million videos clips of variable length.

B. FINGERPRINTS
1) FINGERPRINTING: BASIC CONCEPT
Traditionally, fingerprinting involves bio-metric of people’s
unique physical or biological characteristics required to
identify them, e.g., thumb lines, retina, ears, etc. [29], [30].
The fingerprinting concept was first conceptualized from the
theory of uniqueness [31]. However, in recent years, finger-
printing has been further employed in source identification,
duplicate detection, copyright prevention, etc., in different
domains [32], [33], [34], [35]. The research concerning
multimedia fingerprints has recently gained the attention of
researchers with a significant focus on the audio domain [36],
[37]. The same idea of the theory of uniqueness in fingerprint-
ing is also adopted in the context of fingerprinting of multi-
media content [38]. The fingerprinting mainly distinguishes
perceptually different artifacts on the uniqueness basis from
multimedia resources [31]. Fingerprint identification from
multimedia resources can be determined as extracting a
subset of information as representatives of a multimedia
resource [39].

1https://www.google.com/
2https://www.flickr.com/
3https://soundcloud.com/
4https://www.youtube.com/
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FIGURE 1. Analogy of multimedia fingerprints.

2) FINGERPRINTING: ANALOGY
The fingerprinting approach mainly identifies a set of sam-
ples from the large resource sets [40]. In a way, fingerprinting
comprises selective representative examples from the original
datasets or resources [41]. Figure 1 illustrates the Analogy
of fingerprint identification. As it emerges from Figure 1
that fingerprinting involves the selection of representative
samples from information resources that can further be used
in comparison, analysis, and management. The fingerprinting
captures vital information from the original dataset more
efficiently than any random sampling technique [13]. Finger-
prints dependably and effectively portray the whole dataset
and address the vital issues in scientific data analysis, having
diverse utilization in artificial intelligence, signal processing,
data recovery domains, etc. [18].

C. MULTIMEDIA FINGERPRINTS
The proliferation of multimedia data creates challenges in
accessing, interacting, and exploring massive multimedia
resources [11], [42], [43]. However, fingerprinting is a
non-trivial task that enhances human understanding of
information resources via a smaller set of representatives
identified as samples [44], [45]. Multimedia content available
on the web is large and highly redundant and could be
represented by a relatively small subset [36], [45], [46],
[47]. The relevant and representative subset that demonstrates
the global view of the entire resource can be nominated as
fingerprints [13]. The identified fingerprints can be further
used in processing since they precisely indicate the possible
attributes of a collection. In multimedia resources, the
fingerprints exist as a condensed content-based mark that
synopsis content and provides evidence of uniqueness [48].
In multimedia resources, fingerprinting can be categorized
into acoustic and visual.

1) ACOUSTIC FINGERPRINTS
Audio fingerprints have become popular because they
permit the detection of audio self-reliant from its structure.
However, it may not include the meta-data requirements [49].
An acoustic fingerprint is a digital summary generated from
an audio clip. The objective is to locate an audio clip

or similar from the audio database [50]. Anguera et al.
computed masks near the spectral peaks in the spectrogram
for robust audio fingerprinting [51]. Yu et al. proposed
hybrid high-performance data structures for indexingmassive
amounts of audio fingerprinting data for efficient search [52].
Ouali et al. quantized spectrogram regions into a series of
horizontal and vertical slices, which are then represented
as 48-dimensional fingerprints [53]. Malekesmaeili et al.
computed scale-invariant features from two-dimensional
time-chroma representations of spectrogram patches [54].
Saravanos et al. proposed a novel audio fingerprinting
technique based on the expression of audio signals by
establishing a dictionary [55]. Li et al. proposed a compact
representation for audio fingerprints executed from local
linear embedding that is further utilized in the retrieval
task [36].

2) VISUAL FINGERPRINTS
In visual fingerprinting, most work is done in either the
context of prototype selection from an image dataset or
key-frame extraction from a series of video frames [46],
[56]. Traditionally visual fingerprints are employed to verify
human identities; the objective is to improve security
and safety against impersonal attacks [57]. The concept
can be generalized to identify the sample visuals from a
diverse set of video objects. Pandya et al. suggested the
identification of fingerprints from the visual content by
employing texture features, histogram equalization, Gabar
filters, and deep learning approaches [58]. Li et al. proposed a
fingerprinting method for video retrieval and copy detection
by considering convolution neural networks, quantization
coding, and feature extraction method [59]. Tseytlina et al.
proposed a video fingerprinting plan for content-based video
retrieval. The approachwas based on FourierMellin, features,
and compaction [60]. Mandelli et al. dealt with stabilizing
video from the recording devices, particularly the method
that involves the identification of images or video clips as
fingerprints [61].

D. FINGERPRINTING MECHANISMS
Ye et al. proposed multimedia content fingerprinting by
employing Cellular Automata (CA), Social Network Anal-
ysis (SNA), and Discrete Wavelet Transform (DWT). Mainly
the fingerprinting code is produced via SNA [62]. Pinto et al.
suggested a novel technique to extract time-spectral descrip-
tors as low-level features from the visuals. They constructed
a visual codebook to drive mid-level feature descriptors as
fingerprints [63]. Egorova et al. devised identifiable parent
property (IPP) coding mechanism to detect the unautho-
rized distribution of multimedia content. They theoretically
generated IPP signatures from multimedia content [64].
Ouali et al. suggested an approach to extract fingerprints
from the visual contents by encoding the positions of
salient features from the gray-scale transformed images
of video objects [65]. Phan et al. targeted minimizing
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the Sensor Pattern Noise to effectively identify the image
fingerprints using Large Scale Sparse Subspace Clustering.
The technique produces many clusters from unclustered
images [66]. Chen et al. introduced DeepMarks, a framework
to retrieve authorship information and unique users from
multimedia content as fingerprints. The framework provided
the design of a unique codebook and encoding scheme to
extract fingerprints from multimedia content [67]. Fan et al.
investigated signature codes using the weighted binary adder
channel and collusion-resistant to extract the multimedia
fingerprinting. They theoretically experimented and gener-
ated adversarial traceability fingerprints [18]. Panday et al.
devised fingerprint Singular Value Decomposition (SVD) to
generate the image fingerprints. The notion was to construct
the fingerprint regardless of the rotation of the image [68].
Sharma et al. employed Local Adaptive Binary Patterns
(LABP) and Uniform Local Binary Patterns (ULBP) along
with Support Vector Machine (SVM) to learn LABP and
ULBP features as fingerprints [69]. Ye et al. proposed a
novel fingerprinting that decomposes the image fingerprint
code via structure fingerprint embedding. The objective
was to use a unique image fingerprint to encrypt the
images [70].

E. ISSUES AND MOTIVATION
In the present era, multimedia resources are growing expo-
nentially. Contrarily, individuals have constrained resources
due to limitations in their manual comprehension. The
existing fingerprinting approaches provide the identification
of fingerprints from audio-visual content. However, they
exploit the low-level representation of multimedia content,
such as binary encoding and signal manipulations [18],
[63], [68], [70]. Moreover, the prime purpose of the
existing fingerprinting approach is to uniquely identify
multimedia content for the prevention of unauthorized
distribution [64]. Therefore, fingerprinting in the context
of multimedia content identification is the least discussed
in the literature. Most of the fingerprinting work has
been leveraged in the context of source identification,
duplicate Selection, similarity-based retrieval, inverted index
management, etc. However, almost all of the fingerprint-
ing techniques are for particular domains. The research
needs perceptual divergence to provide a comprehensive
fingerprint identification mechanism for heterogeneous mul-
timedia content resources. Hence, in this research, we are
interested in exploring a generic multimedia fingerprinting
approach based on state-of-the-art descriptors that provide
representative samples to help aid immense multimedia data
exploration.

III. FINGERPRINTING APPROACH
In this research, we extended the fingerprinting analogy
to address the issues in identifying fingerprints from mul-
timedia resources. The objective is to suggest a generic
approach that locates the most desired samples of multi-
media resources as fingerprints. Notably, we extended the

multimedia fingerprinting idea to sampling the most diverged
fingerprints that may provide the sample-based coverage
of the entire multimedia resource via the clusters with the
most similar multimedia content. We aim to improve the
performance of our generic algorithms and compare them
with standard benchmarks that are applicable regardless of
domain knowledge. We have proposed a novel approach to
identify fingerprints from audio-visual resources. Primarily,
we employed an unsupervised approach and developed an
algorithmic fingerprint selection strategy from multimedia
resources.

We hypothesized that the most convergent samples within
clusters might have the most diverged characteristics within
an entire multimedia resource. The clusters individually
represent the unique concepts within an entire multimedia
resource since a multimedia resource is a collection of diverse
clusters. The most converged sample within a cluster shows
maximum similarity with the other samples of the cluster.
In this way, (i) a unique sample as a fingerprint from a
cluster can be identified, (ii) the fingerprints can be sampled
from the clusters as representative of the entire multimedia
resource, and (iii) the sample representations of the entire
resource can be recognized as fingerprints of the multimedia
resource. We identified the most converged items as multi-
media fingerprints from the most diverged clusters. In the
following section, We will discuss the approach overview,
preliminaries, distance measure, and algorithms employed to
sample fingerprints from the multimedia resources.

A. APPROACH OVERVIEW
Our approach sampled the most diverged components from
the most converged multimedia clusters, where Components
are media objects belonging to a particular multimedia
resource type, i.e., text, image, audio, video, etc. We intro-
duced new variations of Canberra distance to identify LMost
converged clusters. Alternatively, the proposed variations of
Kullback-Leibler divergence identify MMost diverged com-
ponents from the components of LMost converged clusters.
MMost and LMost represent the dynamic number of clusters
and sample fingerprints, respectively. Figure 2 demonstrates a
schematic overview of our proposed fingerprinting approach.

Our proposed approach dynamically samples the finger-
prints from the clusters by accommodating media objects
belonging to a particular media type in separate media object
spaces (Figure 2 (a)). The components are loaded into media
set space (Figure 2 (b)). The media set space is converged
into the most relevant components in separate partitions
called clusters (Figure 2 (c)). The divergence process is
applied to the entire sets of clusters to identify divergent
samples (Figure 2 (d)). Amongst the divergent samples, the
proposed approach identifies the fingerprints, which are the
most discriminating and maximally correlated components
in a media object space and clusters (Figure 2 (e)). Finally,
the results of the obtained fingerprints are obtained empiri-
cally and compared with existing state-of-the-art algorithms
(Figure 2 (f)).
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FIGURE 2. The overview of the fingerprint sampling approach comprising media (a) object space accommodation, (b) features extraction, (c) cluster
generation, (d) sample extraction, (e) fingerprint identification, and (f) approach evaluation.

B. APPROACH FORMALIZATION
Let T = {Ti,T2,T3, ..,Tn} is a media object space containing
media objects (components) belonging to a particular type,
i.e., either text (α), audio (β), image (γ ), or video (δ).
The α, β, γ , and δ are disjoint sets. ∀Ti ∈ T represent
a unique components in T . R = {R1,R2,R3, . . . ,Rn} is
a feature set space extracted ∀Ti ∈ T and Ti ∼= Ri.
C = {C1,C2,C3, . . . ,Cn} is a set of clusters and Tis
are converged in distinct clusters Cis by considering Ris
similarities in Tis and Tjs, where Ci ∩ Cj = φ and i ̸= Cj.
Ci = {Ti1,Ti2,Ti3, . . . ,Tin} is a cluster set containing most
converged components, where T = {C1∪C2∪C3∪, . . . ,Cn}.
F = {F1,F2,F3, . . . ,Fn} is a sample fingerprints set
extracted from C , where Fi ∈ Ci, each Fi is unique within
a Ci, and Fsim > (Tsim) → C since F ⊆ T and Fis clusters
are most diverged components of T .

C. DISTANCE MEASURES
1) CANBERRA DISTANCE
Our approach employs basic Canberra distance (dcn) to split
∀Ti ∈ T into most converged ∀Ci ∈ C . The dcn in a pair of
components Ti and Tj is computed as:

dcn(Ti,Tj) =
n∑

k=1

|Ri − Rj|
|Ri| + |Rj|

(1)

Equation 1 can not give the component-wise mean
Canberra distance (CoCnmean) of a component Ti concerning
all other components in set S, where S are non-clustered
components and ∀Sk ∈ T . The CoCnmean is computed as:

CoCnmean(Ti, Sj) =
n∑

k=i+1

dcn(Ti, Sj)/|Sj|

∴ S j = {Ti+1,Ti+2, . . . ,Tn} (2)

Equation 2 associate individual meanCn distance ∀Ti ∈ T .
In fact, CoCnmean computes the degree of uniqueness
∀Ti ∈ T . However, the uniqueness of individual components
is not normalized; it varies in components, hence only utilized
to find a convergence of randomly distributed components
into the dynamic number of clusters. We proposed normal-
ization of CoCnmean to compute a normalized factor, which
can be used as threshold values to decide the inclusion of a
Ti in a particular Ci. The normalized component-wise mean
Canberra distance (NEoCanmeanT ) ∀Ti ∈ T is computed as:

NoCnmean(SNcom) = Max(CoCnmean(CNcom))

−Min(CoCnmean(SNcom )) (3)

The NCoCanmeanT is derived by taking the difference
between maximum and minimum non-zero values of
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CoCanmeanTi and ∀Ti ∈ T . The equation 10 represents a
set of all components that are not converged in any ∀Ci ∈
C and their CoCanmeanTi > 0. Equation 4 represents the
components excluded in C .

SNT = {ST } − {S1CT ∪ S2CT ∪ S3CT . . . ∪ SLCT }

− {T0−NoCanstd } (4)

In equation 4, SNT is a set of not-clustered components
Ti, where Ti ∈ T and Ti /∈ C . SLCT is a set of all clustered
components Ti, where Ti ∈ {T ,C}; and T0−NoCanstd is a set of
all components Ti, where Ti ∈ T and Ti CoCnmean distance
with respect Tj ∈ T = 0, where i ̸= j.

2) KULLBACK-LEIBLER DIVERGENCE
We propose variations of Kullback-Leibler divergence as
object-wise Kullback-Leibler divergence and normalized
object-wise Kullback-Leibler divergence. These variations
are used to sampleM-Most divergent objects from the objects
of L-Most convergent clusters. Kullback-Leibler divergence
calculates the degree of dissimilarity between two objects.
It can be used to compute the divergence between objects.
Kullback-Leibler divergence can be measured between the
objects of vectors Ei of objectsMi and Mj as:

dKL(Mi,Mj) =
n∑

k=1

(
MjEk log

(
MjEk
MiEk

))

+

n∑
k=1

(
MiEk log

(
MiEk
MjEk

))
(5)

The range of the Kullback-Leibler divergence measure
is [0,∞]. The lower and upper bound will represent the
degree of convergence between the pair of objects (Mi, Mj).
The Individual divergence measure of any two individual
objects can be calculated using equation 5. This measure
can not calculate the Kullback-Leibler divergence of an
object concerning all other remaining objects. Kullback-
Leibler divergence measure is used to calculate this measure.
Equation 6 represents object Wise Mean Kullback-Leibler
Divergence of an object (E0KL − DivergencemeanMi) for all
other objects.

EoKL − Divergencemean(Mi,Ek ) =
n∑
j=1

dKL(Mi,Ek )/|Ek |

(6)

(E0KL−DivergencemeanMi) can be calculated by dividing
the sum of all the Kullback-Leibler divergence of an object
Mi with all the objects Mj with the cardinality of cluster
object setEkk , where j̸=i,E0KL−DivergencemeanMi represent
individual divergence of each object for all other cluster
objects. E0KL − DmeanMi represents its uniqueness in the
set of objects in a cluster Ek . The proposed variation of
Kullback-Leibler divergence only calculates the individual
E0KL − DmeanMi in the set of media objects. It represents
only the uniqueness of an object for all other objects in the

cluster. The uniqueness of individual objects in the clusters is
not normalized; it varies from object to object. It can not only
be utilized to calculate the normalized divergence in cluster
objects. Normalized object-wise Kullback-Leibler Mean
Deviation(NE0KL − DivergencemeanM ) is also proposed.
The normalized factor can be used as a threshold value to
decide the inclusion of an object in the set of candidates.
(NE0KL − DivergencemeanM ) can be calculated as:

NoKL − Dmean(EN−obj) = Max(EoKL − Dmean(EN−obj))

+Min(EoKL − Dstd(CN−obj))/2

(7)

The normalization factor can be calculated by taking
an average of the maximum and minimum (E0KL −
DivergencemeanMi) for all other objects in the cluster.

D. ALGORITHMS
We developed four novel algorithms to sample the most
diverged media objects (instances) as sample fingerprints
from the most converged clusters. The algorithms compute
instance-wise mean Canberra distance of all the non-
clustered instances, instance-wise Kullback-Leibler (KL)
standard deviation for all instances in a cluster, instances
into a dynamic number of clusters, and sample most
divergent instances from the clusters as sample instances. The
Algorithm 1 computes instance-wise mean Canberra distance
as EoCanmeanMi of all non-clustered instances. It provides a
threshold value as a normalization factor during the clustering
of the instances. The threshold value is updated dynamically.
It is re-computed for the objects remaining in a set after
instance inclusion in a cluster. The threshold values are
calculated dynamically until the inclusion of all objects in
their corresponding most convergent cluster.

Algorithm 1 Canberra Distance Computation
Data: Feature Object Space
Result: Uniqueness of Media object and Threshold

value
Sn−objects← {Sobjects} − {SClusterobjects};
k ← 0;
while |Sn−Objects| > 1 do

Mi← Sn−object[1];
{Sn−object} ← {Sn−objects} − {Mi};
dCan← 0;
foreach (MjinSn−objects) do

dcan← dcan + dcan(Mi,Mj)
end
EoCabmeanMj← dcan/|Sn−objects|;

end
NEoCanmeanM ← max(CabMEANj )−min(CabMEANj );

The Algorithm 2 computed Kullback-Leibler standard
deviation of all instances in a cluster. The algorithm performs
normalization on the calculated instance-wise Kullback-
Leibler standard deviations. Algorithm 2 provides a threshold
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value in sampling the pair of instances. The threshold
factor is a normalization factor. The threshold value is
calculated dynamically for each cluster. The Algorithm 1
and Algorithm 2 are further exploited to group instances in
a dynamic number of converged clusters and sample most
diverged instances from the clusters as sample fingerprints
in Algorithm 3 and Algorithm 4, respectively.

Algorithm 2 Kullback-Leibler Normalization
Data: Feature object set contained in Clusters
Result: Uniqueness of Media object and Threshold

value
Cn−objects← {Cluster − objects};
k ← 1;
while− loop− size = |Cn−objects|;
while (k! = while− loop− size) do

Mi← En−objects[k];
dKL ← 0;
{Cn−objects} ← {Cn−objects} − {Mi};
foreach (MjinSn−objects do

dKL ← dKL + dKL(Mi,Mj);
end
{Cn−objects} ← {Cn−objects}U{Mi};
EoKL − DivergencemeanMj← dcan/|Cn−objects|;

end
NEoKL − Divergencemean←
max(CabMEANj )+ min(CabMEANj )/2;

Algorithm 3 initially takes the first instance of the
media object space as cluster centroid. The normalization
factor for the centroid is dynamically calculated using the
pseudo-code mentioned in algorithm-1. The objects from
the set are included in the cluster and excluded from the
object set if their Canberra distance for the centroid is
less than NEoCanmeanM (computed via Algorithm 1). The
procedure continues until all the objects are clustered into
disjoint sets, and the cardinality of the media object set
becomes zero. The Algorithm 3 creates the number of clusters
dynamically.
Algorithm 4 selects Each cluster object will be chosen

individually, and its Kullback-Leibler divergence for all
other objects is computed. An object is considered divergent
and sampled if its Kullback-Leibler divergence concerning
all other objects is more significant than that of the
KL-Divergence threshold. A pair of objects were selected
from each cluster as a sample candidate. The Algorithm
sample an object from the pair of objects with the least
mean KL-Divergence for all other cluster objects. This
procedure eliminates boundary objects from the candidate
samples. This procedure continues cluster by cluster for all
the objects until the sampling of all the M-Most divergent
objects. The workflow is defined in Algorithm 4. The
complexity of this algorithm is O(nk) as it will compute all
the distances, and from each cluster, the fingerprint will be
selected.

Algorithm 3 Centroid Initialization
Data:Media objects
Result: Clusters
{Sn−objects} ← {objectsobjects};
l ← 0;
{CL−objects} ← {Empty};
while (|Sn−objects| ̸= 0) do

Mi← Sn−object [1];
{Cl} = Mi;
{Sn−objects} ← {Sn−objects} − {Mi};
foreach (MjinSn−objects) do

dcan← dcan + dcan(Mi,Mj);
if (dcan < NEoCanmeanMi) then
{Cl} = {Cl}U{Mj};
{Sn−objects} ← {Sn−objects} − {Mi};

end
end

end

Algorithm 4 Kullback-Leibler Divergence Calcula-
tions
Data: Clusters
Result: Fingerprints
{Ncluster−sets} ← {{C1}, {C2}, {C3}, . . . , {Cm}};
{Ssamples} ← {empty};
l ← 0;
{CL−objects} ← {Empty};
while (|Ncluster−sets| ̸= 0) do
{Cl} ← {Ncluster−sets};
Mi = Cl ;
{Sc−samples} = {};
foreach (MjinCls) do

if (Mi ̸= Mj) then
dKL ← dKL(Mi,Mj);
if (dKL > NEoCKLDmeanMi) then
{Sc−samples} = {Sc−samples}U{Cl};

end
end
Dn = avg(dKL(Sc−samples[1]), {Sc−samples});
Dm = avg(dKL(Sc−samples[2]), {Sc−samples});
if (Dn < Dm) then
{Ssamples} = {Ssamples}U{Sc−samples[1]};

end
{Ssamples} = {Ssamples}U{Sc−samples[2]}

end
end

IV. INSTANTIATION
Our proposed approach is instantiated and executed on a
publicly available dataset. It also defines the implementa-
tion of various measures and approaches. The following
subsection briefly overviews fingerprinting instantiation
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TABLE 1. Datasets employed in the instantiation of the proposed
fingerprinting research.

details, including the dataset, implementation details,
experimental setup, and baseline algorithms.

A. MULTIMEDIA DATASETS
We instantiated our approach on different publicly available
widely used datasets. The details of the datasets are given in
Table1. We have instantiated our approach on image datasets
named I-Search5 and Oxford-IIIT Pet.6 The I-Search dataset
contains 10305 images. The I-search dataset is divided into
51 categories, and each type has approximately 200 images.
Similarly, the Oxford-IIIT dataset consists of 37 category
pet datasets with approximately 200 images for each class
totaling around 7349 images. The I-Search audio dataset
consists of 637 audio files classified into 43 categories.
Finally, the audioMNIST7 dataset consists of 30000 audio
samples of spoken digits (0-9) of 60 different speakers. These
datasets contain the ground truth value which facilitates the
calculation of accuracy, precision, and recall measures.

B. DESCRIPTORS
The visual features extracted via routines are mainly
implemented in C# and MATLAB. We extracted features
from image objects that include the Color and Edge
Directivity Descriptor (CEDD), Color-Correlogram (CC),
and Histogram of Oriented Gradients (HoG) features. These
features were extracted via openCV library.8 The resultant
fingerprints from the CEDD, CC, and HoG are shown in
Figure 3. In the case of audio datasets, Spectral Roll-off
(SR), Spectral Centroids (SC), and Mel Frequency Cepstral
Coefficients (MFCC) are extracted via Librosa9 library.
The librosa.display routine is used to display the audio
files in different formats, such as wave plots, spectrograms,
or color maps. Amplitude and frequency are important
parameters of the sound and are unique for each audio,
for which librosa.display.waveplot routine is used. Figure 4
shows the fingerprints obtained via acoustic descriptors. The
information contained in image and audio objects is extracted
as vectors and matrices, respectively. These vectors and
matrices are finally stored in text files comprising numeric
values in corresponding matrices and vectors.

5https://vcl.iti.gr/dataset/i-search-multimodal-dataset/
6https://www.robots.ox.ac.uk/∼vgg/data/pets/
7https://www.kaggle.com/datasets/sripaadsrinivasan/audio-mnist
8https://opencv.org/
9https://librosa.org/

FIGURE 3. The clustering samples obtained for each feature set.

FIGURE 4. The fingerprints obtained via acoustic descriptors.

C. IMPLEMENTATION
Concretely, each media object Mi in the original set
M is initially considered a single object, denoted as
M1,M2,M3, ..,Mn. Each object has n features. Ini-
tially, the objects are deemed non-clustered objects. The
NEoCanmeanM of all the objects in the set are calculated using
the previously mentioned NEoCanmeanM - Algorithm. The
NEoCanmeanM can be calculated using the NEoCanmeanM -
Algorithm. An object is randomly selected from the set of
non-clustered objects as a cluster centroid.

The remaining objects in the set whose Canberra distance
is less than the normalization factor are deemed cluster
elements. The clustering procedure continues until the
normalization factor of the last created clusters is not less than
the normalization factor of the non-clustered objects. The
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objects in the non-clustered set, whose normalization factor
is less than the last made cluster, are included in a new cluster.
The procedure automatically stops until the partition of the set
of objects into a dynamic number of clusters. It is revealed
from the simulation that our proposed clustering approach
distinguishes the effective results (Figure 5).

The media objects with the highest average similarity to
the other objects will offer the highest content coverage
in the set. The working sampling algorithm samples the most
similar objects from the cluster created by the clustering
algorithm. The algorithm calculates the EoCKL − DmeanM
of all the objects in the first cluster. Points with maximum
KL Divergence from the cluster are sampled as candidate
samples. An object from the candidate samples with max-
imum KL-divergence for all other objects in the cluster
is considered a sample from the cluster. This procedure
continues until the objects are sampled from all clusters.
Figure 5 demonstrated the fingerprints extracted from the
clusters.

V. EVALUATION
A. EXPERIMENTAL SETUP
We have applied our approach on a quad-core Intel (R)
Core (TM) i7-6700 @ 3.4 GHz desktop computer with
8GB DDR3 RAM. All methods were implemented in the
Python 3.8 version of the Spyder10 environment with the
64-bit interpreter. Pandas,11 Sci-Kit,12 Flask,13 Keras,14 and
OpenCV15 libraries.

B. BASELINE ALGORITHMS
We have proposed a new and novel method for clustering
and provided an unsupervised approach that only requires
prior information like the number of clusters or initial
value. However, We have compared the performance of
our algorithm with standard benchmarks to determine the
efficiency of our algorithm. The algorithms such as Mean-
Shift, K-Means, and DBSCAN were utilized to test the
effectiveness of our algorithms.

C. EVALUATION MEASURES
The results are evaluated in terms of the quality and
performance of clusters. The results are also compared with
traditional clustering methods such as K-Means, DBSCAN,
and Mean-Shift. The details are discussed in the subsequent
subsections. An information-theoretic approach has been
conducted for clustering to view it as a series of decisions.
To evaluate the performance of clustering, a contingency
matrix has been measured as True Positive (TP), True
Negative (TN), False Positive (FP), and False Negative (FN).
TP is those decisions when similar elements are assigned

10https://www.spyder-ide.org/
11https://pandas.pydata.org/
12https://scikit-learn.org/stable/
13https://flask.palletsprojects.com/en/2.2.x/
14https://keras.io/
15https://opencv.org/

to the same cluster, whereas TN decisions give dissimilar
elements to a different cluster. In that case, two types of
errors can be committed. FP and FN. An FP decision assigns
dissimilar elements to the same cluster, and an FN decision
refers to those decisions when similar items are assigned to
different clusters.

According to the literature, precision reveals the effec-
tiveness of clusters. It illustrates the fraction of relevant
results among the retrieved results [71]. The appropriate
score is divided by a total score to measure the precision.
The precision can be measured as Pc = TP/(TP + FP),
Where the average precision can be calculated as APc =∑n

i=1 Pc/n. Recall can be discussed as the completeness of
outcomes, which can be defined as the fraction of relevant
results retrieved over the total number of relevant results.
In mathematics, we can define recall as Rc = TP/(TP +
FN ). Similarly, the average recall rate can be calculated as
ARc =

∑n
i=1 Rc/n. Another measure that we can use to check

the performance of clusters is accuracy which tells us how
correctly our elements are clustered. Accuracy can be defined
as Ac = (TP+TN )/(TP+TN+FP+FN ), Where the average
accuracy can be defined as AAc =

∑n
i=1 Ac/n.

VI. EXPERIMENTAL RESULTS
A. BASELINE RESULTS
The evaluation was performed on visual and acoustic
datasets. For the former, we used the I-Search dataset
and the Oxford-IIIT Pet dataset. For the latter, we used
the AudioMNIST and I-Search datasets. The results were
obtained on the existing state-of-the-art clustering algorithms
(K-Means, Mean-Shift, and DBSCAN) and the proposed
algorithm. For the I-Search image dataset, the proposed
algorithm achieved the average highest accuracy and recall
of 84.39% and 80%, respectively, gained from CEDD
embedding. Meanwhile, the highest precision is recorded
at 89% in the case of K-Means and CEDD embedding.
The detailed results obtained are summarized in Figure 6.
Hence, the proposed algorithm outperforms in accuracy and
recall over all of the existing baselines in CEDD embedding.
Amongst the baselines, the K-Means was observed as the
close competitor. However, K-Means only surpassed in case
of the precision while the proposed approach was able to
outperform the accuracy and recall.

For the Oxford-IIIT Pet image dataset, the CEDD embed-
ding again yielded the best overall accuracy, precision,
and recall scores of 87%, 79%, and 77%, respectively,
when compared to all existing baselines. The highest recall
reported also belonged to the proposed system reported
at 82%. Similarly, amongst the baseline algorithms, only
the K-Means was able to achieve the best results, with
accuracy, precision, and recall reported at 79%, 78%, and
75%, respectively, for the CEDD embedding. Holistically, the
proposed algorithm surpassed all the existing baselines for all
the other feature sets e.g., HoG and CC. Hence, the proposed
algorithm presents a new promising baseline.
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FIGURE 5. Fingerprints-based presentation of clusters.

We also evaluated the proposed approach using the
AudioMNIST and I-Search acoustic datasets. For the
I-Search audio dataset, the proposed approach and
the Mean-Shift clustering algorithms performed the best,
achieving 85% accuracy scores on the SC and MFCC
feature sets, respectively. For the precision, the K-Means
and the Mean-Shift performed marginally (2%) better than
the proposed. The recall was the highest in the K-Means
clustering algorithm reported at 85%. However, the proposed
approach was able to outperform all the existing baselines
in the accuracy and recall of the SC feature set. Holistically,
the proposed approach performs nearly as well as the existing
baselines in the I-Search acoustic dataset. The detailed results
are presented in Figure 8.

For the AudioMNIST dataset, the DBSCAN outperforms
existing baselines by achieving accuracy, precision, and recall
rates of 88%, 88%, and 87%, respectively for the MFCC
feature set. The Mean-Shift algorithm closely follows up
with a margin of 1% in the accuracy. The proposed and
the Mean-Shift performs nearly as well with a difference of
1% recall margin. The proposed approach outperforms the
baselines in SC recall by achieving a recall of 79%. The
detailed results are shown in Figure 9.

B. APPROACH RESULTS
The proposed approach outperformed the image datasets’
results in terms of AA by achieving a maximum of 83%. The
AR was also the best amongst all the baselines by achieving
a maximum score of 79%. The best average precision
was reported in the Oxford-IIIT image dataset of 78%.
However, the proposed algorithm stayed marginally behind
the K-Kmeans algorithm in the I-Search image dataset. The
proposed approach achieved stable performance across the
audio datasets. The AA remained the highest in the I-Search
audio dataset (81%). For the same dataset, the AR was

FIGURE 6. Comparison of clustering results on I-Search image dataset.

FIGURE 7. Comparison of clustering results on Oxford-IIIT pet image
dataset.

the second best by 1% margin. The rest of the baseline
algorithms demonstrated a variable performance for each
instance of the dataset. The averaged results for the image
and audio datasets are presented in Figure 10 and Figure 11,
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FIGURE 8. Comparison of clustering results on I-Search audio dataset.

FIGURE 9. Comparison of clustering results on AudioMNIST pet image
dataset.

FIGURE 10. Averaged feature set image datasets results of the proposed
with state-of-the-art baselines.

respectively. Hence, the proposed approach was able to
achieve the best performance for the image datasets with
stable results (SD=0.02). Similarly, the proposed approach
remained stable with acceptable performance (SD=0.02).
The detailed results are provided in Table 2.

C. CLUSTERING ANALYSIS
We also measured cluster performance with Silhouette
analysis, which is used to compute the stability of clusters.

FIGURE 11. Averaged feature set audio datasets results of the proposed
with state-of-the-art baselines.

Silhouette analysis is also utilized to measure the inter-
ruption distance between clusters. The investigation is
done by generating a plot that illustrates the assessment
of cluster numbers visually. Mathematically, these can be
calculated as S = (b− a)/max(a, b), Where the term
‘‘a’’ represent the mean distance among all points in the
similar cluster and a sample. In contrast, ‘‘b’’ represents
the mean distance between all points in the next closest
cluster and sample. The scores are in the range of −1
and +1. As the value reaches +1, it demonstrates precise
clustering, whereas the value zero reveals the overlapping
of clustering. A higher score defines the stability of
clusters.

The silhouette coefficients have also been extracted to
test the stability of Clusters. The silhouette analysis is
employed to select an optimal standard for n-clusters [72],
[73]. It also illustrates the stability of clusters. Figure 12
shows the silhouette plot of the CEDD features set, which
presents that the n-cluster value for K-Means of 30, 70,
and 90 are poor choices for the given multimedia objects
because of the occurrence of clusters with lower average
silhouette scores. It also presents that these n-cluster numbers
are appalling because of the wide variations in the size
of silhouette plots. However, this plot is more indecisive
in choosing an n-cluster number between 10 and 50.
Moreover, the results illustrate that the choice of 50 is
quite beneficial as it has a high score. At the same time,
the Mean-Shift algorithm for CEDD features demonstrates
that 10 and 50 clusters are not providing promising results.
The n-clusters of 30, 70, and 90 indicate a good number
of clusters. The result shows that n-clusters of 70 are
more practical for evaluating mean shifts. However, the
mean shift lacks satisfactory accuracy, precision, and recall
results.

The results in Figure 12 demonstrate that the n-cluster val-
ues for DBSCAN of 10, 30, 50, and 90 are not a good choice
due to the below-average silhouette scores. The extensive
fluctuation in the range renders it a poor choice. However, the
n-cluster of 70 shows the stability of DBSCAN clustering.
The results show that our proposed approach obeys the
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TABLE 2. Detailed experimental clustering results for each algorithm and corresponding features evaluation (CEDD/HOG/CC for visual datasets and
SR/SC/MFCC for acoustic datasets), where the highest obtained results are bolded.

natural portioning as the scores are above average for 10, 30,
50, and 70. However, the outcome of silhouette scores illus-
trates that the drastic increase in the change of clusters does
not give promising results. It also demonstrates the stability
of n-clusters between 30 and 50, as they both give favorable
scores.

Figure 13 illustrates the silhouette coefficients plot resul-
tant from the CC feature set. The plot demonstrates that the
n-cluster value for K-Means of 30 and 90 is not a good choice
because of its low score of silhouette coefficients. However,
the analysis is more cautious in determining between 10,
50, and 70. Similarly, n-clusters of 70 and 90 are poor
choices for the Mean-Shift algorithm. Whereas the n-clusters
between 30 and 50 provide more balanced results. Similarly,
DBSCAN presents that n-clusters between 50 and 70 provide
promising stability of Clusters. Our approach offers stable
results for the CC feature set when the value of the n-cluster
is between 30 and 50. This feature set also assures that
our algorithm does not support drastic expansion in several
clusters.

Figure 14 presents the average silhouette coefficients
plot for the HoG feature set. The results demonstrate
that the n-cluster for K-Means offers the stability of
the n-cluster value between 10 and 50. The silhouette
analysis is more ambivalent in determining between 10 and
50. However, the 30, 70, and 90 are rejected because
of below-average scores. Similarly, the DBSCAN offers
stability on the n-cluster value of 70. The Mean-Shift
algorithm shows that n-cluster values of 10, 70, and 90 are
insufficient. The stability is indicated between 30 and
50 as they demonstrate good scores. Our proposed approach
presents that the partition of media objects gives promising
results.

FIGURE 12. Comparison of silhouette coefficients results based on CEDD
embeddings on the I-Search image dataset.

FIGURE 13. Comparison of silhouette coefficients results based on CC
embeddings on the I-Search image dataset.

D. FINGERPRINTS ANALYSIS
The core idea of fingerprinting is to capture the divergent
elements of a dataset. The fingerprint diversity scores
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FIGURE 14. Comparison of silhouette coefficients results based on HoG
embeddings on the I-Search image dataset.

are calculated based on the variability of the multimedia
fingerprints within a cluster. This metric is suitable for assess-
ing the diversity of sampled fingerprints, especially when
using techniques like Canberra distance and KL divergence.
In contrast, traditional clustering methods like K-Means,
DBSCAN, andMean-Shift do not inherently produce or focus
on multimedia fingerprints. Instead, they aim to cluster data
points based on their feature vectors. They aim to find natural
clusters in the data based on the chosen distance metrics.
The proposed approach focused on identifying multimedia
fingerprints as a distinct task. The verification of the audio
and image fingerprint sampling is therefore leveraged via
fingerprint diversity score. The diversity of the result set can
be measured based on the distance between the visual and
acoustic features. The features such as HoG, CEDD, and
CC were extracted from the result set, and their diversity
was calculated. Similarly, the acoustic features, i.e., SR, SC,
and MFCC, were extracted from the result set, and their
diversity was calculated against each feature set. We assume
that media objects are encoded in the R feature vector of
E-dimensions. The diversity of a result set F withN elements
can be formalized as:

Diversity(F) =
E∑
i=1

E∑
j=1

var(i)xvar(j)xδ(i, j) (8)

where var(i) and var(j) are the various modules computed
as the standard deviation of the feature vector of all M
media objects in F . Similarly, δ(i, j) have been computed as
a distance function between ith and jth dimension feature.
Here, the δ(i, j) has been calculated as a reciprocal of
similarity among features as δ(i, j) = 1

Q(i,j) which has been
computed as:

Q(i, j) =

∑
N (ri, rj)√∑

N (r2i )
√∑

N (r2j )
(9)

The similarity is calculated by cosine distance. In this
context, we have taken a media object feature vectors as ri &
rj as the ith jth elements. In particular,Q(i, j) can be considered
as the probability of ith and jth feature vectors as elements that

TABLE 3. Diversity scores of the proposed fingerprinting approach.

coincide in all media objects.

P(ri = i, r2 = j) =
∑
F

P(r1 = i, r2 = j|M )P(F)

=

∑
F

P(i|F)P(j|F)P(F) (10)

P(i|F) and P(j|F) indicate the conditional probability of
a feature in result set F whereas P(F) comprises the prior
probability. if N elements are enclosed in the result set then it
is equal to 1

N elements.
The diversity scores of the results set are obtained on

different audio and image datasets, as shown in Table 3.
These diversity scores reveal the dissimilarity of the images
contained in the result set. In our experiments, we take the
result set as M and extracted features as HoG, CEDD, and
CC in the image dataset. For the audio dataset, we extracted
MFCC. The normalized score [0,1] informs about the
diversity as the ‘‘1’’ score shows the complete diverse set of
results. However ‘‘0’’ score exposes highly redundant data.
We achieved a maximum of 94% fingerprint diversity scores.
The detailed scores are also provided in Table 3 which reveals
that our fingerprints are diverse in nature.

VII. DISCUSSION
Our proposed approach identifies the relevant samples
as fingerprints, which may demonstrate the multimedia
resources. Our approach provides a diversified representation
of a multimedia resource. It enhances the user’s information-
seeking journey to find relevant content from multimedia
resources. The more diversity as a whole accommodates
the richer information that is accessible to the system,
and the higher performance is estimated via our proposed
approach. In the fingerprints selection problem, we aim to
pick a few representative samples that capture distinguished
characteristics of an entire multimedia resource.We proposed
a generic approach to seek fingerprints that proportionally
reflect specified characteristics exemplified in a target
population.

A. CONTRIBUTIONS
The proposed approach outperformed clustering results
with the additional advantage of diversity in the final results.
The proposed approach consisted of three distinctive phases.
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TABLE 4. Statistical significance of the overall obtained clustering results.

FIGURE 15. Averaged audio and image datasets summarized result.

Firstly, the convergence of the distinct media set space was
calculated using a novel variation of Canberra distance.
Afterwards, using a variation of Kullback-Leibler divergence,
the most distinct samples within each media set space were
identified. Finally, the proposed approach was evaluated in
terms of clustering and fingerprint identification perspectives.
According to the obtained results, the proposed algorithm
outperformed the existing state-of-the-art clustering algo-
rithms for image datasets in terms of commutative accuracy
(82%) and recall (79%). The precision was also on par with
the existing baselines (79%), marginally behind the K-Means
by 1%. Similar results were obtained for the audio datasets
where the accuracy (79%) and recall (78%) surpassed all the
existing baseline results. The precision (76%) was marginally
behind (1%) compared to the existing baselines (77%).
The proposed approach was able to demonstrate stable
performance (SD=0.02) across various feature spaces and
datasets, as shown in Table 4. The summarized averaged
results obtained for the image and audio datasets are shown
in Figure 15, respectively. The averaged fingerprint diversity
scores obtained for the image and audio datasets were
80% and 87%, respectively. To the best of our knowledge,
no previous fingerprinting approach was introduced that
processed diverse multimedia datasets and surpassed the
existing baseline algorithms.

B. FINGERPRINTS
This research proposed a unique approach to sampling
fingerprints from multimedia resources using a combination
of Canberra distance and Kullback-Leibler (KL) divergence
to identify the most diverged samples within multimedia
content clusters. The proposed approach is different from
traditional fingerprinting methods that may rely on other
techniques or algorithms for feature extraction and clustering
where the aim is to find natural clusters in the data based

on the chosen distance metrics. In contrast, the proposed
approach focused on identifying multimedia fingerprints as a
distinct task. This research leveraged unsupervised learning
algorithms to create clusters of multimedia content based on
their fingerprints which is not limited to a specific algorithm
but is instantiated across various multimedia descriptors,
representing flexibility in adapting to different modalities and
datasets.

The proposed research was evaluated against performance
metrics such as accuracy, precision, and recall, which are
commonly used to evaluate the effectiveness of fingerprinting
methods. The reported high values (80%, 77%, and 78%)
for these metrics indicate the effectiveness of the proposed
approach, surpassing existing baseline clustering methods
like K-Means, Mean-Shift, and DBSCAN.

Furthermore, the clustering stability was measured
using the silhouette coefficient, which represented how
well-defined the clusters are. This aspect assesses the quality
of clusters and helps ensure that the identified clusters are
meaningful and well-separated. Furthermore, the research
introduces fingerprint diversity scores for verification of the
audio and image fingerprinting samples, which indicate the
variability and distinctiveness of the fingerprints. A high
diversity score (up to 94%) suggests that the sampled
fingerprints are diverse and can capture a wide range of
information.

The proposed variation of Canberra distance and KL
divergence are reported to provide stable performance with
a low standard deviation (SD=0.02). This stability ensures
consistent results across different datasets and multimedia
types with statistical significance. However, the limitation of
this study is the choice of the various clustering algorithms
may generate distinct results without standard selection
criteria. According to the impossibility theorem, no single
clustering algorithm can generate consistent and optimal
results for a variety of problems. Hence, this aspect needs
thorough investigation to determine the effect of clustering
ensemble via detailed comparative analysis.

C. IMPLICATIONS
The proposed approach can also be adapted for different
application scenarios. It can be utilized for enhanced
content-based multimedia retrieval, exploration of big
datasets, and summarization of multimedia result sets. The
summarization creates a subset of information by reducing
information computationally [17]. The subset signifies the
most relevant and valuable information comprised of original
content. In the image and video domain context, selecting the
most representative images and frames can be depicted as the
process of image summarization and video summarization,
respectively [13]. The proposed approach can be practiced in
image and video summarization as it provides a diverse and
representative representation of multimedia objects. Dataset
fingerprints can be classified as summaries of a collection.

The proposed approach can also be practiced in the context
of Content-based retrieval. It is the process of retrieving
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contents via similar multimedia content, i.e., an acoustic
query returns similar audio files [74]. The practice can be
leveraged by matching the query fingerprint and retrieving
cluster fingerprint results that demonstrate relatedness to the
user query.

Information exploration is the process of searching for
and discovering the required information. In the case of
information exploration and discovery, users often need
clarification and more skills in expressing their information
needs via query [75]. To ease the user, relevant information
and diverse content can be provided. According to our
proposed approach, fingerprints can be provided to the user
that contains a diverse collection of relevant information.

VIII. CONCLUSION AND FUTURE RESEARCH
The paper presented the framework for relevant sample iden-
tification as fingerprints. The proposed approach identified
the m-most convergent items as multimedia fingerprints from
n-most divergent clusters. The approach was instantiated
across various multimedia datasets over widely recognized
descriptors such as MFCC, SR, and SC for acoustic samples,
and CEDD, HoG, and CC descriptors for visual samples.
A detailed comparison was conducted for the proposed
algorithm with existing state-of-the-art clustering techniques
such as K-Means, DBSCAN, and Mean-Shift. On average,
the proposed variation of Canberra distance and KL diver-
gence achieved 80%, 77%, and 78% accuracy, precision,
and recall, respectively, with the most stable clustering
performance (SD=0.02) across all the descriptors. The
fingerprints were further assessed in the context of diversity,
obtaining surpassed scores of 94%. The proposed approach
has implications in content-based multimedia retrieval,
summarization, and multimedia exploration activities. While
the choice of the various clustering algorithms may generate
distinct results without standard selection criteria, according
to the impossibility theorem, no single clustering algorithm
can generate consistent and optimal results for a variety
of problems. Hence, in the future, the effect of clustering
ensemble can be identified via detailed comparative analysis.
Furthermore, the fingerprinting approach can be adopted via
deep learning-based embeddings to automate the multimodal
feature description.
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