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ABSTRACT The work proposes high-dimensional multiple fractional-order optimization algorithm
(HMFOA) to tune the controller parameters of the rotor side converter of doubly-fed induction generator-
based wind turbines to achieve higher control performance. The case studies are verified in eight benchmark
mathematical optimization problems; the results illustrate that the proposed optimizer has fast convergence
speed, high computational precision, and avoidance of falling into local optimums. Compared to four
other algorithms, the results show that HMFOA obtains the optimal parameters of controllers and achieves
more accurate power point tracking capability and certain fault ride-through capability, which verifies the
feasibility and effectiveness of the algorithm.

INDEX TERMS High dimension, fractional-order, optimization algorithm, DFIG, rotor side converter.

I. INTRODUCTION
Wind energy has a large storage capacity and is a renewable
and clean energy source that has received wide attention from
researchers and scholars [1], [2]. Currently, the development
of wind power has become a significant force driving environ-
mental improvement and economic transformation [3]. With
the integration of the DFIG and advanced power electronics
equipment [4], the generation capacity of DFIG-based wind
energy systems (DFIG-WESs) is increasing [5].
The control strategy of the converter of DFIG can improve

the small capacity of the excitation converter of a DFIG
and the weak control ability of the DFIG, especially under
non-ideal grid conditions. Three types of control are widely
applied in the DFIG [6]. (1) Direct power control (DPC)
directly realizes the speed regulation of DFIG by regulating
power output. In the hybrid system with super capacitor, fuel
cell and DFIG wind turbine, DPC was developed to control
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the DFIG wind turbine [7]. Reference [8] designs a direct
torque control (DTC) method with parallel compensators to
restrain active and reactive power ripple in unbalanced grid
states. In summary, the DPC has large fluctuations in current,
active power, and reactive power. (2) The DTC realizes rotor
speed control through electromagnetic torque control. ADTC
based on instantaneous flux damping has been presented to
the symmetrical voltage sag of the DFIG [9]. One of the
significant drawbacks of the DTC is the large fluctuations
in torque and magnetic chain produced by the hysteresis
loop controllers [10]. The DPC and DTC mentioned above
have not been widely employed in the DFIG. (3) Vector
control (VC) generally adopts two closed-loop control frame-
works: an external power loop and an internal current control
loop The VC was utilized to control maximum power point
tracking and fault ride-through in DFIG [11]. Furthermore,
an improved VC strategy based on proportional integral res-
onance control was proposed to control brushless DFIG [12].
To mitigate the disadvantages that some parameters (e.g.,
flux and torque) of the DFIG are challenging to measure, the
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VC method of direct field-oriented control has been studied
in [13]. Furthermore, in [14], two kinds of nonlinear control
methods based on vector control were proposed for the con-
trol of DFIG and compared the stability of the two methods.
The VC technology, the most widely used method in DFIG
for control, is mature, strong robust, and has excellent steady-
state performance; this paper employs the VC method to
control DFIG under different operating states.

The DFIG control system contains two controllers [15],
[16]: grid side converter (GSC) is mainly developed to sta-
bilize DC bus voltage and not directly participate in DFIG
control [17]; rotor side converter (RSC) mainly controls rotor
speed and reactive power for realizing DFIG operation con-
trol [18]. This study mainly focuses on the maximum power
point tracking (MPPT) of DFIG. The DFIG in three-phase
coordinates is a high-order, multivariate, nonlinear, strongly
coupled, complex time-varying system. To realize the effec-
tive power adjustment of RSC, the two currents need to be
controlled separately to achieve the operational control of
DFIG. The traditional method of tuning control parameters
is the engineering adjustment method, which mainly relies
on the production experience of operators to obtain the target
parameters after repeated tests. To change operating condi-
tions, the control performance of the controller may change
drastically. Therefore, a more reliable and effective method
should be needed to tune the controller parameters consider-
ing various operating conditions. The intelligent optimization
method, which has been widely applied in the controllers,
breaks away from the dependence on the accurate mathemat-
ical model of the system and shows strong support for the
variation of system parameters.

Intelligent optimization algorithms are broadly divided
into three main classes, evolutionary algorithms, swarm
intelligence algorithms, and algorithms based on physical
phenomena [19]. (1) An evolutionary algorithm is inspired
by evolution and is widely employed in controller param-
eters tuning. A hybrid system using a conventional genetic
algorithm (GA) and bacterial foraging (BF) was applied
to tune proportional-integral-derivative (PID) parameters for
voltage control [20]. Reference [21] applied an improved
differential evolution (DE) algorithm for complex optimiza-
tion problems. Besides, the biogeography-based optimization
(BBO) and shuffle frog leaping algorithm have been com-
bined to strengthen the balance between exploration and
exploitation for minimum spanning tree problems [22].
(2) Swarm intelligence algorithms, which are based on bio-
logical collectives and social agents, mostly imitate the social
behavior of groups of organisms in nature. In [23], the firefly
algorithmwas applied to minimize the low-frequency oscilla-
tion and reduce the maximum overshoot and the stability time
by the parameter tuning of the power system stabilizer. Addi-
tionally, a gray wolf optimization (GWO) algorithm has been
employed for multi-objective models [24]. Reference [25]
combines two optimization methods to tune the parameters
of automatic voltage controllers. Additionally, the moth fire
optimization (MFO) algorithm was utilized in the WES to set

TABLE 1. Related study.

blade pitch controller parameters for enhancing the damping
of output power and voltage oscillations [26]. In [27], a multi-
objective optimization method based on goal programming
was applied for computer topology design. Furthermore, the
improved firefly algorithm, combined with a local search
operator and genetic operator, has been used for electrohy-
drodynamic inkjet printing systems [28]. (3) The algorithm
based on physical phenomena realizes the optimization by
imitating physical phenomena. A multi-dimensional opti-
mization (MVO) algorithm has been developed to support
vector machine (SVM) for rectifying the main parameters
of SVM and finding the optimal feature set [29]. Intelligent
optimization algorithms based on physical phenomena are
the algorithms that search agents communicate and travel in
search scope based on physical laws [30]. No suitable intel-
ligent algorithm can solve any optimization problems [31].
In other words, a specific intelligent algorithm used in one
group of optimization problems can achieve better optimiza-
tion results but may show poor performance in different
groups of optimization problems.

The related optimization methods and control methods
have been summarized. Optimizationmethods have also been
summarized for the optimization of wind turbine parame-
ters as shown in TABLE 1. Inspired by PID optimization
algorithms being applied to optimize parameters in PID con-
trollers for wind turbines, this study proposes HDMFOC
controller-related optimization algorithms to optimize the
controller parameters of HDMFOC.

In this study, the RSC is controlled by a VC loop formed
by high-dimensional multiple fractional-order controllers
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(HDMFOC). The HDMFOC can synthesize multi-layer
on numerous levels and process the feedback information
more accurately. From the perspective of control, feedback
multi-dimensional information means that the larger the con-
trol dimension, the higher the control performance [32].
Inspired by HDMFOC [33], this work proposes a high-
dimensional multiple-fractional order optimization algorithm
(HMFOA) to tune HDMFOC parameters.

The HMFOA has three dimensions of search directions:
proportional direction, fractional-order integral direction, and
fractional-order differential direction [34]. Three directions
have different exploration and exploitation abilities and can
balance exploration and exploitation overall. The HMFOA
contains the orders of fractional-order calculus and three
different adaptive decreasing functions.

The characteristics of the HMFOA can be summarized as
follows.

i) The HMFOA is inspired by the theory of HDMFOC
and contains proportional operators, fractional-order inte-
gral operators, and fractional-order differential operators with
three-dimensional search directions. The fractional-order
integral operator could enhance exploration capability, and
the fractional-order differential operator could increase
exploitation capability.

ii) HMFOA introduces the orders of fractional-order inte-
gral operators and fractional-order differential operators. The
HMFOA has more degrees of freedom and can expand the
scope of the search.

iii) The HMFOA designs three different decreasing func-
tions that vary adaptively with iteration times, correspond-
ing to the proportional operator, fractional-order integral/
differential operators, achieving a smooth transition from
exploration to exploitation overall.

The rest of this work, including Section II describes the
principle of HDMFOC and the procedures of HMFOA.
The specific modeling and control framework of DFIG is
described in Section III. Section IV carries out the case stud-
ies. Section IV-C demonstrates the conclusions of the paper.

II. HDMFOA
A. HDMFOC
The input information of HDMFOC has numerous dimen-
sions (FIGURE 1), which can ensure the comprehensiveness
of the information. The HDMFOC calculates the multi-level
fractional order of the input information.

The HDMFOC output is

CHDMFOC(s) =

αi∑
i=1

αj∑
j=1

(λj,iθjs
µj,i ) (1)

where, αi and αj means the numbers of fractional orders and
input information, respectively; µj,i and λj,i are fractional-
order coefficients. The information

{
θ1, θ2, . . . θj

}
is linked

with related fractional-order structures. In HDMFOC, a total
of 2αiαj parameters need to be configured, i.e., λ1,1, λ1,2,. . . ,

FIGURE 1. Structure block diagram of HDMFOC.

λ1,i, λ2,1, λ2,2,. . . , λj,i, µ1,1, µ1,2,. . . , µ1,i, µ2,1, µ2,2,. . . ,
µj,i.
In (1), sµj,i is the fractional order calculus. The frac-

tional calculus of the fractional-order proportional-integral-
derivative can be calculated as (2):

aDαt =


dα/dtα, R(α) > 0∫ t

a
(dτ )α, R(α) < 0

1, R(α) = 0

(2)

where a and t imply the low and high limits of fractional-
order, respectively; α can be a complex number, means
the fractional-order; and R(α) means the real part of the
variable α.
For the computation, the fractional-order operation with

the Riemann-Liouville approximation can be calculated
as (3):

aDαt f (t) =
1

0(n− α)
dn

dtn

∫ t

a
(t − τ )n−α−1f (τ )dτ (3)

where n should be an integer, n = [α] + 1;[α] denotes the
integer part α;0(n− α) = (n− α − 1)!.
This study focuses on proposing an optimization

algorithm. The specific research related to the control
algorithm can be found in the literature [35].

B. BASIC CONCEPTS OF HMFOA
The HMFOA is inspired by the HDMFOC, which inputs
multi-dimensional information and performsmulti-level frac-
tional calculus calculation.

Intelligent optimization algorithms first randomly initial-
ize the initial set of position vectors of the population and
then iterate continuously to get the new set of position vec-
tors according to the special rules until the optimal position
vectors are found [36]. Intelligent optimization algorithms
perform stochastic optimization under certain rules, which
can hardly guarantee the optimal solution in one iteration.
The optimization process of intelligent optimization algo-
rithms is generally divided into exploration and exploitation
processes. The exploration combines random solutions with
high random probability to find possible regions. As shown
in FIGURE 2, x3 and x4 search for the global optimal solution
region, the rational design of the exploration can effectively
avoid falling into local optimal. The exploitation combines
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FIGURE 2. Exploration and exploitation diagram in an intelligent
optimization algorithm.

stochastic solutions with low randomness to limit the search
to the vicinity of the optimal local solution. The range of
random solution variation during the exploitation is smaller
than the exploration; the search accuracy is higher than the
exploration. As shown in FIGURE 2, x1 and x2 search for
local optimal solutions.

In HMFOA, the procedure for renewing the location of the
solution follows.

x t+1
i = x tpi + r1 × (k1

∣∣∣x tpi − x ti
∣∣∣) (4)

x t+1
i = x tpi + r2 × (k2

∣∣∣∣∣∣
t∑
j=0

(x jpi − x ji )

∣∣∣∣∣∣
ϕ

) (5)

x t+1
i = x tpi + r3 × (k3

∣∣∣(x tpi − x ti ) − (x t−1
pi − x t−1

i )
∣∣∣δ) (6)

where x ti and x t+1
i are the i-th current solutions in the t-th

and (t + 1)-th iteration, respectively; x tpi is the i-th optimal
position; r1/r2/r3 are adaptive random numbers; k1, k2, and k3
are product factors of proportional, fractional-order integral,
and differential operators, respectively; ϕ and δ mean integral
and differential operator fractional-orders, respectively; ||

represents the absolute value.
In the general computational laws of intelligent optimiza-

tion algorithms, the core of iteration rule calculation is the
step-size span between the current position and the current
optimal position

∣∣∣x tpi − x ti

∣∣∣. As shown in (4), the distance

is adjusted by setting different random numbers. To further
expand the exploration ability and enhance the exploitation
ability, HMFOA refers to fractional-order calculus, integral
and differential operators. In (5), the fractional-order integral
operator accumulates (x jpi − x ji ) generated by each iteration
and calculates the fractional-order integral, further expanding
the search scope and improving the global exploration abil-
ity. In (6), the fractional-order differential operator subtracts
between (x tpi−x ti ) and (x

t−1
pi −x t−1

i ), calculates the fractional-
order differential, which further reduces search range for
local exploitation.

r1 = a−
at
T

t ∈ (0,T ) (7)

r2 = −
a
T 2 t

2
+ a t ∈ (0,T ) (8)

FIGURE 3. Search scope of three update directions.

FIGURE 4. Optimization process in high-dimensional multiple
fractional-order optimization algorithm.

r3 =
a
T 2 t

2
−

2a
T
t + a t ∈ (0,T ) (9)

where a is constant; t and T represent iteration and maximum
iterations, respectively.

To ensure a smooth transition of the three functions, the
initial and ending values of r1/r2/r3 are equal, with an initial
value of a and an ending value of 0; r1/r2/r3 are the cor-
responding adaptive functions for the proportional operator,
fractional-order integral operator, and fractional-order differ-
ential operator, respectively, which are shown schematically
in (a), (b), and (c) in FIGURE 3. k1/k2/k3 is to bring weights
before moving the step-size distance, which is applied to
determine the direction and range of the iteration position
randomly within [−1,1]. The value of fractional-order inte-
gral order ϕ sets to [1,1.5]; fractional-order differential order
δ sets to [0.5,1].

When performing the update directions, each individual
has three update strategies with three directions of optimiza-
tion. In FIGURE 4, a population with an individual is iterated
six times for illustration. The initial position is X1; the three
directions of search are proportional, fractional-order inte-
gral, and differential directions. The three update directions
represent three dimensions for optimization, with different
search ranges and different exploration and exploitation abil-
ities (FIGURE 4).

FIGURE 5 gives HMFOA diagram. AlGORITHM1 shows
the steps of the HMFOA.
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FIGURE 5. Block diagram of HMFOA.

Algorithm 1 Steps of HMFOA
1: Initialize all the parameters (a = 2; T = 200;

r1 = 2 −
2t
200

t ∈ (0,T );

r2 = −
2

2002
t2 + 2 t ∈ (0,T );

r3 =
2

2002
t2 −

4
200

t + 2 t ∈ (0,T ); k1, k2, k3 ∈ [−1, 1];

ϕ ∈ [1, 1.5]; δ ∈ [0.5, 1]

2: Generate the position of individuals in the initial population
3:while t ≤ T do
4: Individuals are updated in three search directions: pro-
portional direction ((2) and (5)); fractional-order integral
direction (((3) and (6)); and fractional-order differential
direction (((4) and (7))
5: Select the position of three smallest fitness in the three
search directions for the next iteration
6: Update parameters r1, r2, r3, k1, k2, k3, ϕ, δ
7: End the iteration process
8: Return the optimal solutions

The broad steps of the heuristic optimization algorithm
are all consistent. The heuristic optimization algorithms are
called by different names because of the different ways of
changing the independent variables from the previous gen-
eration to the next generation. The computational process
from the previous generation to the next generation, the
HMFOA proposed in this study only utilizes (4) to (9).
(4) to (9) are simple calculations of addition, subtraction,
multiplication and division. Therefore, the computational
process of the HMFOA proposed in this study is not com-
plicated. Besides, (1) to (3) are employed to introduce
the principle of the HMFOA. Consequently, although the
HMFOA has a longer name, the HMFOA is still a new type
of optimization algorithm formed by the simple operations of
addition, subtraction, multiplication, and division within the
common optimization algorithms. In addition, the HMFOA

FIGURE 6. Configuration of DFIG-WESs.

FIGURE 7. Performance curves of variable pitch wind turbines.

formed by addition, subtraction, multiplication, and division
operations from (4) to (9) can be easily implemented in
practical engineering.

III. MATHEMATICAL MODEL OF DFIG-WESS
The DFIG-WES mainly consists of a wind turbine, a shaft
system, a DFIG, a GSC, and an RSC (FIGURE 6). TheMPPT
seeks to regulate the electromagnetic torque with optimal
speed control. The RSCmainly controls the excitation current
and torque current. Therefore, the control strategies of MPPT
are considered in RSC. GSC is mainly developed to stabilize
DC bus voltage and not directly participate in DFIG control.

A. MATHEMATICAL MODEL OF WIND TURBINES
The wind energy utilization coefficient CP(λ , βP), which
is a nonlinear function, is a function of λ and βP. The
CP − λ curves of wind turbines depend on the pitch angle βP
(FIGURE 7). In MPPT, to maximize wind energy utilization,
the pitch angle βP should set to be 0. The performance curves
of variable pitch wind turbines are displayed in FIGURE 7.
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The wind turbine model is [37]:

Pm = PvCP(λ , βP) =
1
2
πρR2CP(λ , βP)v3wind (10)

CP(λ , βP) = 0.5176 × (
116
λi

− 0.4β − 5)e
−21
λi

+ 0.0068λ (11)

λ
−1
i = (λ + 0.08β)−1

− 0.035(β3 + 1)−1 (12)

λ =
R.ωm

vwind
(13)

where Pm means mechanical power output by wind turbine;
CP represents power coefficient; λ is tip speed ratio; βP is
pitch angle; Pv means the input power of the blade; ρ, R and
vwind are air density, wind turbine radius, and wind speed,
respectively.

B. MATHEMATICAL MODEL OF DFIGS
The mathematical DFIG is model [38]:
diqs
dt

=
ωb

L ′
s
(−Rliqs + ωsL ′

siqs +
ωr

ωs
e′qs −

1
Trωs

e′ds

− vqs +
Lm
Lrr

vqr) (14)

dids
dt

=
ωb

L ′
s
(−wsL ′

siqs − Rliqs +
1

Trωs
e′qs +

ωr

ωs
e′ds

− vds +
Lm
Lrr

vqr) (15)

de′qs
dt

= ωbωs[R2ids −
1

Trωs
e′qs + (1 −

ωr

ωs
)e′ds −

Lm
Lrr

vqr]

(16)
de′ds
dt

= ωbωs[−R2iqs − (1 −
ωr

ωs
)e′qs −

1
Trωs

e′ds +
Lm
Lrr

vqr]

(17)

Te = (e′qs/ωs)iqs + (e′ds/ωs)ids (18)

Pe = e′qsiqs + e′dsids (19)

Qs = vqsids (20)

whereωb andωs are electrical base speed and rotational speed
of the synchronous, respectively; ωr represents rotor angu-
lar speed; e′ds and e′qs represent dq-axis equivalent internal
voltages; ids and iqs, vds and vqs, vdr and vqr imply dq-stator
currents, stator external voltages and rotor voltages; Lm and
L ′
s are mutual and stator inductances, respectively; Rl,R2,Tr

and Lrr are intermediate variables;Tr = Lrr
/
Rr;Lrr = 1.005×

1.01Lm; L ′
s = 1.01Lm; Rs indicates the stator resistance; Rr is

the rotor resistance; the electromagnetic torque generated by
the DFIG is Te; vqs means terminal voltage amplitude.

C. MATHEMATICAL MODELING OF SHAFT SYSTEMS
A single centralized inertial system can represent the rotating
shaft system [39].

Hm = Ht + Hg (21)
dωm

dt
=

1
2Hm

(Tm − Te − DLSωm) (22)

FIGURE 8. DFIG-WES framework.

where Hm means concentrated inertia constant; the electro-
magnetic dynamic equation in the shaft system is shown
in (21); ωm means rotational speed; ωr = ωm; DLS
means lumped system damping; Tm means mechanical
torque;

D. CONTROL STRUCTURE OF ROTOR SIDE CONTROLLERS
There are two main control objectives of the DFIG: (i) to
achieve MPPT under the condition of variable speed constant
frequency by controlling the rotor speed or active power;
(ii) to assure the stability of the power grid by controlling the
reactive output power. The RSC aims to realize the effective
control of the two-component currents of the rotor. In this
study, the VC framework of four HDMFOCs is applied to
control the DFIG (FIGURE 8). The external control loop
obtains the dq-axis rotor current base values i∗qr and i

∗

dr by
adjusting rotor speed and reactive power, respectively; the
internal control loop controls the two currents related to the
compensation terms vdr2 and vqr2 for generating the final
outputs vdr and vqr of the controllers. The associated variables
are as follows [40].

vdr = Rridr + σLr
didr
dt

− sωsσLriqr (23)

vqr = Rriqr + σLr
diqr
dt

− sωs

(
L2m
Ls
ims + σLridr

)
(24)

ψs = LmIms (25)

s =
ωs − ωr

ωs
(26)

σ = 1 −
L2m
LsLr

(27)

ims =
vqs − Rsiqs
ωsLm

(28)

where s is slip ratio; σ is leakage coefficient.
In the RSC of DFIG, the vector control loop is composed

of four HDMFOCs. The control objects are ωr, Qs, idr, and
iqr, respectively. As shown in FIGURE 8, two fractional
orders calculate the information of each dimension. There-
fore, there are eight parameters to be optimized for each
HDMFOC.
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TABLE 2. Eight benchmark function formulas and objective function
values.

IV. CASE STUDIES
The case studies are run at MATLAB/Simulink 9.2 in a
computer with 3.60 GHz CPU and 16 GB RAM.

The proposed HMFOA is compared under two cases,
including the benchmark functions (Case I) and the parameter
tuning of the DFIG (Case II). The performance of HMFOA
is tested with unimodal benchmark functions and multimodal
benchmark functions in Case I. The HMFOA is compared
with other 18 intelligent optimization algorithms In Case II,
the proposed HMFOA is applied to the MPPT of the DFIG
to tune the control parameters of four HDMFOCs of the RSC
and is compared with the other four intelligent optimization
algorithms of the MFO, ant lion optimization (ALO), drag-
onfly algorithm (DA), and SCA.

A. CASE I
In Case I, the HMFOA is compared with the other 18 intelli-
gent optimization algorithms. The eight benchmark function
formulas and objective function values are given in TABLE 2.
The benchmark functions F1 through F8 are all functions
in CEC. Since F5, F6, and F7 contain random numbers,
F5, F6, and F7 describe extremely complex scenarios. The
19 intelligent optimization algorithms are all calculated under
the same conditions: i) the population size, or the num-
ber of individuals Nsize of all algorithms is 100; ii) the
maximum number of iterations T of all algorithms is 500;
iii) fitness function values of all algorithms are averaged after
ten runs. The unimodal (FIGURE 9(a)-9(e)) and multimodal
benchmark functions (FIGURE 9(g)-9(h)) are applied to test
19 intelligent optimization algorithms.

The numerical results of fitness function values tested
by 19 intelligent optimization algorithms (TABLE 3) show
that the HMFOA obtains the smallest fitness values than the
other 18 intelligent optimization algorithms. The HMFOA
has a higher optimization ability. The box-and-whisker plots
(FIGURE 10) compare the fitness functions for the 19 intelli-
gent optimization algorithms after ten runs. Box and whisker
plot is a statistical chart showing the dispersion of a group

FIGURE 9. Function diagrams of eight benchmark functions (F1 to F8).

TABLE 3. Fitness values obtained by 19 intelligent optimization
algorithms.

of data. FIGURE 10 shows that the box-and-whisker plot of
the HMFOA is more aggregated, which shows that the results
of each optimization are similar. HMFOA has the stability of
operations.

FIGURE 11 gives search history of 500 iterations and the
last 100 iterations. In FIGURE 11, in the early process of
search history, the search agents approach the target position
at a faster rate; in the latter process of search history, the
search agents approach the target position at a relatively
small rate to converge to the target position accurately. The
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FIGURE 10. Box-and-whisker plots of fitness function of eight benchmark functions (F1 to F8).

HMFOA has strong exploration ability in the early process
of optimization and strong exploitation ability in the latter
optimization process. The HMFOA realizes multi-directional
optimization in the optimization process, decides exploration
or exploitation according to the previous iteration process,
and achieves the balance of exploration and exploitation.

FIGURE 12 shows the convergence curves of the HMFOA,
which includes the ordinary convergence curve and the con-
vergence curve taking the logarithm of the fitness function
value, which can clearly show the change of fitness function
value in the latter search process. The HMFOA has great con-
vergence on the benchmark function test and transitions from
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FIGURE 11. Search history of search agents in eight benchmark functions (F1 to F8).

the overall exploration process to the exploitation process
at about 100 iterations, with strong exploration capability in

the earlier search process. The convergence curve of taking
logarithm can be seen in the HMFOA in the later search
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FIGURE 12. Convergence curve of high-dimensional multiple fractional-order optimization algorithm (F1 to F8).

process in a smaller rate change, which demonstrates the
HMFOA has a strong ability to exploit with high accuracy.

FIGURE 13 shows the average fitness values during the
optimization of the benchmark function. In the optimiza-
tion process, the average fitness function value gradually
decreases and tends to converge. The high fluctuation of
fitness function indicates that the deterioration of fitness
function is inevitable in the earlier process of continuous
exploration.

B. CASE II
The HMFOA is applied to the MPPT of the DFIG. The RSC
contains four HDMFOCs. Each HDMFOC contains eight
parameters that need to be optimized. The control objective
in this study is to minimize the error of reactive power and
rotor speed under various conditions. The objective function
and constraints are shown below:

ftotal(x) = f1(x) + f2(x) + f3(x) (29)
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FIGURE 13. Average fitness value in optimization process (F1 to F8).

fi(x) =

∫ TDFIG

0
(ϕ1

∣∣Qs − Q∗
s

∣∣ + ϕ2
∣∣ωr − ω∗

r

∣∣)dt (30)

s.t.


vmin
wind < vwind < vmax

wind

Vmin
s < Vs < Vmax

s

Qmin
s < Qs < Qmax

s

(31)

where f1(x), f2(x) and f3(x) represent the objective function
(FIGURE 14); where Qs, vwind, Vs and ωr represent reactive
power, wind speed, power grid voltage, and rotor angular
speed, respectively. Step wind speed reflects the sudden
variability between 8-12 m/s; where TDFIG is the running
time of the DFIG in Case II; the wind speed range vwind is
[8, 12] m/s. The system parameters of DFIG-WES are pre-
sented in TABLE 4. ϕ1 and ϕ2 are the coefficients of reactive
power and rotor speed errors in the objective function, respec-
tively. The unit values of reactive power and rotor speed

FIGURE 14. Schematic diagrams of three operating conditions under
Case II: (a) step wind speed; (b) gradual wind speed; (c) voltage drop.

errors are different; different coefficients should balance the
importance of the two objectives. After continuous manual
debugging, it is relatively appropriate to set ϕ1 to 0.04 and
set ϕ2 to 1.
The five heuristic optimization algorithms (i.e., MFO,

ALO, DA, SCA, and HMFOA) are all calculated under the
same conditions: i) the population size and individual number
Nsize of all algorithms is 100; (ii) the fitness function values
of all algorithms are compared after ten runs. It is noted that
the selection of the maximum iterations T determines the
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FIGURE 15. Box-and-whisker plots of five intelligent optimization
algorithms: (a) fitness function; (b) calculation time.

quality of the optimal solution and operation time. Choosing a
larger T means a higher quality optimal solution but leads to a
longer operation time. In this paper, trial-and-error shows that
when T = 200, the fitness function value remains unchanged
or slightly changes. Therefore, T is set to 200 to obtain a
better fitness function value and shorten the operation time
of algorithms.

Box-and-whisker plot describes the discrete distribution of
data in a relatively stable way. As shown in FIGURE 15(a),
the two algorithms of DA and HMFOA have a small range
between the upper and lower limits of the fitness function
values, with a more concentrated distribution and great con-
vergence stability. Among the five intelligent optimization
algorithms, the fitness function obtained by HMFOA is the
smallest, which indicates that the control parameters are opti-
mal. As shown in FIGURE 15 (b), the calculation time of
HMFOA is small. Although the computation time ofHMFOA
is larger than that of DA, the value of the fitness function is
lower than that of DA. Compared to DA, HMFOA takes more
computational time for exploration.

FIGURE 16 shows that: i) the overshoot of rotor speed
error obtained by the HMFOA is the smallest; ii) the HMFOA
can obtain the accurate maximum power coefficient and wind
energy capture of the DFIG. Although the active and reactive
power deviations in FIGURE 16 appear large, the overall
deviation is small.

The system response curves (FIGURE 17(a) and
FIGURE 17(c)) illustrate that the rotor speed deviation and

TABLE 4. Control parameters of moth-flame optimization algorithm.

TABLE 5. Control parameters of ant lion optimization algorithm.

reactive power deviation of HMFOA have the smallest oscil-
lation, which has a smoother control performance compared
with the other four algorithms. Besides, the DFIG based
on the HMFOA can maintain the optimal power coeffi-
cient and better realize the maximum wind energy tracking
(FIGURE 17(b) and FIGURE 17(d)).

Power grid fault or load change could lead to a sudden
voltage drop, which requires the DFIG to have a certain
ability to recover the system and ensure that the DFIG does
not go off the grid. The system response diagram of DFIG
to the voltage drop (FIGURE 18) shows that the HMFOA
can recover to the stable state of the system with the fastest
speed and minimum fluctuation. Therefore, the HMFOA has
a certain system recovery ability.

Since the MPPT of the DFIG is not a theoretically analyz-
able problem, no theoretically optimal solution exists. If the
theoretically optimal curve can be found, then the HMFOA
proposed in this study is not necessary to exist. In addition,
the HMFOC proposed in this study is precisely the solution
to the problem of optimal solutions that are not theoretically
findable.

The HMFOA and other intelligent optimization algorithms
are offline optimizations rather than online optimizations.
The control parameters of HDMFOCs can be directly applied
in the HDMFOCs after tuning with the optimization algo-
rithms. The calculation time of these compared algorithms is
long (at the hourly level), which cannot meet the continuous
control of theMPPT (at themillisecond level) and faults in the
power grid. TABLE 4 to TABLE 8 are the control parameters
of the DFIG obtained by these five compared algorithms.

TABLE 9 compares the operation time, the best, the worst,
average objective values, the standard deviation, and the rela-
tive standard deviation. Comparedwith four other algorithms,
the average operation time of HMFOA is 14.5750 hours,
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FIGURE 16. System response diagrams under stepped wind speed condition of Case II: (a) curves of rotor speed deviation; (b) curves of power
coefficient; (c) curves of reactive power deviation; (d) curves of active power.

TABLE 6. Control parameters of dragonfly algorithm optimization
algorithm.

which is only more than that of DA. The HMFOA can obtain
the minimum objective function value, which is 0.4107. The
average objective value of the minimum fitness function is
0.4135, which shows that the HMFOA can effectively tune
the optimal control parameters.

C. DISCUSSIONS
The HDMFOC inspires the HMFOA with three dimensions
of search directions. Collaborative search with three search

TABLE 7. Control parameters of sine cosine optimization algorithm.

directions with different exploration and exploitation abilities
can improve the accuracy of the search. The characteristics of
the HMFOA can be summarized below.

1) The HMFOA embraces three-dimensional search direc-
tions, namely, proportional direction, fractional-order differ-
ential direction, and fractional-order differential direction,
which can balance exploration and exploitation. The intro-
duction of fractional calculus orders can expand the search
area. The fractional-order differential direction has a strong
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FIGURE 17. System response diagrams under gradual wind speed condition of Case II: (a) curves of rotor speed deviation; (b) curves of power
coefficient; (c) curves of reactive power deviation; (d) curves of active power.

TABLE 8. Control parameters of high-dimensional multiple
fractional-order optimization algorithm.

exploration ability, and the fractional-order differential direc-
tion has a strong exploitation ability.

2) The HMFOA is employed to the test of the baseline
function against the other 18 optimization algorithms. The
simulation results show the fitness function values, box-and-
whisker plots of the fitness function, search trajectory of

TABLE 9. Statistical data after ten runs obtained by five intelligent
optimization algorithms.

search agents, convergence curve, and average fitness func-
tion curve. The simulation results show that the HMFOA
has efficient optimization, stability of operation, extensive
exploration ability, and high precision exploitation ability.

In all the case studies, the product factor of the pro-
portional operator k1 sets to [−1, 1]; the product factor of
fractional-order integral operator k2 sets to [−1, 1]; the prod-
uct factor of fractional-order differential operator k2 sets to
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FIGURE 18. Response curves of Case II: (a) Werr curves; (b) Cp curves; (c) Qerr curves; (d) P curves.

[−1, 1]; the fractional-order integral order ϕ sets to [1,1.5];
the fractional-order differential order δ sets to [0.5, 1].
According to the theory that there is no free lunch, there is

no method that can obtain the optimal solution quickly and
accurately in any complex engineering scenario. In addition,
the HMFOA proposed in this study is particularly applicable
to the parameter optimization problem of optimizing complex
controllers for HDMFOC. The HMFOA proposed in this
study is more complex than PID. In addition, the running time
of HMFOA is longer than that of PID. Besides, HMFOA is
not suitable for the optimization of deep reinforcement learn-
ing and reinforcement learning algorithms. Instead, HMFOA
is only appropriate for the optimization of traditional PID
and HDMFOC controllers. The HMFOA proposed in this
study is particularly suitable for the optimization problem
of the parameters of traditional control algorithms contain-
ing fractional-order or proportional-integral differentiation,
while it is not suitable for the optimization problem of com-
plex control algorithms. In particular, this study applies the

idea of controllers to optimization algorithms, which is a
slightly difficult scientific problem to understand.

V. CONCLUSION
This paper presents an HMFOA based on HDMFOA, which
is applied to tune the parameters of HDMFOA of the RSC in
the DFIG. The major contributions are summarized below.

1) The HMFOA has three search directions, namely, pro-
portional direction, fractional-order integral direction, and
fractional-order differential direction, which can balance
exploration and exploitation in the whole. The exploration
ability of fractional-order integral direction is high, improv-
ing the global search range; the exploitation ability of
fractional-order differential direction is strong, improving the
accuracy of local optimal solution search.

2) In the simulation results, HMFOA is verified to have
excellent optimization capability on single-objective opti-
mization problems.
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3) The HMFOA is applied to the parameter tuning of the
RSC in the DFIG-based wind energy systems. The simulation
results prove the feasibility and reliability of the HMFOA for
wind energy systems.

In the future works, i) consider a more comprehensive
range of wind speed changes, more essential constraints,
and dynamic performance indicators to meet the increasing
practical needs of engineering applications; ii) consider the
applications of the HMFOA to the controllers of grid-side
converters of power systems; iii) consider the application of
the HMFOA to the MPPT of permanent magnet synchronous
generators and photovoltaic power generations.

VI. COMPLIANCE WITH ETHICAL STANDARDS
Conflict of Interest: The authors declare that they have no
conflict of interest.

Ethical approval: This article does not contain any studies
with human participants or animals performed by any of the
authors.

REFERENCES
[1] Y. Xiang, L. Zhou, Y. Huang, X. Zhang, Y. Liu, and J. Liu, ‘‘Reactive

coordinated optimal operation of distributed wind generation,’’ Energy,
vol. 218, Mar. 2021, Art. no. 119417.

[2] E. P. P. Soares-Ramos, L. de Oliveira-Assis, R. Sarrias-Mena, and
L. M. Fernández-Ramírez, ‘‘Current status and future trends of offshore
wind power in Europe,’’ Energy, vol. 202, Jul. 2020, Art. no. 117787.

[3] K.-H. Lu, C.-M. Hong, andQ. Xu, ‘‘Recurrent wavelet-based Elman neural
networkwithmodified gravitational search algorithm control for integrated
offshore wind and wave power generation systems,’’ Energy, vol. 170,
pp. 40–52, Mar. 2019.

[4] A. Mishra, P. M. Tripathi, and K. Chatterjee, ‘‘A review of harmonic
elimination techniques in grid connected doubly fed induction generator
basedwind energy system,’’Renew. Sustain. Energy Rev., vol. 89, pp. 1–15,
Jun. 2018.

[5] Y. Xu, H. Nian, T. Wang, L. Chen, and T. Zheng, ‘‘Frequency coupling
characteristic modeling and stability analysis of doubly fed induction
generator,’’ IEEE Trans. Energy Convers., vol. 33, no. 3, pp. 1475–1486,
Sep. 2018.

[6] A. Kadri, H. Marzougui, A. Aouiti, and F. Bacha, ‘‘Energy manage-
ment and control strategy for a DFIG wind turbine/fuel cell hybrid
system with super capacitor storage system,’’ Energy, vol. 192, Feb. 2020,
Art. no. 116518.

[7] F. Mazouz, S. Belkacem, I. Colak, S. Drid, and Y. Harbouche, ‘‘Adap-
tive direct power control for double fed induction generator used in
wind turbine,’’ Int. J. Electr. Power Energy Syst., vol. 114, Jan. 2020,
Art. no. 105395.

[8] S. Gao, H. Zhao, Y. Gui, D. Zhou, V. Terzija, and F. Blaabjerg, ‘‘A novel
direct power control for DFIG with parallel compensator under unbal-
anced grid condition,’’ IEEE Trans. Ind. Electron., vol. 68, no. 10,
pp. 9607–9618, Oct. 2021.

[9] M. R. A. Kashkooli, S. M. Madani, and T. A. Lipo, ‘‘Improved direct
torque control for a DFIG under symmetrical voltage dip with transient flux
damping,’’ IEEE Trans. Ind. Electron., vol. 67, no. 1, pp. 28–37, Jan. 2020.

[10] W. Ayrir, M. Ourahou, B. El Hassouni, and A. Haddi, ‘‘Direct torque
control improvement of a variable speed DFIG based on a fuzzy inference
system,’’Math. Comput. Simul., vol. 167, pp. 308–324, Jan. 2020.

[11] B. Yang, X. Zhang, T. Yu, H. Shu, and Z. Fang, ‘‘Grouped grey wolf
optimizer for maximum power point tracking of doubly-fed induction
generator based wind turbine,’’ Energy Convers. Manage., vol. 133,
pp. 427–443, Feb. 2017.

[12] J. Chen,W. Zhang, B. Chen, andY.Ma, ‘‘Improved vector control of brush-
less doubly fed induction generator under unbalanced grid conditions for
offshore wind power generation,’’ IEEE Trans. Energy Convers., vol. 31,
no. 1, pp. 293–302, Mar. 2016.

[13] H. Jenkal, B. Bossoufi, A. Boulezhar, A. Lilane, and S. Hariss, ‘‘Vector
control of a doubly fed induction generator wind turbine,’’ Mater. Today,
Proc., vol. 30, pp. 976–980, 2020.

[14] B. Kelkoul and A. Boumediene, ‘‘Stability analysis and study between
classical sliding mode control (SMC) and super twisting algorithm (STA)
for doubly fed induction generator (DFIG) under wind turbine,’’ Energy,
vol. 214, Jan. 2021, Art. no. 118871.

[15] M. Abolvafaei and S. Ganjefar, ‘‘Maximum power extraction from frac-
tional order doubly fed induction generator based wind turbines using
homotopy singular perturbation method,’’ Int. J. Electr. Power Energy
Syst., vol. 119, Jul. 2020, Art. no. 105889.

[16] J. Wang, D. Bo, Q. Miao, Z. Li, X.Wu, and D. Lv, ‘‘Maximum power point
tracking control for a doubly fed induction generator wind energy conver-
sion system based on multivariable adaptive super-twisting approach,’’ Int.
J. Electr. Power Energy Syst., vol. 124, Jan. 2021, Art. no. 106347.

[17] L. Yin and Q. Gao, ‘‘Proportional–integral–derivative optimization
algorithm for double-fed induction generator with the maximum wind
power tracking technique,’’ Soft Comput., vol. 25, no. 4, pp. 3097–3111,
Feb. 2021.

[18] L. Yin and Q. Gao, ‘‘Multi-objective proportional–integral–derivative opti-
mization algorithm for parameters optimization of double-fed induction
generator-based wind turbines,’’ Appl. Soft Comput., vol. 110, Oct. 2021,
Art. no. 107673.

[19] Z. Tian, ‘‘Backtracking search optimization algorithm-based least square
support vector machine and its applications,’’ Eng. Appl. Artif. Intell.,
vol. 94, Sep. 2020, Art. no. 103801.

[20] D. H. Kim, ‘‘Hybrid GA-BF based intelligent PID controller tuning for
AVR system,’’ Appl. Soft Comput., vol. 11, no. 1, pp. 11–22, Jan. 2011.

[21] W. Deng, J. Xu, Y. Song, and H. Zhao, ‘‘Differential evolution algorithm
with wavelet basis function and optimal mutation strategy for com-
plex optimization problem,’’ Appl. Soft Comput., vol. 100, Mar. 2021,
Art. no. 106724.

[22] X. Zhang, Q. Kang, and X. Wang, ‘‘Hybrid biogeography-based optimiza-
tion with shuffled frog leaping algorithm and its application to minimum
spanning tree problems,’’ Swarm Evol. Comput., vol. 49, pp. 245–265,
Sep. 2019.

[23] M. Singh, R. N. Patel, and D. D. Neema, ‘‘Robust tuning of excitation
controller for stability enhancement using multi-objective metaheuristic
firefly algorithm,’’ Swarm Evol. Comput., vol. 44, pp. 136–147, Feb. 2019.

[24] A. Saxena, R. Kumar, and S. Das, ‘‘β-chaotic map enabled grey wolf
optimizer,’’ Appl. Soft Comput., vol. 75, pp. 84–105, Feb. 2019.

[25] M. J. Blondin, J. Sanchis, P. Sicard, and J. M. Herrero, ‘‘New optimal
controller tuning method for an AVR system using a simplified ant colony
optimization with a new constrained Nelder–Mead algorithm,’’ Appl. Soft
Comput., vol. 62, pp. 216–229, Jan. 2018.

[26] M. A. Ebrahim, M. Becherif, and A. Y. Abdelaziz, ‘‘Dynamic perfor-
mance enhancement for wind energy conversion system using moth-flame
optimization based blade pitch controller,’’ Sustain. Energy Technol.
Assessments, vol. 27, pp. 206–212, Jun. 2018.

[27] A. Saad, S. A. Khan, and A. Mahmood, ‘‘A multi-objective evolutionary
artificial bee colony algorithm for optimizing network topology design,’’
Swarm Evol. Comput., vol. 38, pp. 187–201, Feb. 2018.

[28] A. K. Ball, S. S. Roy, D. R. Kisku, N. C. Murmu, and L. D. S. Coelho,
‘‘Optimization of drop ejection frequency in EHD inkjet printing sys-
tem using an improved firefly algorithm,’’ Appl. Soft Comput., vol. 94,
Sep. 2020, Art. no. 106438.

[29] H. Faris, M. A. Hassonah, A. M. Al-Zoubi, S. Mirjalili, and I. Aljarah,
‘‘A multi-verse optimizer approach for feature selection and optimizing
SVM parameters based on a robust system architecture,’’ Neural Comput.
Appl., vol. 30, no. 8, pp. 2355–2369, Oct. 2018.

[30] E. Y. Bejarbaneh, A. Bagheri, B. Y. Bejarbaneh, S. Buyamin, and
S. N. Chegini, ‘‘A new adjusting technique for PID type fuzzy logic con-
troller using PSOSCALF optimization algorithm,’’ Appl. Soft Comput.,
vol. 85, Dec. 2019, Art. no. 105822.

[31] D. H.Wolpert andW. G. Macready, ‘‘No free lunch theorems for optimiza-
tion,’’ IEEE Trans. Evol. Comput., vol. 1, no. 1, pp. 67–82, Apr. 1997.

[32] Q. Zhu, M. Xu, W. Liu, and M. Zheng, ‘‘A state of charge estima-
tion method for lithium-ion batteries based on fractional order adaptive
extended Kalman filter,’’ Energy, vol. 187, Nov. 2019, Art. no. 115880.

[33] T. A. A. Ali, Z. Xiao, S. Mirjalili, and V. Havyarimana, ‘‘Efficient
design of wideband digital fractional order differentiators and integrators
using multi-verse optimizer,’’ Appl. Soft Comput., vol. 93, Aug. 2020,
Art. no. 106340.

VOLUME 11, 2023 141471



X. Tao et al.: High-Dimensional Multiple Fractional-Order Optimizer

[34] M. Al-Dhaifallah, A. M. Nassef, H. Rezk, and K. S. Nisar, ‘‘Optimal
parameter design of fractional order control based INC-MPPT for PV
system,’’ Sol. Energy, vol. 159, pp. 650–664, Jan. 2018.

[35] L. Yin, X. Cao, and L. Chen, ‘‘High-dimensional multiple fractional
order controller for automatic generation control and automatic voltage
regulation,’’ Int. J. Control, Autom. Syst., vol. 20, no. 12, pp. 3979–3995,
Dec. 2022.

[36] S. Mirjalili, ‘‘SCA: A sine cosine algorithm for solving optimization
problems,’’ Knowl.-Based Syst., vol. 96, pp. 120–133, Mar. 2016.

[37] O. Soares, H. Gonçalves, A. Martins, and A. Carvalho, ‘‘Nonlinear control
of the doubly-fed induction generator in wind power systems,’’ Renew.
Energy, vol. 35, no. 8, pp. 1662–1670, Aug. 2010.

[38] B. Yang, T. Yu, H. Shu, J. Dong, and L. Jiang, ‘‘Robust sliding-mode
control of wind energy conversion systems for optimal power extraction via
nonlinear perturbation observers,’’ Appl. Energy, vol. 210, pp. 711–723,
Jan. 2018.

[39] L. Yin, X. Cao, and S. Wang, ‘‘Deep learning-accelerated optimization
algorithm for controller parameters optimization of doubly-fed induction
generators,’’ Appl. Soft Comput., vol. 131, Dec. 2022, Art. no. 109800.

[40] F. Mei and B. Pal, ‘‘Modal analysis of grid-connected doubly fed induction
generators,’’ IEEE Trans. Energy Convers., vol. 22, no. 3, pp. 728–736,
Sep. 2007.

XINGHUA TAO received the B.S. and M.S.
degrees from the Naval University of Engineer-
ing, Hubei, China, in 1994 and 2002, respec-
tively, and Ph.D. degree from Tsinghua University,
in 2011. He is currently an Associate Professor
with Nanning University, Guangxi. His research
interests include power electronics, motor control,
and power system control.

NAN MO was born in Lipu, Guangxi, China,
in 1999. He received the B.S. degree in automa-
tion from the Shanghai Institute of Technology,
Shanghai, China, in 2022. He is currently pursuing
the M.S. degree with the College of Electri-
cal Engineering, Guangxi University, Nanning,
Guangxi. His major research interest includes arti-
ficial intelligence techniques in the operation of
power systems.

JIANBO QIN was born in Guangxi, China,
in 1983. He received the B.S. degree in automation
in China, in 2006, theM.S. degree in control theory
and control engineering in China, in 2009, and the
Ph.D. degree in electrical engineering in China,
in 2022. His research interests include power sys-
tem analysis and control, and torsional vibrations
analysis and control.

XIAOZHE YANG received the B.S. and M.S.
degrees from the Guilin University of Electronic
Technology, Guangxi, China, in 2011 and 2015,
respectively. He is currently a Computer Technol-
ogy Engineer with Nanning University, Guangxi.
His research interests include computer vision,
object recognition, and few-shot learning.

LINFEI YIN was born in Jiujiang, Jiangxi,
China, in 1990. He received the B.S. and
M.S. degrees in information engineering from
Nanchang Hangkong University, Nanchang,
China, in 2012 and 2015, respectively, and the
Ph.D. degree from the College of Electric Power
Engineering, South China University of Technol-
ogy, Guangzhou, China, in 2018. He is currently
an Associate Professor with the College of Elec-
trical Engineering, Guangxi University, Nanning,

Guangxi, China. His major research interest includes artificial intelligence
techniques in the operation of power systems.

LIKUN HU received the B.Sc. and M.S. degrees
from the Harbin University of Science and
Technology, Harbin, China, in 1999 and 2002,
respectively, and the Ph.D. degree from the
Harbin Institute of Technology, Harbin, in 2008.
He is currently a Professor with Guangxi Uni-
versity, Nanning, China. His main research inter-
ests include robot dynamics and control, robot
motion planning, robot vision, and environment
perception.

141472 VOLUME 11, 2023


