
Received 29 October 2023, accepted 5 December 2023, date of publication 14 December 2023,
date of current version 22 December 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3343252

A Systematic Literature Review of AI-Based
Software Requirements Prioritization Techniques
RAHILA ANWAR AND MUHAMMAD BILAL BASHIR
Department of Computing and Technology, Iqra University, Islamabad 44000, Pakistan

Corresponding author: Rahila Anwar (rahilaanwar7@gmail.com)

ABSTRACT Software requirements show what the customer desires his software to do. They are the first
stepping stone towards a successful software development project. With the increasing complexity of the
software due to its size and feature base, it is vital to prioritize the requirements for efficient utilization of
development resources. To achieve this, industrial organizations are devising new strategies and improved
solutions even with the help of artificial intelligence (AI) tool set. Existing requirements prioritization
techniques are human-intensive and suffer from several limitations like overlapping outcomes, scalability
problems, time consumption, inaccuracy, and so on. Some of the problems can be solved by including artifi-
cial intelligence algorithms and strategies. Several AI-based requirements prioritization techniques have been
proposed by applying Genetic Algorithms, Fuzzy Logic, Ant Colony Optimization, and Machine Learning.
Literature witnesses some good review studies and surveys on conventional prioritization techniques but
there exists none for AI-based techniques that identify not only their strengths but also their weaknesses,
advantages of machine learning techniques over other AI-based requirements prioritization techniques, and
limitations of applying AI-based techniques in requirements prioritization. This study presents a systematic
literature review (SLR) of AI-based requirements prioritization approaches covering 46 papers published
from 2000 to 2021. We have given this literature review a new dimension by conducting a parametric
analysis of AI-based requirements prioritization techniques and we have identified these parameters after
a thorough literature study. Some of the chosen parameters are generic (related to the prioritization process)
and some are specific (related to AI techniques). This study has greatly helped us draw a clear line among
AI-based techniques to show their domain of application to gain maximum advantage. Our findings will
assist researchers, requirement analysts, and other stakeholders in making a wise decision to select the best
requirements prioritization technique to gain optimal results.

INDEX TERMS Artificial intelligence, ant colony, fuzzy logic, genetic algorithm, generic parameters,
machine learning, optimization, requirement engineering, requirement prioritization, requirement analysis,
specific parameters.

I. INTRODUCTION
The Requirement Engineering (RE) is a vital part of soft-
ware engineering that is characterized as the procedure by
which the requirements are determined considering the var-
ious needs of clients, understanding the contexts in which
the framework would be created, displaying, investigating,
arranging, recording stakeholder requirements, ensuring that
recorded requirements align with negotiated requirements

The associate editor coordinating the review of this manuscript and

approving it for publication was Kostas Kolomvatsos .

and dealing with the evolution of changing requirements [14],
[32], [51], [57].

Requirement Engineering includes a significant part
named Requirement Prioritization that can be used in analysis
and negotiation activities [37], [53]. Fig. 1 shows the process
flow of the prioritization including inputs, processing, and
output. A project’s most significant aspects must be priori-
tized beforehand when it has inadequate resources, an intense
execution plan, and high client expectations. At this stage
prioritization of requirements becomes necessary. Decision
makers face the challenge of surpassing several requirements

VOLUME 11, 2023

 2023 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License.

For more information, see https://creativecommons.org/licenses/by/4.0/ 143815

https://orcid.org/0009-0002-5095-9474
https://orcid.org/0000-0002-5938-6361
https://orcid.org/0000-0002-9442-3340

R. Anwar, M. B. Bashir: SLR of AI-Based Software Requirements Prioritization Techniques

FIGURE 1. Software requirements prioritization process.

than their competency to acknowledge different allocated
constraints such as resources, time, and cost [12], [57]. It is
necessary to distinguish between key and less significant
factors in such situations [37].

Requirement prioritization facilitates the development of
project plans so that on-time release of new software product
versions is possible. Without a solid strategy, the project
may surpass the expected cost [43] as well as the release
timetable. The order in which requirements are accomplished
influences the end-user and customer’s experience, but it also
depends on technological restrictions and resource availabil-
ity. Prioritizing requirements results in an absolute list of
requirements that best addresses the various sorts of depen-
dencies [54]. Some decisions regarding the relative priority of
requirements or the feasibility of a certain execution sequence
must be made by requirement analysts who have prioritizing
experience [27], [35], [57].

The usability of software and its commercial value are
vastly improved by the volatility of requirements. How-
ever, this requirement unpredictability can occasionally lead
to misunderstandings and ineffective handling of changing
requirements [60]. On the other hand, requirement volatility
cannot be ignored because requirements tend to change due
to various reasons and if they are not accommodated in the
prioritization and development process, the client may refuse
to accept the software product.

Many conventional software requirement prioritization
techniques have been proposed by authors [12], [14], [29],
[32], [37], [43], [47], [51], [55], [57]. These methods are
quantitative as well as subjective in nature. Analytical Hier-
archy Process (AHP), Cumulative Voting, Numerical Assign-
ment, and others are examples of prominent requirements
prioritizing processes. If a few procedures like cumulative
voting or ranking are effective for cost and time, their out-
comes are not accurate. On the other hand, techniques like
AHP are computationally complex, and require expert per-
sonnel and a great deal of computations to prioritize the
requirements [37].

Existing requirements prioritization techniques suffer from
several problems such as complexity of application, expen-
sive in computations, lack of automation, scalability, ambi-
guity, and uncertainty [12], [37], [47], [53], [59]. Software
initiatives might come with several risks, assumptions, and

requirements that are incompatible. Unfortunately, conven-
tional prioritization methods are not capable of handling
projects with these problems. Most of the aforementioned
problems can be resolved with the inclusion of AI-based tech-
niques [24]. For example, fuzzy logic can help in situations
where a project has risky and conflicting requirements [44].
Other AI-based techniques that have been applied in priori-
tizing the requirements include genetic algorithm, simulated
annealing, ant colony optimization and machine learning [4],
[5], [15], [16], [23], [50], [55], [58].

Literature showsmany conventional literature reviews [41],
[46] and systematic literature reviews [13], [32], [56], [57],
[62] have been carried out in the domain of software require-
ment engineering and specifically software requirements
prioritization. However, to the best of the authors’ knowl-
edge, there is no comprehensive literature survey to evaluate
AI-based requirements prioritization techniques has been
undertaken to date. We conducted a thorough literature
review, to sum up the knowledge related to 46 AI-based
techniques proposed between the years 2000 and 2021.
We have added a new dimension to this systematic review
by adding an in-depth parametric analysis of all the pro-
posed approaches in the light of a comprehensive benchmark.
We have identified these parameters for the evaluation after
an extensive literature survey. These parameters cover every
possible dimension of AI-based requirements prioritization
techniques in the sense that some parameters cover the inher-
ent properties of the conventional prioritization process and
some are specific to the AI-based approaches. This study will
help the stakeholders to make the best possible selection of
the most appropriate technique to prioritize the requirements
of their software. The key contributions of this study include
the following;

Literature showsmany conventional literature reviews [41],
[46] and systematic literature reviews [13], [32], [56], [57],
[62] have been carried out in the domain of software require-
ment engineering and specifically software requirements
prioritization. However, no comprehensive literature survey
to evaluate AI-based requirements prioritization techniques
using generic as well as specific evaluation criteria has
been undertaken to date. We conducted a thorough literature
review, to sum up the knowledge related to 46 AI-based
techniques proposed between the years 2000 and 2021.
We have added a new dimension to this systematic review
by adding an in-depth parametric analysis of all the pro-
posed approaches in the light of a comprehensive benchmark.
We have identified these parameters for the evaluation after
an extensive literature survey. These parameters cover every
possible dimension of AI-based requirements prioritization
techniques in the sense that some parameters cover the inher-
ent properties of the conventional prioritization process and
some are specific to the AI-based approaches. This study will
help the stakeholders to make the best possible selection of
the most appropriate technique to prioritize the requirements
of their software. The key contributions of this study include
the following;

143816 VOLUME 11, 2023

R. Anwar, M. B. Bashir: SLR of AI-Based Software Requirements Prioritization Techniques

• It provides a complete list of research publications
on AI-based requirements prioritization from the year
2000 to 2021.

• It classifies all the techniques into three major groups
and presents a critical review for each of them.

• It analyzes the AI-based requirements prioritization
techniques with the help of a well-defined set of
parameters.

• It highlights common strengths and weaknesses of all
the groups of AI-based techniques collectively as well
as individually with concrete justifications.

• It lists all the problem areas that still need further
research as future directions for the researchers.

• It presents key advantages of Machine Learning tech-
niques over other AI-based techniques used for software
requirements prioritization.

• It analyzes and presents major limitations of apply-
ing AI-based techniques in software requirements
prioritization.

• This is a unique and ‘‘new’’ research work that did not
appear in previous SLR which is a major contribution.

The remaining part of the paper is organized as follows:
Section II presents the research method that has been applied
to conduct this systematic literature review. Section III
presents a detailed survey of Fuzzy Logic, Optimization,
and Machine Learning techniques. Section IV and Section V
demonstrate the evaluation criteria and Results Analysis
and Comparison respectively. Section VI and Section VII
present the Discussion and related work of this study respec-
tively. Section VIII concludes this research work on AI-based
requirements prioritization techniques, limitations, and future
directions.

II. RESEARCH METHOD
This study has been undertaken as an SLR following the
standard guidelines of Kitchenham and Charters [13]. To exe-
cute the SLR, a review protocol is developed to control the
researcher’s bias. SLR has been conducted by constituting
a team comprising an author and a co-author. After several
discussions, we designed research objectives that helped us to
articulate three research questions. We selected keywords for
searching relevant research papers from online repositories to
answer our research questions. The term relevant means that
these papers have content related to our domain of study i.e.
Requirements prioritization and AI techniques. We designed
inclusion, and exclusion criteria, and quality assessment to
ensure the quality of research. We extracted all parameters
discussed in the literature to evaluate AI-based requirements
prioritization techniques and then shortlisted key parameters
to design benchmark evaluation parameters for the evaluation
of AI techniques used for requirement prioritization.

It consists of research questions, search strategy, study
selection, data extraction and synthesis, and threats to valid-
ity. The details of the researchmethod are illustrated next with
the help of a model presented in Fig. 2.

FIGURE 2. Research method.

We followed a research method that consisted of four
major steps. Firstly, we described the research motivation and
questions we wanted to answer. Secondly, we developed a
strategy to search for relevant research studies by identifying
the most appropriate keywords and preparing search strings
to retrieve the necessary material from online sources and
databases.We then selected themost relevant research studies
to answer the research questions. We set inclusion and exclu-
sion criteria to filter out irrelevant articles and defined quality
assurance criteria to obtain high-quality research articles.
Finally, we synthesized the data and answered the research
questions. To achieve this, we created a parametric bench-
mark (Section IV) and analyzed all the surveyed approaches
in light of that benchmark.

A. RESEARCH MOTIVATION
This SLR aims to analyze AI-based software requirements
prioritization techniques that are fuzzy logic, optimization,
and machine Learning in the light of parametric benchmark
for the core purpose of identifying their key strengths and
weaknesses, advantages of machine learning techniques over
other surveyed AI-based requirements prioritization tech-
niques and the limitations of applying AI techniques to
software requirements prioritization. Various artificial intel-
ligence (AI) techniques are proposed in the literature for
prioritizing requirements. However, the trend is towards using
machine learning, fuzzy logic, and optimization techniques
for this purpose, as per [62]. The primary aim of using
AI-based techniques for requirements prioritization is to
reduce decision-making effort, thus minimizing errors and
accelerating requirement execution, as [43] suggests. Another
significant reason for preferring AI-based techniques is that
they align with the identified problems of accuracy, scalabil-
ity, efficiency, redundancy, and lack of optimal solutions.

B. RESEARCH QUESTIONS
We formulated three Research Questions to achieve our
research objectives to figure out how important artificial
intelligence approaches are in the domain of software require-
ments prioritization, What has been achieved so far, and what
still needs to be done to fully exploit the strengths of AI
algorithms. The population of our three Research Questions
are published studies from 2000 to 2021. Three Research

VOLUME 11, 2023 143817

R. Anwar, M. B. Bashir: SLR of AI-Based Software Requirements Prioritization Techniques

TABLE 1. Research questions.

Questions (RQs) along with their motivation are presented
below in Table 1.

C. SEARCH STRATEGY
We devised a search strategy to collect all the research articles
related to our domain of study from the online resources.
We prepared search strings by merging key terms, then we
picked the most famous online resources & databases, and
finally, the search was carried out to identify all the relevant
articles. Next, we present the details of all the activities
performed under this step.

1) SEARCH STRINGS
We followed the instructions provided by Kitchenham and
Charters [13] to form the search strings. First, we identified
key terms from the research questions. Then we collected
synonyms and similar terms that are used in the domain
of requirements prioritization. We also used different names
for the algorithms that come under the umbrella of artificial
intelligence. Then we identified keywords from the relevant
research articles [32], [38], [57], [58], [62], [63], [64], [65].
Finally, we used Boolean OR and AND to create the search

strings by combining key terms.
The following are the search keywords that resulted.:

‘‘Soft-ware Requirements’’ AND (‘‘Prioritization’’ OR
‘‘Ranking’’) AND (‘‘Genetic Algorithm’’ OR ‘‘Search
based’’ OR ‘‘Meta-Heuristic’’ OR ‘‘Metaheuristic’’ OR
‘‘Fuzzy Logic’’ OR ‘‘Ma-chine Learning’’ OR ‘‘Deep Learn-
ing’’ OR ‘‘Artificial Intelligence’’ OR ‘‘Neural Network’’ OR
‘‘Optimization’’).

The search strings are employed in a variety of ways
to locate all work-related research. Guidelines are used to
generate search strings. Finally, additional search algorithms
and Boolean operators are employed to make the search
procedure more robust and to acquire all relevant data. The
keywords listed below are used to find similar publications:
Requirements prioritization, Requirements Ranking, Opti-
mization Techniques, Genetic Algorithms, Fuzzy Logic, Ma-
chine Learning,Metaheuristic, Search-based Techniques, and
Artificial Intelligence.

2) RESEARCH REPOSITORIES
According to the study procedure, related research studies
were thoroughly retrieved using the selection and rejection
criteria. These research articles were gathered from Elsevier,
ACM, IEEE, Springer, and Google Scholar.

3) SEARCH OUTCOME
A systematic literature review entails a thorough search of all
relevant materials on a particular topic. The search techniques
used in this study, however, consist of the phases listed below
and are represented in Fig. 3. Stage 1 of the search: A com-
prehensive search of the five electronic database sources was
conducted and the returning results (papers) were compiled
into sets of potential papers.

FIGURE 3. Search and selection process.

D. STUDY SELECTION
During the first phase of the search, 5755 prospective stud-
ies were discovered. Next, the titles and the abstracts of
these studies were scrutinized. This task was critical to
eliminate duplicate (same paper published by more than
one publisher), grey literature (unpublished work or work

143818 VOLUME 11, 2023

R. Anwar, M. B. Bashir: SLR of AI-Based Software Requirements Prioritization Techniques

in progress), or irrelevant research publications that do not
answer our research questions. As a consequence, 296 out of
5755 studies were determined to be relevant and 5459 stud-
ies were rejected. Thereafter, using the snowballing process,
references of each selected study were searched to identify
important studies that might have been missed out during the
initial search process but we did not find any recent paper for a
new technique. Finally, the quality assessment criteria (QAC)
were applied to the selected studies and 46 most relevant
studies were chosen to answer our research questions.

1) SCRUTINY
From Fig. 3, during the preliminary search, 5755 prospective
studies were discovered. As a result, careful examination was
required to narrow down the studies to those that were most
relevant. Each study’s title was considered first, followed by
a brief examination of the contents. As a result, any articles
that were not relevant to the discussion subject or were unable
to address any of the articulated research questions were
deleted from the list of studies. When there are many versions
of the same document, the search uses the most thorough,
current, and upgraded version, whereas the others are dis-
carded. We conducted a thorough review of requirements
prioritization approaches covering papers published between
2000 and 2021. The inclusion and exclusion criteria used for
the evaluation of studies are summarized in Table 2.

TABLE 2. Inclusion criteria and exclusion criteria.

2) QUALITY ASSESSMENT OF SELECTED STUDIES
The objective of the critical evaluation of our gathered litera-
ture is to check the quality of the studies that were obtained.
For study selection, we formulated a three-point quality
assessment score (QAS) checklist following the guidelines of
Kitchenham et al [13]. Each question has only three optional
answers: ‘‘Yes’’, ‘‘partly’’ or ‘‘No’’. These three answers are
scored as follows: ‘‘Yes’’= 1, ‘‘Partly’’= 0.5, and ‘‘No’’= 0.
Consequently, the quality score for a particular study is com-
puted by finding the sum of all the scores of the answers
to the Quality assessment questions. The minimum quality
acceptance criteria With a quality score is 2.5. All 46 selected

TABLE 3. Quality assessment checklist.

studies qualified for the minimum quality assessment criteria.
The Quality assessment questions are presented in Table 3.
(For detailed quality scores see Table 33).

E. DATA EXTRACTION AND SYNTHESIS
The data extraction and data synthesis for the selected
research articles are shown in Tables 4 and 5 respectively
below to discover the answers to three research questions.
Table 6. shows evidence from 66 research papers that have
been published in different journals, articles, conferences,
web pages, and reports. Out of these 66 papers, 46 papers
on the topic were chosen to answer the formulated research
questions. The overview of 46 selected studies is presented
in Tables 26 and 27. The data for RQ1 is arranged into three
tables: 28, 29, and 30. In terms of software requirement prior-
itization, RQ2 discusses the advantages of machine learning
approaches over AI techniques. RQ3 examines the limitations
of applying AI-based techniques in software requirements
prioritization that are presented in Table 31.

TABLE 4. Data extraction and synthesis detail.

TABLE 5. Data synthesis detail.

F. THREATS TO VALIDITY
In this section, we identified a few known threats to the
validity of this study’s results.

VOLUME 11, 2023 143819

R. Anwar, M. B. Bashir: SLR of AI-Based Software Requirements Prioritization Techniques

TABLE 6. Research paper databases and references.

• Our articulated research questions may not include all
aspects of AI-based requirements prioritization tech-
niques. This is a construct validity threat and we
addressed it by grouping all existing AI-based require-
ments prioritization techniques. We focused on three
groups of fuzzy logic, optimization, and machine learn-
ing techniques concerning their methods and building
blocks so up to our knowledge and analysis, none of the
aspects are missed.

• Incomplete data collection is another threat to this
SLR. To avoid this threat, we carefully selected our
search keywords to fetch more relevant studies from the
research repositories.

• The major threats militating against this review were
considered to be publication bias and faulty data extrac-
tion. The papers were selected using the previously
mentioned search approach which included (a) a vari-
ety of literature databases, (b) selection criteria, and
(c) quality assessment criteria. To counter this threat,
a thorough manual review of all of the retrieved studies’
references was conducted to determine any papers that
were missed during the original search. In addition,
to avoid improper exclusion of desirable studies, a thor-
ough specification of the selection criteria that met the
research goals was enforced.

• Inconsistency of data extraction or evaluation of study
relevancy is also a threat that occurs when a study’s
title indicates relevance but the contents do not give
answers to any of the research questions. To mitigate the

inconsistency of extracted data, the authors completed
the independent assessment of the selected studies using
quality criteria.

• Performance of existing strategies may be overestimated
by researchers who claim that their method is better than
others. To avoid this danger, papers comparing several
existing procedures were searched out and added to the
research to offer an objective evaluation outcome across
a variety of methodologies. This is because comparative
studies, in the vast majority of situations, provide unbi-
ased reports.

• Inconsistency of data extraction or evaluation of study
relevancy is also a threat that occurs when a study’s
title indicates relevance but the contents do not give
answers to any of the research questions. To mitigate the
inconsistency of extracted data, the authors completed
the independent assessment of the selected studies using
quality criteria.

• All metrics are prone to vulnerability. If the type of
requirements, type of fuzzy logic approaches, optimiza-
tion, machine learning techniques, research method,
or project nature vary, the outcomes of our research
study may change. To mitigate this threat, we examined
the nature of the approaches and their core building
blocks that remain the same even if the nature of the
project changes.

III. SURVEYED TECHNIQUES
In this section, we provide a critical review of all the
surveyed techniques. Software organizations are moving
towards AI-based techniques for requirements prioritization
to resolve problems of conventional techniques. We have
classified the techniques into three groups; Fuzzy logic-based
techniques, Optimization-based techniques, and Machine
learning-based techniques. Next, we present a detailed review
of all of the techniques of the aforementioned groups
individually.

A. FUZZY LOGIC-BASED TECHNIQUES
It is difficult to quantify requirements into specific numbers.
Fuzzy logic uses mathematics to deal with imprecise and lin-
guistic problems. Low-cost, high-quality, and high-progress
terms may be specified in a very specific way using fuzzy
logic [30]. Lotfi Zadeh [1] proposed the fuzzy sets and
fuzzy logic hypothesis in 1965. This is a scientific tool for
dealing with uncertainty. It explains unclear methods using
human language and assertions that are neither correct nor
improper. Following that, we present all of the proposed
techniques for ranking software requirements using fuzzy
logic.

1) RAMZAN, JAFFAR, AND SHAHID, (2011)
Ramzan, Jaffar, and Shahid [24] propose a novel multi-level
technique that is based on the Fuzzy C mean (FCM) method
to allocate requirements to each group using a fuzzy mem-
bership function. The cost function is minimized when

143820 VOLUME 11, 2023

R. Anwar, M. B. Bashir: SLR of AI-Based Software Requirements Prioritization Techniques

requirements with data near the centroid of their clusters are
allocated high membership values and it is maximized when
requirements with data far from the centroid are assigned low
membership values. The authors conducted a comparative
study based on experimental findings from a few univer-
sity, business, and government-funded initiatives. Due to
the involvement of stakeholders and specialists in first and
second-level prioritization, this technique is more expensive
than some other approaches.

2) MOMENI et al. [31]
Momeni et al. in [31] provide a novel technique based on a
neuro-fuzzy system that can give an ideal sequence of quality
features essential for developing items that satisfy consumers.
In a neuro-fuzzy system, the fuzzy membership function is
applied. This sort of matrix determines the link between
client needs and quality features. The presented technique
demonstrates quality factors like correctness, interoperability,
security, understandability, traceability, speed, and time of
job completion. According to the findings of this study, the
network computation and output production speed is approxi-
mately 8% higher than the QFD ranking method. Researchers
believe that the neurofuzzy system can give better outcomes
than previous studies.

3) EJNIOUI et al. [25]
Ejnioui et al. in [25] prioritize requirements as a fuzzy
multi-attribute decision problem in which the anticipated
value operator is used to order the options in the issue
plan. The suggested approach can deal with inaccurate
data by showing distinct quality properties as grey num-
bers. This approach is simple to use and may be used to
investigate what-if scenarios with different weights for dif-
ferent attributes. Because of its flexibility, minimal cost,
time efficiency, and ease of use, the proposed approach is
particularly useful. However, we do not even observe any
experimental based validation of the proposed technique
in this research work. The strategy will be validated in
the future with the aid of a case study, according to the
researchers.

4) SADIQ AND JAIN [30]
Sadiq and Jain in [30] introduce a fuzzy-based method-
ology for prioritizing requirements in the PRFGORE pro-
cess by integrating a-level weighted F-preference relation,
extent fuzzy AHP for pairwise comparisons of func-
tional and non-functional requirements (FR and NFR),
and binary sort tree method to obtain a prioritized list
of requirements. The authors claim that previous research
does not support organizing requirements when stakehold-
ers’ preferences are not expressed in linguistic variables
and the MCDM technique is applied in the require-
ments elicitation process. To solve this problem, a unique
fuzzy-based approach for ranking software requirements is
presented.

5) JAWALE AND BHOLE [37])
Jawale and Bhole in [37] advocate the use of fuzzy logic with
adaptive mechanisms to target scenarios where complicated
project behavior might depart from customer expectations.
Each object at the highest level of abstraction is then
decomposed into more specific levels. The technique of
normalization is used to determine the final priorities. The
adaptation module monitors and analyzes the results of pri-
oritized requirements, determining whether they are accurate
or not. If the requirements are not prioritized appropriately,
Fuzzy HCV is applied again. Finally, using the defuzzi-
fication method, priorities are defuzzified, yielding final
priorities. The authors claim that the Adaptive Fuzzy Hier-
archical Cumulative Voting approach overcomes complexity,
ambiguity, and uncertainty, resulting in a better decision.
However, this technique is not assessed in real-world scenar-
ios, and no tool has been deployed in this study.

6) DABBAGH AND LEE [39]
Dabbagh and Lee [39] propose Fuzzy logic and an alpha cut
technique for prioritizing non-functional requirements (NFR)
are used to create amxn decisionmatrix. The relevance degree
of each NFR about each FR is determined. This method,
according to the researchers, may help practitioners focus
on the most essential non-functional requirements early in
the life cycle, rather than later, when changes in require-
ments are often difficult and expensive to implement. This
enables soft-ware architects to focus on the most critical
non-functional requirements as the major driver of system
software architecture design, as well as simplify the selection
of appropriate instructions for attaining a software system’s
required quality attributes.

7) BABAR et al. [35]
The research paper [35] introduces the Priority Handler
(PHandler), a requirements prioritization expert system.
PHandler uses a value-based intelligent requirements pri-
oritization approach, a neural network, and an analytical
hierarchical procedure to make the requirements prioritiza-
tion process scalable. To remove expert biases and make the
PHandler more efficient, a back-propagation neural network
is employed to predict the value of a requirement. In addition,
to improve the scalability of the requirements prioritization
process, the analytical hierarchy approach is used to prioritize
sets of requirements.

8) ACHIMUGU et al. [36]
The purpose of this research [36] is to identify the
short-comings of present prioritizing systems. Existing
approaches are ultimately revealed to have several flaws. The
FMADM methodology is used as the strategy for improving
prioritization in the world’s major projects and infrastructure
projects.

Overall, the suggested strategy outperforms the other tech-
niques in terms of computational complexities, accuracy, and

VOLUME 11, 2023 143821

R. Anwar, M. B. Bashir: SLR of AI-Based Software Requirements Prioritization Techniques

large disparities between final ranks among others. This will
help to avoid trust, contract, or agreement breaches during
the software development process. Based on the reported
findings, this research should be regarded as a step forward
in the field of multi-attribute decision-making.

9) MISHRA et al. [44]
Mishra, Khanum, and Agrawal [44] have developed a unique
multi-level quality-based insightful requirement elicitation
technique. The prioritization of requirements is modeled
using fuzzy rules in this technique. Five input factors are cre-
ated, including cost, design, performance, response time, and
the number of stakeholders, as well as two output variables,
completeness, and understandability, as well as low, medium,
and high rankings. According to the authors of this article,
changing the input values changes the degree of completeness
and understanding capacity. This work may be expanded to
include the automatic classification of prioritized require-
ments into important, essential, and peripheral categories.

10) AHMAD et al. [51]
The MoSCoW method [51] is extended in a fuzzy envi-
ronment by the authors. They claim that the software
requirements engineering community has paid less atten-
tion to how to implement the MoSCoW technique in a
fuzzy environment for software requirement prioritization
(SRP). The suggested technique is used to prioritize the
Library Management System’s (LMS) requirements utilizing
a goal-oriented requirements elicitation method and ranking
values determined using an equation (GOREP). Future work
might involve prioritizing the LMS when various stakehold-
ers engage in the requirements prioritization process.

11) GULZAR et al. [49]
This study [49] shows a new framework for effectively
quantifying conflicts among usability requirements for prior-
itization. The Mamdani tool is used to compare the efficiency
and learnability of member functions. The suggested system
is tested using an Electronic Healthcare System as a case
study. To assess the suggested technique, a statistical analysis
is carried out. Project managers, software engineers, require-
ment engineers, team leaders, and requirement analysts are
among the 20 specialists who make up the team. Their feed-
back is recorded and the final findings are graphed.

12) MOUGOUEI et al. [61]
Mougouei et al. [61] present a fuzzy system to alleviate
the adverse effect of ignoring security requirements and
upgrade the precision of prioritization and selection. The
proposed system (PAPS) contains two significant procedures.
Pre Pre-prioritization and Selection (Pre-PAS) incorpo-
rates demonstrating, portrayal, and investigation of security
requirements. They use fuzzy control language (FCL) to cre-
ate the fuzzy inference rules. PAPS’ O(n) linear complexity
is a good indicator of its scalability. Bubble Sort 0(n2) and
Binary Search Tree 0(nlogn) [32]. Similarly, any prioritizing

method based on pairwise comparisons is more challenging
than PAPS, requiring at least O(n2) in complexity. Other
prioritizing and selection approaches, such as Cumulative
Voting, EVOLVE, and Planning Game [45], have not been
quantitatively compared to PAPS since their complexity has
not been accounted for in the literature.

13) SADIA AND FAISAL [60]
Sadia and Faisal [60] suggest a fuzzy logic-based volatile
requirements prioritization approach. Fuzzy logic is powerful
for dealing with the elusiveness and granularity of infor-
mation. Volatile Requirement Priority Ranking is the result
of the fuzzy inference algorithm (VRPR). The greater the
VRPR score, the more important the volatile requirement is.
Fuzzifying inputs, implementing fuzzy operators, applying
implication methods, aggregating outputs, and defuzzifying
results are the five processes in the fuzzy inference system.
Three linguistic variables make up the input phase of the
proposed model. Volatile Requirement Priority Ranking is
the only linguistic variable in the output phase (VRPR).
Using suitable membership functions, the input and output
variables are translated into fuzzy sets. Volatile Requirement
Priority Ranking is the result of the fuzzy inference algorithm
(VRPR). The greater the VRPR score, the more important
the volatile requirement is. Because requirements change
during the development life cycle, prioritizing these chang-
ing requirements will undoubtedly aid project managers in
providing a better approach to dealing with these changing
requirements.

14) SINGH et al. [59]
Singh et al. in [59] propose a hybrid strategy that com-
bines logarithmic fuzzy preference programming (LFPP) and
artificial neural networks (ANN) to prioritize a customer’s
requirements based on numerous factors at a reasonable cost.
Multiple criteria are entered as part of the information. The
data is entered into a pre-assembledMATLAB programming.
Experts working with the database decide the appropriate
hardware and assembly equipment and save it in the database.
In addition, the constructed Neural network assesses the
appropriateness or inappropriateness of the decision-maker’s
actions (DM). This research model is developed in MATLAB
to determine the priority weights of alternatives and it is then
tested using a case study to identify the best washing machine
provider. The suggestedmodel using LFPP andANN, accord-
ing to the authors, addresses these current constraints by
utilizing priority weights for primary qualities and 14 sub-
attributes to increase the result’s accuracy in the selection of
the best provider.

15) BISHT AND KUSHWAHA [64]
In [64], the authors have provided multi-level value-based
intelligent requirements prioritizing approach applying fuzzy
logic as a facilitating process. They redefine the term ‘‘value’’
software to better achieve companies’ goals. Prioritization is
attained from the standpoint of stakeholders and specialists in

143822 VOLUME 11, 2023

R. Anwar, M. B. Bashir: SLR of AI-Based Software Requirements Prioritization Techniques

the first and second levels. In the third level of prioritization,
fuzzy logic is employed to enhance prioritizing outcomes and
reduce the manual nature of the results.

The system’s different variables (both input and output)
are defined in the first phase. Two input variables, require-
ment value, and stakeholder priority, and one output variable,
requirement priority are used for the proposed problem.
Variable sets are defined for all of these inputs and their
consequences. Using the proper membership function, the
values in these sets are fuzzified. For the proposed method,
the trapezoidal fuzzy membership function is used. The fact
that the maximum or minimum point in a specific problem
circumstance is not simply one number. This is one of the
main reasons to employ this particular function. In addition,
a comparison analysis based on experimental data from dif-
ferent projects is given. This research indicates that intelligent
requirement prioritizing may produce better and more spec-
tacular results in all situations.

B. OPTIMIZATION BASED TECHNIQUES
This section covers Optimization based requirements prior-
itization techniques proposed by various authors till 2021.
Optimization algorithms are well suited for system require-
ments considered as the next release problem (NRP) to get
the best attainable set of requirements that produce an optimal
solution [2]. An optimization algorithm is a mechanism for
comparing multiple solutions iteratively until an optimal or
most suitable one is found [44]. To improve system require-
ments, researchers use three distinct meta-heuristic search
techniques: Genetic Algorithm, Simulated Annealing, and
Ant Colony Optimization (ACO) [21].

1) BAGNALL et al. [2]
Bagnall et al., [2] develop Exact, Greedy, and Local Search
Techniques to tackle the next release problem (NRP) exper-
imented with MoCell and PAES [22]. Firstly, they apply an
exact approach to solve a linear programming relaxation of
the problem to derive upper limits. After that, the model is
strengthened into a full integer programming model, and a
generic branch and boundmethod is used. Second, they create
a collection of simple greedy algorithms for generating lower
limits quickly. To improve the value obtained, the best of
these procedures are then augmented along GRASP lines.
Finally, they use a basic neighborhood structure to apply a
set of conventional local search strategies, such as the hill
climbing algorithm and the simulated annealing algorithm,
to provide a high-quality, near-optimal solution in a short
amount of time. The findings of the comparison analysis
show that the simulated annealing method outperforms both
greedy algorithms and hill climbers and that exact techniques
are better for the smallest problems, whereas simulated
annealing algorithms are best for the rest. Furthermore, for
larger problems, simulated annealing may fail to produce an
optimum solution in an acceptable amount of time. Despite

these findings, more research into both the heuristic and exact
methodologies is needed.

2) FEATHER AND MENZIES [3]
Feather and Menzies [3] use Simulated Annealing and an
iterative model (DDP) for the selection of requirements and
the optimization problem known as Defect Detection and
Prevention. In large-scale requirements models, this unique
methodology provides a mechanism to converge to near-
optimal solutions. It also indicates crucial decision points
throughout the approach, allowing specialists to infuse extra
information and help. To randomly sample the space of solu-
tions, a requirement interaction model is used. This generates
a vast quantity of data, which is subsequently analyzed using
a tool. As a consequence, a short list of key decisions that
lead to the desired outcome. The requirement interaction
modeling framework proposed in this research is based on
NASA’s Defect Detection and Prevention (DDP) strategy and
tool for risk assessment, planning, and management. DDP
is concerned with requirements, risks, and risk management.
The results of the pilot research, as well as arguments for its
wider application, indicate that this technique requires further
research.

3) DEB et al. [4]
Deb et al. in [4] suggest the non-dominated sorting genetic
algorithm II (NSGA-II), a multi-objective EA (MOEA) based
on non-dominated sorting that addresses three problems.
In particular, a fast non-dominated sorting technique with
high computing complexity is presented. A selection operator
is also available, which creates a mating pool by combin-
ing parent and offspring populations and selecting the best
(fitness and spread) solutions. The authors of the proposed
NSGA-II substitute a crowded-comparison method for the
sharing function technique, which mitigates both of the
above problems to some extent. The novel approach does
not require any user-defined parameters to maintain diver-
sity across population members. To determine the density of
solutions surrounding a specific solution in the population,
the average distance between two sites on either side of
this point along each of the goals is computed. Simulation
results of the limited NSGA-II are compared to another
restricted multi-objective optimizer on a variety of test prob-
lems, including a five-objective seven-restricted non-linear
problem and NSGA-II is found to perform substantially bet-
ter. In addition, the suggested method has a lower computing
complexity.

4) GREER AND RUHE [7]
Among all the methods applying genetic algorithms to
rank software requirements, the EVOLVE technique encour-
ages continual software development planning [7]. This
method uses an iterative optimization method with a genetic
algorithm as a backbone. To demonstrate the feasibility of
the suggested technique, the authors utilize a sample soft-
ware project with 20 requirements. In this study, Palisade’s

VOLUME 11, 2023 143823

R. Anwar, M. B. Bashir: SLR of AI-Based Software Requirements Prioritization Techniques

Risk Optimizer tool is used for numerical analysis. Authors
claim that the most suitable method is the ‘order’ method
as they are concerned with requirements’ ranking. This
approach generates different stages of permutations of an
initial outcome and is intended to improve the rankings of
objects. Only solutions situated at the convex hull in the
goal space are identified in the case of non-convex prob-
lems, which is a restriction of this technique. However,
our primary goal is to generate a (limited) selection of
viable ideas from which decision-makers might ultimately
select.

5) HARMAN et al. [9]
Harman et al. in [9] explain that the Component Selection
Problem is an optimization problem in which the man-
agers prioritize the components under consideration. When
planning the software development process, this problem
assists the management in determining which component
combinations will create logical product choices, whereas
the Component Prioritization Problem assists in determining
which components should be developed first. This prob-
lem, like the majority of real-world optimization problems,
requires the optimization of many objective functions. The
component selection problem may be framed as an opti-
mization 0-1 knapsack problem with a certain bound of
total cost, according to the researchers. As a result, they
recommend using search-based heuristics to solve individual
knapsack problems to sample the Pareto curve as nearly as
feasible.

6) BAKER et al. [10]
This paper [10] presents the application of automated
approaches in the domain of requirements engineering to rank
software requirements. It introduces greedy and simulated
annealing techniques to identify optimum solutions and it
formulates the problem as a sequence of feature subset selec-
tion problems. This research study evaluates the technique
for selecting and ranking forty potential software components
for mobile telecommunication devices using real-world data
from a large global telecommunications corporation. Real
data has been anonymized and domain-specific information
has been deleted for security concerns. However, data values
have not been changed so all reported results are authentic and
reproducible. Following the studies, the authors compare the
outcomes of greedy and simulated annealing methods with
expert judgment prioritization results. The simulated anneal-
ing algorithm’s findings are shown to be consistent over many
distinct executions with identical parameter values, as well
as across numerous runs with variable parameter settings.
The results demonstrate that the simulated annealing method
outperforms the greedy method. The full set of experiments
to achieve a ranking using the greedy technique took virtually
no time at all on conventional computer equipment, but the
simulated annealing procedure took around 30 seconds on
average.

7) SALIU AND RUHE [11]
Saliu and Ruhi [11] propose a decision-making tool for
the RP of developing software systems that consider both
business and implementation factors. The RP problem was
reformulated as a bi-objective optimization problem with
trade-offs between the two points of view. Pareto-optimal
solutions provide alternate release plans rather than a single
response, which improves decision-making. This is partly
because no formal model can fully capture all of the choice
parameters in a human-centric decision problem. Release
Planning (RP) includes selecting what new features and
change requests should be executed in which release of a soft-
ware system, as well as when they should be implemented.

The proposed method for identifying SD-coupling is
independent of the granularity with which components are
defined, ensuring the technique’s scalability. The only restric-
tion is that components must be described at the same
granularity level across all software projects. Some criteria
may have structural, technical, or functional correlations that
must be met simultaneously or individually in specific set-
tings. Requirements Interaction is the study and management
of inter-dependencies between requirements.

8) QUIROZ et al. [15]
Quiroz et al. [15] use a collaborative and interactive genetic
algorithm (IGA) to design user interfaces in the XUL inter-
face defining language by integrating some heuristic GUI
design metrics with input from the user. Incorporating user
input into IGAs and employing evolutionary approaches
for UI design were two problems that researchers tackled.
Individuals in the population are represented by interface
specifications and fitness is calculated using a weighted
combination of user input and design guidelines. Users can
successfully lead evolution toward user interface designs that
reflect user preferences as well as calculated guideline met-
rics, according to the findings of a pilot research involving
three users. Furthermore, the authors of this study claim that
their method lowers user fatigue by requiring users to select
just two people from a group of nine for each t generation of
the IGA.

9) ZHANG et al. [16]
In [16], the authors examine the appropriateness of
weighted and Pareto optimum evolutionary algorithms
for the Multi-Objective Next Release Problem (MONRP)
in Requirements Engineering. They also provide a
non-dominated sorting genetic algorithm (NSGA-II) and
attempt to demonstrate that it is suitable for solving the
MONRP. These two strategies perform well to solve the
scalability concerns that techniques like AHP have, but they
do not generate a full requirements’ ordering. Rather, require-
ments are categorized for the future release’s preparation.
In terms of paired assessments, their suggested technique
employs IGA to restrict the amount of knowledge that must
be extracted from the user. As a result, the technique may

143824 VOLUME 11, 2023

R. Anwar, M. B. Bashir: SLR of AI-Based Software Requirements Prioritization Techniques

be used for requirement sets of any size. The findings of an
experimental study into the appropriateness of weighted and
Pareto optimum genetic algorithms, as well as the NSGA-II
algorithm are presented in the article, demonstrating proof to
strengthen the argument that NSGA-II is appropriate for the
MONRP. The research also includes benchmark data to show
when the MONRP becomes non-trivial at different sizes. The
authors, on the other hand, do not provide any information
regarding tool support.

10) FINKELSTEIN et al. [17]
Finkelstein et al. in [17] provide a multi-objective opti-
mization technique to help in the analysis of trade-offs in
many clients’ diverse ideas of fairness. The framework sug-
gests that each idea of fairness should include a goal in a
multi-objective, Pareto optimal Search-Based Software Engi-
neering (SBSE) context. Pareto optimality is well-suited to
this scenario since it makes no assumptions about which
goal takes precedence. The method presented in the paper
may be used to see if a solution is fair under all defini-
tions of fairness. Multi-objective search methods are based
on the dominance concept to solve MOOPs. In the algo-
rithms, two solutions are compared to see if one of them
outperforms the other. The NSGA-II method is applied to
the Fairness in Requirement Assignments Problem to identify
the Pareto front in various circumstances. The Two-Archive
method uses the Convergence Archive (CA) and the Diversity
Archive (DA) to gather and record candidate solutions in the
population. This study presents the findings of a compari-
son between Random Search and two more sophisticated,
evolutionary multi-objective search methods. The findings
support the overall approach, indicating that more sophis-
ticated techniques outperform Random Search. The results
also demonstrate that the outcomes of the more sophisticated
techniques are encouragingly stable in terms of performance
and slightly complementary in terms of diverse solutions.

11) DURILLO AND ZHANG [18]
Durillo and Zhang in [18] examine the NRP problem from a
multi-objective perspective, concentrating on the number of
solutions identified, the variety of solutions covered by these
fronts, and the number of optimum solutions found. They
also compare the performance of two state-of-the-art multi-
objective metaheuristics for solving NRP, NSGA-II, and
MOCell. The NSGA-II algorithm uses a ranking approach
to extract non-dominated solutions from a population and
give them a one-star grade. The rank of the next set of
non-dominated solutions is 2 and so on.

The authors utilize two indicators in this paper: one that
measures solution diversity and the other that assesses both
convergence and diversity. To evaluate the algorithms’ search
skills, each experiment is repeated 100 times to determine
the mean and standard deviation, which are used to measure
central tendency (or location) and statistical variance, respec-
tively. They use the Wilcoxon test to compare samples in a
variety of ways. MOCell outperforms NSGA-II in terms of

the number of solutions it can generate, although NSGA-II
can provide better solutions in large instances than MOCell.
Furthermore, the authors discover that the best solutions are
made up of a significant percentage of low-cost criteria as
well as the requirements that satisfy customer needs most.

12) TONELLA et al. [20])
Tonella et al. in [20] present an Interactive Genetic Algorithm
(IGA) for intelligent requirements prioritizing that integrates
incremental information securing and consolidation with pre-
viously existing limitations of dependencies and priority. The
authors compared IGA against state-of-the-art interactive pri-
oritizing techniques and the Incomplete Analytic Hierarchy
Process on a real software system as part of the ACube
(Ambient Aware Assistance) project (IAHP). According to
them, IGA outperforms other state-of-the-art interactive pri-
oritizing methods.

13) SAGRADO et al. [21]
In [21], the Next Release Problem (NRP), as an optimization
problem, is described. In various case studies, the study uses
three distinct methods to solve NRP: simulated annealing,
genetic algorithms, and ant colony optimization (tailored to
the NRP problem). The greedy randomized adaptive search
method (GRASP), genetic algorithm (GA), and Ant colony
system (ACS) are evaluated using two data sets and parameter
configurations. The authors ran 100 separate runs for all data
sets to test each method. In the first run, ACS and GRASP
found the same solution, but when more requirements were
added, the GA algorithm found the worst solution in terms
of satisfaction when compared to ACS and GRASP. This,
according to the authors, was due to the design effect. GRASP
discovered the best solution in terms of satisfaction on the
second dataset, followed by ACS with somewhat worse solu-
tions. It was projected that if parameter beta was set to a
greater value, the outcomes would be similar to GRASP,
strengthening ACS’ greedy behavior. The findings of the
paper show that the solutions discovered by the proposed
approaches contain a significant number of user-defined cri-
teria for a certain system release.

14) DE SOUZA et al. [23]
De Souza et al. [23] use an Ant Colony Optimization (ACO)
technique to address the next release problem in the exis-
tence of dependent requirements. The authors tested their
suggested method on 72 synthetic datasets and compared
it to simulated annealing and evolutionary algorithms. The
findings show that the proposed ACO algorithm may give
more accurate solutions to the Software Release Planning
problem when compared to the other two techniques. In the
genetic algorithm, a basic heuristic method is utilized to pro-
vide significant solutions for the initial population, whereas
single-point crossover and mutation operators are employed
to generate genuine solutions. A binary tournament is utilized
as a selection method. A legitimate neighborhood operator is
also used for the simulated annealing. The Wilcoxon Rank

VOLUME 11, 2023 143825

R. Anwar, M. B. Bashir: SLR of AI-Based Software Requirements Prioritization Techniques

Sum Test is used to evaluate the statistical significance of
the outcome differences generated by each pair of algorithms,
with significance levels of 90%, 95%, and 99%. The authors
assert that under these conditions, the outcomes generated by
ACO are essentially superior to those generated by a genetic
algorithm in all situations.

15) TONELLA et al. [27]
Tonella et al. in [27] propose an Interactive Genetic
Algorithm (IGA) for requirements prioritization. It belongs
to the a posteriori approaches category and makes use of
the paired preference elicitation method as a successful way
to obtain relevant data from the user. Different limits and
ranking criteria are represented in the requirement docu-
ment for creating such user information (in the form of
requirement qualities). At an increasing user rate, the differ-
ence in variance between IGA and IAHP is compared. The
authors used statistical tests (ANOVA) to test their claim.
The proposed method is compared to the state-of-the-art
interactive prioritization approach Incomplete Analytic Hier-
archy Process (IAHP) in a real case study to validate it.
They claim that the proposed algorithm aims to deliver an
exact requirement sequence while keeping requirement ana-
lysts’ decision-making effort linked to pairwise comparison
affordable.

16) CHAVES-GONZÁLEZ AND PÉREZ-TOLEDANO [40]
The authors employ an updated multi-objective version of
the differential evolution (DE) evolutionary algorithm to cope
with many real-world examples of the software require-
ments selection problem in this research paper. A series
of experiments with case studies on software requirements
selection are conducted to demonstrate the effectiveness of
the multi-objective proposal and the results show that the
proposed algorithm outperforms other applicable algorithms
previously presented in the literature on a set of publicly
available datasets. Because the results are insufficient in
terms of efficacy, efficiency, and robustness, the authors of
the paper [40] offer a multi-objective evolutionary algorithm
to address these difficulties. The DEPT algorithm’s findings
are compared to the multi-objective standard NSGA-II (Fast
Non-dominated Sorting Genetic Algorithm) and other tech-
niques presented in previous works published in the field
to assess the correctness of the proposed methodology. For
numerous cases of the software requirements selection prob-
lem, the DEPT method has delivered high-quality results that
outperform those achieved in prior research investigations.

17) VALSALA AND NAIR [43]
Valsala and Nair [43] propose a model that focuses not only
on requirements prioritization but also on the scheduling of
prioritized requirements. Scheduling the prioritized require-
ments is very important as this leads to minimizing the
cost and development time of the project. To solve prema-
ture convergence concerns, the Enriched Genetic Algorithm
(EGA) is used to prioritize requirements, and a heuristic

Revamped Integer Linear Programming (RILP)model is used
for scheduling. It is critical to figure out how to limit the
number of requirements subsets in the most efficient method
possible. The authors employ the Expectation Maximization
(EM) technique for this. Requirement dependencies and the
project’s period are two sorts of metrics utilized in RILP. The
authors compare simulations of both models and find that
the Hybrid EGRILP model obtains a very optimal solution
when compared to the enriched genetic algorithm and the
Revamped ILP algorithm for software requirement prioritiza-
tion and scheduling. The proposed software release planning
method is more efficient in terms of project span with mini-
mum delay and maximum profit.

18) KUMARI AND SRINIVAS [42]
In this paper [42], the software requirements selection prob-
lem is empirically evaluated using the Quantum-inspired
Elitist Multi-objective Evolutionary Algorithm (QEMEA),
Quantum-inspired Multi-objective Differential Evolution
Algorithm (QMDEA) andMulti-objective Quantum-inspired
Hybrid Differential Evolution (MQHDE). All of the algo-
rithms are created on aWindows 7 platform. The basic model
is investigated using six data sets, whereas the MONRP RIM
model is investigated with four data sets. The MONRP prob-
lem is examined using QMDEA, QEMEA, and MQHDE.
These algorithms’ results have also been compared to the
NSGA-II and other publicly available techniques. The com-
parison is made using the obtained Pareto fronts, performance
metrics like Hypervolume (metric for both convergence and
diversity), Spread (diversity metric), Generational Distance
(convergence metric), Capacity (size of Pareto front - rep-
resenting the number of alternative solutions provided by
the algorithms) and extreme Pareto optimal solutions. With
a 95% confidence level, the KruskalWallis non-parametric
hypothesis test is used to statistically assess all of the
measures.

19) MARGHNY et al. [50]
Marghny et al. in [50] provide a non-dominated sort-
ing genetic algorithm with a Pareto tournament for
multi-objective optimization (NSGA-IIPT) approach for
ranking software requirements after taking into account their
interaction and cost. The proposed technique adjusts the
clients’ preferences and cost criteria to find high-quality solu-
tion sets within a particular implementation cost constraint.
To demonstrate the effectiveness of the suggested technique,
the authors use eight different scenarios drawn from two real-
world datasets. These data sets both contain a varied amount
of requirements, requirement interactions, and client prefer-
ences, and both have recently been used in prior published
works, allowing researchers to contrast the results of the
current research to those of previous research. The proposed
technique, NSGA-IIPT, is compared to the outcomes of prior
studies (DEPT, ACO, NSGA-II, and GRASP). According
to the authors, NSGA-IIPT has proven to be capable of

143826 VOLUME 11, 2023

R. Anwar, M. B. Bashir: SLR of AI-Based Software Requirements Prioritization Techniques

outperforming its peers in terms of best exploring the search
space.

20) RAO et al. [48]
The aim of this work [48] is to optimize process parameters
to attain these goals. The multi-objective Jaya (MO-
Jaya) approach is a revolutionary posteriori multi-objective
optimization technique that can handle several goals simulta-
neously and generatemany optimal solutions in a single simu-
lation session. The fitness function of the MO-Jaya algorithm
is based on regression models created by earlier researchers
for themachining operations. TheMO-Jaya algorithm applies
a heuristic strategy called as constrained-dominance concept
to adequately handle the restrictions. Simulations utilizing
NSGA, GA, NSGA-II, NSTLBO, BBO, PSO, SQP, and
Monte Carlo are compared to the MO-Jaya algorithm’s find-
ings. According to the findings, the recommended technique
outperforms the others. In MATLAB R2009a, a computer
code for the MO-Jaya method is created. The program is run
on a computer system with a 2.93 GHz processor and 4 GB
of RAM. The MO-Jaya algorithm’s results are compared
to the NSTLBO, SQP, and MC simulations. Prior research
has indicated that the results achieved with the MO-Jaya
approach are superior to those obtained with other techniques
such as NSGA, GA, iterative search, and BBO.

21) AHUJA et al. [55]
Ahuja et al. [55] provide a novel strategy that, when compared
to the previous interactive genetic approach, improves perfor-
mance by employing a least-squares-based random genetic
algorithm. The goal of this study is to help engineers prioritize
requirements by saving time and thereby lowering decision-
making effort. As the number of pairings rises in the proposed
task, the distance increases marginally. This mathematical
method is implemented to investigate the performance gap
between pairs. The authors argue that, based on performance
comparison findings of all nine ways listed, VOP (value-
oriented prioritizing) is the most effective methodology as it
produces non-erroneous results and uses simple procedures.
Furthermore, this can assist us in judiciously handling addi-
tional requirements.

22) ALREZAAMIRI et al. [63]
To increase the quality of the results, the authors develop a
parallel method in [63] based on the main–secondary con-
cept. The algorithm is divided into three basic phases, each
of which is linked to the activity of a certain species of
bee. There are three categories of bees in this algorithm:
employed, spectator, and scout bees. Employed bees seek the
surrounding area for new food sources and go back to the hive
if they find any food location. They use dancing displays to
inform spectator bees about the position of the food supply.
Following the information obtained from the hired bees, each
observation bee in the hive chooses a food source at random
to conduct additional searches. The more abundant the food
supply, the more likely observing bees will choose it. The

scout bee is the third kind of bee. Scout bees are hired bees
who already have abandoned their food supply. In pursuit of
a new food source, they move about the territory at random.
The proposed approach is implemented in MATLAB version
R2014b. According to the findings, the suggested approach
greatly improves the quality of solutions in the first case.
In addition, in the second scenario, the technique reduces
execution time by enhancing the quality of the output. Other
comparable research, such as NSGA II, GRASP, and ACS,
have found results that are superior to those achieved by the
ABC algorithm. For the most challenging data set managed,
the proposed technique can obtain an HV of above 60%,
whereas other existing methods can only reach an HV of 40%
for the same data set.

C. MACHINE LEARNING BASED TECHNIQUES
This section covers machine learning-based requirements pri-
oritization techniques proposed by various authors. Machine
learning is a subfield of artificial intelligence (AI) that
enables computers to learn and evolve without being explic-
itly programmed. In comparison to other AI-based technolo-
gies, machine learning has not been widely researched in the
domain of requirements prioritization. A recent systematic
literature review on requirement prioritization techniques and
their empirical evaluation [62] reports only 4 recent pub-
lications out of 102 evaluated studies that exploit machine
learning techniques for requirements prioritization but this
trend of leveraging machine learning techniques is increasing
rapidly [62], [66] due to their potential advantages that are
discussed in analysis and discussion section.

1) AVESANI et al. [5]
Avesani et al. in [5] design a case-based elicitation pro-
cess to help with the rank evaluation planning problem. The
authors employ a paired method in which preference elic-
itation is based on a comparative analysis of two options.
They propose a simple iterative methodology based on two
automated stages: case selection strategy development and
approximation of case preferences. The former seeks to make
a pairwise comparison technique easier, whereas the latter
seeks to reduce elicitation time. Boosting is a machine learn-
ing method that improves the threshold on the size of the
case base while reducing the cognitive load on the end user.
This method seeks a balance between elicitation effort and
accuracy. The authors used boostingmethodology to combine
multiple weak rules that could be somewhat accurate to build
extremely accurate prediction rules.

The case-based preference elicitation model is evaluated
by discriminating between online and offline studies. The
off-line tests are created to evaluate the properties of the
process as well as the offered solutions. The online tests are
being carried out as a case study on a core issue with real
users in the civil defense area. The results of the case study
show that when the learning phase is with end-user elicitation,
a case-based strategy can be sustained over a large number
of examples and that the rank boost algorithm is efficient in

VOLUME 11, 2023 143827

R. Anwar, M. B. Bashir: SLR of AI-Based Software Requirements Prioritization Techniques

achieving a good trade-off between final rank precision and
elicitation effort.

2) AVESANI et al. [8]
Avesani et al. in [8] propose a case-based ranking framework
for requirements prioritization that employs machine learn-
ing algorithms to solve the scalability problem. The authors
compared their findings to those of AHP in terms of expert
elicitation effort and requirement prioritization accuracy. The
preference elicitation technique is based on the examina-
tion of two choices, using a paired approach. This paper
proposes a simple iterative technique based on two auto-
mated processes for developing a case selection method and
approximating case preferences. Experiments with simulated
data and a real-world situation in the field of civil defense
show that a reasonable trade-off between the accuracy of
predicted preferences and the end user’s elicitation effort
may be achieved. The aim of this research is on the ex-post
method, in which genuine situations (i.e. alternatives) play
an important part in preference elicitation. The authors give
experimental proof that a rankboost method is successful in
achieving a favorable trade-off between final rank accuracy
and elicitation effort.

3) DUAN et al. [19]
Duan et al. in [19] propose a technique for prioritizing
requirements based on stakeholders’ business goals, inter-
ests, and cross-cutting issues like security and performance
requirements, utilizing data mining and machine learning
methods. Two case studies based on the Ice Breaker System’s
requirements, as well as a collection of stakeholders’ raw
feature requests gathered from the SugarCRM discussion
forum, are used to demonstrate and assess the approach’s
success. The Spherical Kmeans (SPK) clustering method,
which outperforms hierarchical alternatives, is used in the
implementation phase.

The limitations in the method are directly related to the
limitations of the underlying classification, traceability, and
clustering algorithms, which are all based on probabilistic
data mining and information retrieval techniques and hence
could not produce perfect precision or recall in the findings.
The NFR classifier is a data mining tool that detects and
categorizes a variety of non-functional requirements (NFR)
in the areas of performance, security, and performance. The
classifier is based on the concept of weighted indicator
phrases, which weighted each potential phrase based on how
effectively it indicated the existence of a certain NFR type.

4) PERINI et al. [26]
Perini et al. [26] portray the Case-Based Ranking (CBRank)
method that joins stakeholders’ inclinations with requirement
ranking approximations. CBRank features are empirically
evaluated on simulated data and compared to a state-of-
the-art prioritizing approach, demonstrating the method’s
capacity to enable the management of the trade-off between
elicitation effort and ranking precision and utilization of

domain knowledge. These experimental observations are sup-
plemented by a case study on a real software project. The
authors conducted a controlled experiment with 23 partic-
ipants to compare two tool-supported versions of CBRank
and AHP in terms of ease of use, time consumption for
completing the job, and accuracy of final ranking. SCORE,
a web-based application that implements CBRank’s three-
step prioritizing approach, is used to carry out the prioritiza-
tion process. In terms of trade-offs between expert elicitation
effort and requirement prioritization accuracy, the authors
claim that their approach outperforms AHP in the worst-case
scenario.

5) ACHIMUGU AND SELAMAT [34]
In this paper [34] create a hybridized algorithm that
employs requirement preference weights derived from stake-
holder linguistic evaluations. The RALIC dataset, which
contains requirements with relative weights of stakehold-
ers, is used to verify this technique. The goal of this
study is to create a better-prioritized strategy to address
scalability, rank reversals, and computing complexity.
Clustering/evolutionary-based methods are used in this study.
By calculating the maximum, minimum, and mean scores,
the suggested approach may also classify large amounts
of requirements efficiently by reducing conflicts between
prioritized requirements. This will help software developers
choose the most important and least important requirements,
which will help with software release planning and reduce
contract, trust, and agreement violations. This research can
be considered a step forward in the area of computational
intelligence based on the findings. To cluster requirements
and assess their relative importance, a hybrid technique based
on differential evolution and the k-means algorithm is used.
It tries to combine the advantages of two methods by com-
bining k-means to build the initial solution and differential
evolution to improve it.

6) SHAO et al. [52]
In [52], for prioritization, DRank, a more realistic tech-
nique, is presented. To make the method of selecting ranking
criteria easier and more practical, a prioritizing evaluation
characteristics tree is created. The subjective requirements
prioritizing according to stakeholder preferences is calculated
using RankBoost, which makes assessing the prioritization
easier. A weighted PageRank algorithm is proposed to assess
requirement dependencies, allowing objective dependencies
to be automatically transformed into partial order relations
and an integrated requirements prioritizationmethod is devel-
oped to amend stakeholders’ subjective preferences with
objective requirements dependencies, resulting in a more
efficient prioritization process. To address the differentiating
properties of contribution dependencies, a PageRank-Req
method is presented.

A controlled experiment is conducted to validate the
performance of DRank based on comparisons with Case-
Based Ranking, Analytical Hierarchy Process, and EVOLVE.

143828 VOLUME 11, 2023

R. Anwar, M. B. Bashir: SLR of AI-Based Software Requirements Prioritization Techniques

The authors suggest a variety of tools such as TAOM4E,
OpenOME, RE-Tools, and GR-Tool. The experiment is
being carried out at a Software Company on two projects:
a Book Trading System (BTS) and a Library Manage-
ment System (LMS). According to statistical analyses
using a Shapiro–Wilk W test, DRank outperforms CBRank,
EVOLVE, and AHP (top matching rate for requirement
prioritization method) and IR (inverse rate of requirement
prioritization method) in terms of TMR accuracy, though the
difference is not significant in some cases. DRank takes less
time and is more reliable than other methods, according to
the data. The accuracy of the final priority sequence can be
improved by taking requirement dependencies into account,
according to a simulated experiment.

7) GUPTA AND GUPTA [54]
The major purpose of this study [54] is to introduce
a semi-automated dependency-based collaborative require-
ment prioritization approach (CDBR), which employs an
execute-before-after (EBA) link between requirements, lin-
guistic values, and a machine learning algorithm to reduce
stakeholder and developer disagreements and improve final
priority approximation. The proposed method focuses on
three major problems that have received little attention in
earlier research: scalability problem, requirements depen-
dencies, and stake-holder and developer communication.
To produce final acceptable implementation priorities, CDBR
uses the Particle Swarm Optimization (PSO) technique to
reduce disagreements between stakeholders and developers’
ranking.

In the first example, nine distinct requirement sets (with
various requirements) are utilized to evaluate the suggested
approach’s performance in terms of managing scalability.
The priority of stakeholders and developers for each of these
nine sets is determined at random. The developer’s priority is
calculated using a dependency matrix that is likewise created
randomly while keeping the density of the matrix in mind.
The higher the density, the more dependencies there are in the
system, and hence the more complicated it is. In the second
scenario, a set of requirements for cargo booking manage-
ment in a warehouse (CBMW) is chosen as a case study and
CDBR, interactive genetic algorithm (IGA), and analytical
hierarchical process are used. The precision of the findings
is determined by comparing the difference in disagreement
between the CDBR-AHP and CDBR-IGA priority lists using
the Analysis of Variance (ANOVA) test technique. The frac-
tion of disagreement between CDBR-AHP and CDBRIGA
determines the accuracy of the findings. The results are
accurate and equivalent in terms of accuracy, scalability, and
stakeholder and developer disagreement levels. In terms of
efficiency and processing time, CDBR exceeds AHP and
IGA.

8) BOLLUMPALLY et al. [58]
This model presented in [58] employs the XGBoost method,
which is a gradient-boosted tree implementation. To reduce

over-fitting and maintain high performance, tree boosting
groups a large number of slow learners together. Tree boost-
ing uses loss function and optimization techniques to identify
the parameters that minimize the loss function given the
data, similar to other statistical learning problems. To solve
this problem, a sequence of trees is created, each one fit-
ting the residuals of the previous one before being added to
the function. Each subsequent tree attempts to enhance the
fitted function in locations where an error has already been
introduced.

The first technique (A) includes performing binary classi-
fication at the task level and assigning a priority score to each
process based on the maximum prediction probability. The
alternative technique (B) entails aggregating the features after
they have been processed to establish a one-to-one correspon-
dence between characteristics and processes. Following the
data preparation, the classification capacity of several model-
ingmethodologies is investigated. AROC-AUC and recall for
the positive outcome class are used to measure classification
accuracy. The model is built utilizing data from the client’s
financial domain from 2018, to apply results to other domains
in the future. The authors compare early findings on task-level
predictions to perform model selection. The chosen model
forecasts the probability of completing tasks using gradient
decision tree-boosting with a logistic output.

9) HUJAINAH et al. [65]
Hujainah et al. in [65] propose a new semi-automated RP
technique (SRPTackle) and automation implementation tool
(SRPTackle-Tool) to address problems with existing RP
techniques such as time consumption, scalability, excessive
reliance on expert intervention, automation and the lack of
a SQP process for evaluating stakeholder impact in pri-
oritizing requirements. The proposed SRPTackle provides
a semi-automated process for prioritizing a large num-
ber of requirements without requiring manual intervention,
as well as reducing the need for expert intervention in
assigning priority values to requirements, classifying require-
ments, running the SQP process and generating a ranked
list of requirements. The SRPTackle approach employs the
WSM technique for RPV formulation, clustering algorithms
(K-means and K-means++), and the BST. In seven trials,
the performance of SRPTackle is assessed using medium
and large sets of requirements from the RALIC benchmark
dataset. In comparison to other current RP approaches, the
findings show that SRPTackle can manage a broad range of
requirements and generate more accurate results in less time,
as well as being more successful in resolving the defined RP
limits. Catering to the requirements Independence might be a
future trend for increasing SRPTackle performance.

There are several requirements prioritizing approaches and
selecting the most appropriate one is a difficult task. This
study is proposed for the evaluation of AI-based techniques
based on evaluation criteria. To mitigate the negative impacts
of traditional prioritization techniques such as accuracy, scal-
ability, cost, optimal solutions, and many others mentioned

VOLUME 11, 2023 143829

R. Anwar, M. B. Bashir: SLR of AI-Based Software Requirements Prioritization Techniques

in the literature, software companies are turning to AI-based
techniques for requirements prioritization. Many require-
ments prioritizing techniques have been offered in this critical
field, however, there is a lack of evidence that can be used to
determine what key parameters are used to evaluate AI-based
techniques. To address this key problem we have proposed
this study.

IV. EVALUATION CRITERIA
Requirements prioritization is a process of ranking require-
ments that has some inputs, processing, and outputs. Since
three major types of AI-based approaches have been used
to rank the requirements including fuzzy logic, optimization
algorithms, and machine learning, so we need evaluation
criteria that can asses them separately. This is because all
three types possess different characteristics and operating
methods. So besides generic criteria to evaluate prioritization
techniques we have also defined specific criteria to evaluate
fuzzy logic, optimization algorithms, and machine learning
techniques.

We identified nine parameters that are common evalua-
tion criteria for all surveyed Fuzzy Logic, Optimization, and
Machine Learning based requirements prioritization tech-
niques such as accuracy, scalability, efficiency, affordability,
Optimal set of solutions, ease of use, tool support, case study
and statistical analysis with different values of ‘Yes’, ‘Par-
tial’ and ‘No’ whereas some parameters are associated with
specificAI techniques such as consistency ratio, self-adaptive
and positivemembership function are three evaluation criteria
used only for Fuzzy Logic-based prioritization techniques,
optimization algorithm, fitness function, and interactivity are
used for evaluation of Optimization-based prioritization tech-
niques whereas classifier, classification model and feature set
are used as evaluation criteria of Machine Learning-based
prioritization techniques. The parameter of Redundancy
problem handling is another evaluation criterion being used
for both Machine Learning and Optimization-based prioriti-
zation techniques. This parameter is not considered for the
evaluation of surveyed Fuzzy Logic techniques.

We designed benchmark parameters and selected their
values of Yes, No, and partial based on related research stud-
ies [55], the domain of our study, and experience. The values
chosen for the criteria have a real relation to the research ques-
tions. The criteria of evaluation such as accuracy, scalability,
efficiency, and others mentioned in our study are potential
strengths of AI-based requirements prioritization techniques
and if the values of these criteria are No or partial, it becomes
a weakness of that technique which is in other words an open
area of research. The range of values of these parameters is
defined on real projects. The value of the criteria is ‘Yes’ if
a technique produces results greater or equal to 80%. The
value of criteria is ‘Partial’ if a technique’s results range
between 50% and 80%. The value of the criteria is ‘No’ if
a technique’s results are less than or equal to 50%. This range
is set for parameters of accuracy, scalability, and efficiency
only because these parameters are quantitatively measured.

We design general criteria for the evaluation of AI techniques
that may fit most of the projects and also specific criteria
associated with each group of AI-based requirements priori-
tization techniques.

A. GENERIC CRITERIA
In this section, we discuss generic evaluation criteria that
have been designed to assess the techniques based on their
abilities to rank the requirements and possess all the desired
characteristics in them.

1) ACCURACY (ACCU)
A requirements prioritization technique is effective if it gen-
erates accurate results that are according to stakeholders’
desires. In general, the prioritization results should be error-
free. Table 7 presents the evaluation criteria for accuracy.

TABLE 7. Evaluation criteria for accuracy.

2) SCALABILITY (SCALE)
The majority of requirements prioritizing approaches work
well when there are a few requirements, but many strate-
gies have limitations when several requirements range from
medium to large. A suitable method works well for a wide
range of requirements. The scalability evaluation criteria are
listed in Table 8.

TABLE 8. Evaluation criteria for scalability.

3) EFFICIENCY (EFFI)
An efficient technique should make less number of compar-
isons that will lead it to find the solution quickly. An efficient
technique utilizes all required resources well without wasting
or exceeding given limits such as cost, time, and other system
resources. Criteria for efficiency are presented in Table 9.

TABLE 9. Evaluation criteria for efficiency.

143830 VOLUME 11, 2023

R. Anwar, M. B. Bashir: SLR of AI-Based Software Requirements Prioritization Techniques

4) AFFORDABILITY (COST)
An affordable requirements prioritization technique is cost-
effective. The value of each requirement is greater than the
cost of implementing it. It may make pairwise comparisons
to determine the relative cost of implementing each candidate
requirement. It may give the project more weight than it can
afford to accomplish. Finding an ideal set of requirements
early on in the software development process is the most cost-
effective way. An efficient technique reduces the total cost of
development within the limits of resources (cost). We present
evaluation criteria for affordability in Table 10.

TABLE 10. Evaluation criteria for affordability.

5) SET OF SOLUTIONS (OPTIM)
The effective technique produces multiple possible sets of
ranked requirements and the best one can be chosen from
them. More than one solution allows the requirement engi-
neers to pick the most suited set of ranked requirements. The
criteria for this parameter are presented in Table 11.

TABLE 11. Evaluation criteria for set of solutions.

6) EASE OF USE (EOUSE)
Prioritization approaches should be simple to use, under-
stand, and gain the user’s trust and attention. For both small
and large number of requirements, the techniques should be
simple to use. An efficient automated prioritization approach
uses less sophisticated calculations to produce the final result
and the results are simple to comprehend. This parameter’s
assessment criteria are listed in Table 12.

TABLE 12. Evaluation criteria for ease of use.

7) REDUNDANT REQUIREMENTS (REDN)
Repeating groups of requirements are called redundant
requirements. The redundancy problem is a major problem
that needs to be addressed well at multiple levels as it leads to

exceeding the system budget and time. An automated prioriti-
zation technique that resolves redundancy problems whereas
prioritization of requirements is considered a reliable tech-
nique. Requirements prioritization techniques should resolve
redundancy problems to increase system reliability. Two
objectives are optimized by handling the redundancy prob-
lem. The first objective is maximizing the reliability of the
system and the second objective is minimizing system cost.
Table 13 shows the evaluation criteria for this parameter.

TABLE 13. Evaluation criteria for redundant requirements.

8) TOOL SUPPORT (TOOL)
Automated tools can be used to enhance the performance
of requirements prioritization. A tool is an excellent way to
assess the viability of a technique since it serves as evidence
of concept and experimental results can demonstrate the
method’s success. The assessment criteria for this metric are
listed in Table 14 below.

TABLE 14. Evaluation criteria for tool support.

9) CASE STUDY (CASE)
A case study is a qualitative research method to analyze
the proposed approach. It provides empirical evidence of
the effectiveness of a technique used for prioritization.
This parameter specifies whether the case study has been
conducted in real by researchers or not. Table 15 below
demonstrates the evaluation criteria for this parameter.

TABLE 15. Evaluation criteria for case study.

10) STATISTICAL ANALYSIS (STAT)
This is a tool to analyze the results of experiments statisti-
cally. Many authors have conducted comparative analyses on
the results of different prioritization techniques using differ-
ent statistical tools. Table 16 below describes the evaluation
criteria for statistical analysis.

VOLUME 11, 2023 143831

R. Anwar, M. B. Bashir: SLR of AI-Based Software Requirements Prioritization Techniques

TABLE 16. Evaluation criteria for statistical analysis.

B. CRITERIA FOR FUZZY LOGIC BASED TECHNIQUES
In this section, we discuss evaluation criteria for fuzzy
logic-based techniques. It has been designed to assess the
techniques specifically in the light of the properties and
attributes that a good fuzzy logic-based requirements ranking
technique should have. A good fuzzy logic method should
provide consistency ratio that should be always between 0 &
0.1 [59], membership function should always be positive [59],
[64] and self-adaptive property [24], [30], [31], [37], [60].

1) CONSISTENCY RATIO (CONSI)
Consistency arises as the conflicts among requirements
reduce. A prioritization approach is selected that priori-
tizes requirements in such a way that there are no conflicts
among the prioritized list of criteria. To remove incon-
sistency, an approach computes an exact consistency ratio
that is always between 0 and 0.1 and offers a normal-
ized most favorable unique priority vector for each fuzzy
judgment. Table 17 shows the assessment criteria for this
parameter.

TABLE 17. Evaluation criteria for consistency ratio.

2) SELF ADAPTIVE (ADAPT)
Self-adaptive features of fuzzy logic systems include
self-optimizing, self-healing, self-configuring, and self-
protection. It may classify requirements as crucial, essential,
or peripheral automatically. Prioritized requirements can be
classified as non-negotiable and negotiable requirements or
sufficient and appropriate requirements. A technique will be
considered good if it possesses self-adaptive characteristics.
The evaluation criteria for this parameter are presented in
Table 18.

TABLE 18. Evaluation criteria for self adaptive.

3) MEMBERSHIP FUNCTION (FUNC)
In terms of input/output variable selection, membership
functions, and methods for determining completeness and
understandability of requirements, a fuzzy system is built.
An effective fuzzy logic system always provides a posi-
tive degree of membership function. Its value never gets
negative. Table 19 presents the evaluation criteria for this
parameter.

TABLE 19. Evaluation criteria for membership function.

C. CRITERIA FOR OPTIMIZATION ALGORITHMS BASED
TECHNIQUES
In this section, we discuss evaluation criteria for the tech-
niques that use one of the optimization algorithms. It has
been designed to assess the techniques specifically in light
of the properties and attributes that a good optimization
algorithm-based requirements prioritization technique should
have.

1) OPTIMIZATION ALGORITHM (ALGO)
The researchers use a variety of optimization algorithms to
prioritize software requirements. There exist some variations
of genetic algorithm and besides those ant colony optimiza-
tion has also been applied for the same. The type of algorithm
used in an approach gives an insight into the process of
ranking and optimizing a set of solutions. Table 20 presents
the evaluation criteria for this parameter.

TABLE 20. Evaluation criteria for optimization algorithm.

2) FITNESS FUNCTION (FITF)
The fitness function is the core part of an optimization
algorithm. We use the disagreement measure as an indica-
tor of fitness to identify the finest individuals. The fitness
function should be computed precisely by the prioritization
technique. When the level of disagreement goes down, the
fitness of a solution improves. A good fitness function assures
improved optimization and quick convergence to the optimal
solution. Table 21 presents the evaluation criteria for this
parameter.

143832 VOLUME 11, 2023

R. Anwar, M. B. Bashir: SLR of AI-Based Software Requirements Prioritization Techniques

TABLE 21. Evaluation criteria for fitness function.

3) INTERACTIVITY (INTER)
The main objective of using an optimization algorithm is to
automate the process but some researchers have proposed
an interactive optimization algorithm that requires the user’s
input to proceed in certain situations. This defeats the purpose
of automation. A good prioritization technique should be
fully automated to minimize human effort and reduce the
chances of human errors. Table 22 presents the evaluation
criteria for this parameter.

TABLE 22. Evaluation criteria for interactivity.

D. CRITERIA FOR MACHINE LEARNING BASED
TECHNIQUES
In this section, we discuss evaluation criteria for machine
learning-based techniques. It has been designed to assess the
techniques specifically in light of the properties and attributes
that a good machine learning-based requirements prioritiza-
tion technique should have.

1) CLASSIFIER (CLASS)
In the domain of requirements prioritization, it is important
to see how the authors perceive the problem of ranking the
requirements. Classifier classifies either problem belongs to
binary class, multiple class, or regression problem. This will
show how comprehensive is the coverage of the problem
domain. We present the evaluation criteria for this parameter
in Table 23.

TABLE 23. Evaluation criteria for classifier.

2) CLASSIFICATION MODEL (MODEL)
A classification model is a model that is built from an input
data set provided to the classification algorithm. The term
model usually implies some mechanistic insight or logic into

how the input variables are related to each other. An accurate
classification model facilitates a classifier for accurate class
detection of input variables. Table 24 presents the evaluation
criteria for this parameter.

TABLE 24. Evaluation criteria for classification model.

3) FEATURE SET (FSET)
A feature is an individual measurable property or characteris-
tic of a phenomenon being observed. An effective algorithm
chooses an informative, discriminating, and independent
feature set. Feature selection is crucial when software priori-
tization is performed through machine learning. It should be
done carefully as the feature set helps classify the require-
ments as per their importance and constraints. Table 25
presents the evaluation criteria for this parameter.

TABLE 25. Evaluation criteria for feature set.

V. RESULTS ANALYSIS AND COMPARISON
This section presents the demography of selected papers and
examines Fuzzy Logic, Optimization, and Machine Learning
Techniques in depth to determine their strengths and weak-
nesses (RQ1). Moreover, this section presents the advantages
of Machine Learning techniques over AI-based techniques
(RQ2) and the limitations of applying AI-based techniques
for software requirements prioritization (RQ3).

A. DEMOGRAPHICS OF OUR STUDY
Table 26 details the overview of 28 research studies per
year, including a breakdown of publication type of Journal
and Table 27 gives an overview of 16 conference papers
and 2 books. The publication date of primary studies ranges
from 2000 to 2021. We extracted total of 46 papers out of
which 15 papers on fuzzy logic-based requirements prioriti-
zation techniques were published 4 in Springer, 1 in Elsevier,
10 in Google Scholar, 22 studies on optimization-based

VOLUME 11, 2023 143833

R. Anwar, M. B. Bashir: SLR of AI-Based Software Requirements Prioritization Techniques

requirements prioritization techniques published 8 in IEEE,
6 in Springer, 2 in Elsevier, 2 in ACM, 4 in Google Scholar
and 9 studies on machine learning based requirements pri-
oritization techniques amongst 2 published in IEEE, 2 in
Springer, 3 in Elsevier and 2 in Google Scholar.

Fig. 4. shows the distribution by venue type of selected
studies after applying inclusion, exclusion criteria, and qual-
ity assessment: 61% of papers are published in journals, 35%
in conferences, and 4% as book chapters.

FIGURE 4. The distribution of research papers per venue type in the
period from 2000 to 2021.

We also noticed that the trend of using AI techniques in
the area of requirements prioritization increased in the year
2015 and onward as shown in Fig. 5.

FIGURE 5. Our selected studies concerning year of publication.

B. STRENGTHS AND WEAKNESSES OF THE SURVEYED
TECHNIQUES (RQ1)
We have identified key strengths as well as weaknesses of
three surveyed techniques that are discussed below in detail:

1) STRENGTHS AND WEAKNESSES OF FUZZY LOGIC-BASED
TECHNIQUES
Our survey results depicted in Table 28 show that Fuzzy
logic techniques need to generate more accurate prioritiza-
tion results. Because data is frequently inaccurate, Fuzzy
inferencemust compute data to find correct values. By decou-
pling dependable variables, dependencies between variables

in the system can be handled via fuzzy inference. As a
result, fuzzy logic improves the ordering process by making
it more correct and reliable. A good Fuzzy logic System sets
a threshold value for the level of disagreement and keeps the
disagreement level below this threshold value. The level of
disagreement should be between 0-1. It should not be negative
for effective and desired results. Results show that out of
15 surveyed techniques, only two techniques [24], [35] show
90 % and 93.89% accuracy respectively due to multi-level
prioritization, 9 techniques [30], [31], [44], [49], [51], [61],
[36], [59], [64] are partially accurate whereas other studies
do not mention neither provide any computation of level of
disagreement. So this is evidence that the accuracy of fuzzy
logic systems needs to be computed and improved.

The framework of fuzzy logic is scalable for a large number
of requirements [35]. Fuzzy logic techniques can be simply
extended to cover various types of requirements, other than
proposed techniques by Dabbagh and Lee [39], Mishra et al.
[44], Sadia and Faisal [60], Ahmad et al., [51], [64] where
researchers do not mention either their proposed technique is
scalable or not. Achimugu et al. [36] propose a multi-criteria
decision-making technique that is implemented on twenty
requirements only.

In terms of both time utilization and capability to learn, the
Fuzzy Logic technique is more efficient, compared to related
approaches other than techniques proposed in [30], [44], [51],
[59], [60], [61], [64], and [36] where researchers have not
provided any detail about this parameter. We analyze that a
certain level of automation leads to a more efficient technique
in the end. Time is an imperative component in any project
and it must be considered and managed well. In general,
a time restriction assists in identifying which requirements
can be implemented in a shorter period. In comparison to
traditional methodologies, our survey findings suggest that
fuzzy systems require less time to compute.

Results shown in Table 28 say that Fuzzy Logic sys-
tem offers cost-effective solutions except proposed methods
in [35], [51], [60], [61], [64], and [36] considering cost
factor while prioritizing requirements keeps project within
budgetary plan. Although researchers claim that a fuzzy logic
system is cost cost-effective solution cost is not calculated
explicitly in these surveyed papers. Similarly, we find no evi-
dence that proposed fuzzy logic technique generates optimal
set of solutions in [25], [30], [37], [39], [44], [49], [51], [60],
[61], and [64] so this area needs research attention.

The researcher does not evaluate their proposed techniques
considering ease of use parameter in Ramzan et al. [24],
Momeni et al. [31], Mishra et al. [44], Ahmad et al. [51],
Singh et al. [59], Sadia, Faisal [60], Bisht and Kushwaha [64]
and [35]. Hence no detail is given about the ease of use
parameter. The prioritization and selection method’s com-
plexity proposed by Mishra et al., is O(n) which is less
complex than conventional methods specifically AHP which
requires O(n2) operations so in practically every situation,
fuzzy logic requirements prioritization produces better and
more remarkable results.

143834 VOLUME 11, 2023

R. Anwar, M. B. Bashir: SLR of AI-Based Software Requirements Prioritization Techniques

TABLE 26. Overview of selected studies (publication type journal).

VOLUME 11, 2023 143835

R. Anwar, M. B. Bashir: SLR of AI-Based Software Requirements Prioritization Techniques

TABLE 27. Overview of selected studies (publication type: conference paper and book).

A good fuzzy logic method should provide a consistency
ratio that should be always between 0 & 0.1. Results show
that out of all techniques being surveyed, only two techniques
compute consistency ratio in [59] and [35] whereas other
research studies do not give any detail regarding consistency
ratio neither researchers compute consistency ratio in these
studies.

The adaptationmechanism of Fuzzy logic targets uncertain
and ambiguous situations where composite service behavior
can be altered by client expectations and preferences. A good
Fuzzy logic system should have self-adaptation properties.
To broaden the scope of events that may happen during run
time, the suggested Adaptive Fuzzy Hierarchical Cumulative
Voting [37] analyzes different self-adaptive features such
as self-protection, self-healing, self-optimizing, and self-
configuring. Prioritizing requirements at run time may be
beneficial. Fuzzy Logic-based techniques proposed in [24],
[30], [31], [37], and [60] offer self-adaptive properties that
make the prioritization process more efficient and effective
whereas techniques proposed in [25], [35], [39], [44], [49],

[51], [59], [61], [64], and [36] do not provide any evidence of
self-adaptive properties.

The effectiveness of a Fuzzy logic system may depend on
how well the membership function of input/output is defined
but that needs a level of skill that is not always present in
software projects so better provision of expertise to well
well-defined membership function may make the fuzzy logic
System more effective. The degree of membership function
should never be negative. To assist decision-makers, the fuzzy
system is a more effective tool in requirements analysis if the
degree of membership function is always positive. Our survey
results demonstrate that in eleven studies, researchers have
provided details of positive membership function parameters
whereas they have not provided any detail regarding mem-
bership function in [37], [39], [51] [35], and [36].

Results show that four research studies [31], [44], [59],
[60] have tested proposed prioritization techniques practi-
cality using MATLAB Fuzzy logic toolbox for automating
software requirement prioritization whereas an intelligent
tool is used for technique proposed in [24] and fuzzy

143836 VOLUME 11, 2023

R. Anwar, M. B. Bashir: SLR of AI-Based Software Requirements Prioritization Techniques

inference is implemented using fuzzy control language
in [61]. For the Fuzzy logic technique proposed by Dabbagh
and Lee [39], the tool is created in Microsoft Visual Studio
2008 and.NET Framework 3.5 utilizing the C# programming
language. Additionally, Microsoft SQL Server 2008 R2 is
used to back up the data created by TIPA.

Authors have not provided any tool support information
or online links for techniques proposed in [25], [30], [36],
[37], [49], [51], [64], and [35], The main reason researchers
use MATLAB fuzzy logic toolbox for implementation pur-
poses to design and edit fuzzy inference systems, or one
can use Simulink to incorporate Fuzzy algorithms may be
included into simulations or standalone C programs that rely
on MATLAB-created fuzzy systems. Even though one may
operate entirely from the command line, this toolkit heavily
depends on graphical user interface (GUI) elements to help
us complete our tasks.

Researchers use Fuzzy c means (FCM) in [24] for com-
parative analysis of requirements but they do not mention
specifically which tool is used for requirements prioritization
technique implementation. The approach proposed in [25]
is rooted in credibility theory but again no tool support
detail has been mentioned. The adaptation module monitors
and evaluates the outcomes of prioritized requirements [37],
determining whether they are accurate or not based on the
analysis. Although the authors mention that they use an adap-
tation module they do not specifically mention the name of
the supporting tool or any other additional details. Similarly,
in [61] researchers implement the rules of fuzzy inference uti-
lizing fuzzy control language (FCL) but they do not mention
any additional details of the tool.

Results show that 11 out of 15 surveyed fuzzy logic-based
prioritization techniques [24], [30], [31], [35], [44], [49],
[51], [59], [60], [61], and [36] mentioned in table 28 are
implemented using real-world cases whereas four techniques
mentioned in [25], [37], [39], and [64] are not being tested
in real case. Similarly, a theoretical framework is presented
in [25] but this study lacks real case evidence. Moreover,
detail related to software tool is also not provided. Real-world
experiments are needed for further verification of results.
As part of future work, Dabbagh and Lee [39] intend to
research to evaluate the presented technique in a real-world
industrial context to determine its efficacy and limitations in
practical solutions.

2) STRENGTHS AND WEAKNESSES OF OPTIMIZATION
BASED TECHNIQUES (RQ1)
The results of the literature survey illustrated in Table 29
prove that Optimization techniques generate accurate results.
All surveyed techniques provide a minimum degree of dis-
agreement which leads to the best desired and accurate
solution. For the best-fit solution, disagreement should be
at a minimum level. However, the final disagreement gen-
erated by IGA in [20] and [27] is minimal but it is not
zero. Similarly, the Least-Squares-Based Random Genetic
Algorithm [55] offers the least amount of conflict between

the overall prioritized requirements and the different lim-
itations that are either encoded with the requirements or
encoded repeatedly by the user throughout the prioritization
procedure.

Although optimization techniques are accurate, they are
often less scalable, as demonstrated by sources such as [2],
[3], [4], [7], [9], [15], [21], [43], and [64]. Most optimization
techniques are designed for small requirements, which raises
questions about their effectiveness as the number of require-
ments increases. J.J Durilio and Zhang have claimed in [18]
that NSGA-11 outperforms Mocell for large requirements,
but further investigation is necessary to determine how these
approaches scale for even larger sets of requirements and/or
customers. Unlike iterative GA techniques, the NSGA-11
methodology can expand the distance between pairings as
the number increases, resulting in better outcomes. Increas-
ing the number of requirements can lead to more accurate
results overall. However, IGA is only partially automated and
requires human input for fitness function, making it more
prone to errors and less accurate solutions.

Many researchers have not explicitly discussed the effi-
ciency parameter in optimization techniques such as those
mentioned in references [2], [3], [7], [11], [15], [18], [20],
[21], [23], and [40]. However, time is a crucial evaluation cri-
terion when it comes to prioritization techniques. Optimiza-
tion techniques can help reduce the consumption of time by
minimizing the number of comparisons or random selection
of population, unlike conventional techniques. For instance,
the Least-Squares-Based Random Genetic Algorithm [55]
can reduce processing time by selecting population randomly,
while keeping it less than execution time.

According to Table 29, optimization-based requirements
prioritization methods are cost-effective. All surveyed tech-
niques’ authors claim that optimization algorithms provide
affordable solutions in terms of cost except for those in
references [15] and [21]. Non-dominated sorting genetic
algorithm with Pareto tournament (NSGA-IIPT) [50] is an
updated genetic algorithm that can generate high-quality
solutions within a set development budget by combin-
ing customer goals and budget constraints. Other tech-
niques like IGA and EVOLVE do not explicitly calculate
cost.

A key parameter for evaluating optimization techniques is
the multiple optimal set of quality solutions. All optimization
techniques provide optimal sets of solutions with minimum
disagreement and high fitness functions, except for those
presented in references [3], [20], [21], and [27]. Sagrado et al.
in [21] did not address the quality of the solutions parameter
in their proposed study, but they plan to look into it in the
future. However, researchers in this study faced difficulties
with classic operators during the adaptation of GA, so they
introduced a repair operator to find a valid solution in a greedy
manner. Feather and Menzies [3] propose an optimization
technique that offers human-based selection, which takes
more time and may be unable to produce a solution closer
to an optimal solution.

VOLUME 11, 2023 143837

R. Anwar, M. B. Bashir: SLR of AI-Based Software Requirements Prioritization Techniques

TABLE 28. Analysis of fuzzy logic-based requirements prioritization techniques.

In several research studies such as [9], [10], [16], [27], [50],
[18], [20], [21], [43], and [64], the parameter for easy usage is
not clearly explained. Additionally, some optimization algo-
rithms produce a set of unnecessary solutions, as noted in [2],
[3], [9], [10], [11], [15], [17], [20], [21], [27], and [43]. It is
concerning that many of these optimization techniques do
not address the redundancy problem or perform any compu-
tations to resolve it. This research gap indicates that further
attention is needed.

Several optimization algorithms, including Order GA,
Weighted + Pareto GA + NSGA11 Algorithm, IGA,
ACO, Hybrid Enriched Genetic Revamped Integer Lin-
ear Programming Model, Non-dominated sorting genetic
algorithm with Pareto tournament for a multi-objective opti-
mization approach (NSGA-IIPT), Least-Squares-Based Ran-
dom Genetic Algorithm, pseudo-polynomial algorithm using
dynamic programming, MOABC, Multi-objective JAYA
(MO-JAYA), Quantum-inspired Elitist Multi-objective Evo-
lutionary Algorithm and Differential Evolution with Pareto
Tournaments (DEPT), are used for requirements prioritiza-
tion. Bagnall et al. use Genetic branch and bound algorithm,
Greedy algorithm, and GRASP to achieve near-optimal
solutions in less time. Quiroz et al. use IGA and evo-
lutionary methodologies for UI design evolution, with an
interpolation technique to minimize selections. Computa-
tional efficiency is enhanced by eliminating low fitness
requirements.

Various optimization techniques utilize different fitness
functions to achieve their objectives. For instance, some stud-
ies, such as the work of [7], employ Benefit and Penalty
functions, while others, such as [16], useMaximize Score and
Minimize Cost functions. Objective and Restriction functions
are utilized in [23], whereas Benefit Maximization and Cost
Minimization are applied in [2], [17], and [18]. In [10], the
Cost Objective function is utilized, while Development Cost
and Overall Client Satisfaction are two Objective functions

used in [11], [40], and [42]. On the other hand, the fitness
function in [20] and [27] is computed by finding theminimum
disagreement level.

In the context of Interactive Genetic Algorithms (IGA), the
fitness function uses a straightforward disagreement calcula-
tion to evaluate the quality of prioritization. This calculation
is slightly influenced by erroneous values to helpmaintain the
degree of disagreement below a specific threshold. Once the
degree of disagreement is sufficiently low or the elicitation
budget has been exhausted, the prioritization process comes
to a conclusion. However, the current fitness function utilized
in IGA may not lead to the best prioritization, as user inputs,
in the form of pairwise comparisons to score individuals, are
error-prone.

The NSGA-IIPT algorithm, as presented in [50], employs
the Pareto tournament approach and a crowding distance
measure as a fitness function to ensure diversity among solu-
tions. In contrast, the Hybrid Enriched Genetic Revamped
Integer Linear Programming Model, discussed in [43], calcu-
lates the fitness function by subtracting the penalty from one
(fitness = 1-penalty). To normalize both objective function
values between 0 and 1, researchers suggest that this normal-
ization function is more resilient. Quiroz et al. [15] determine
the objective fitness component by evaluating how well UI
individuals in the population follow defined style constraints.
Gongalez and Toledano [40] must normalize the values of fit-
ness functions before measuring hyper-volume (HV) because
HV is not separate from arbitrary objective scaling, and the
value of these measurements may be impacted if the range of
each objective function varies.

In ten studies, interactive genetic algorithms have been
implemented to take user feedback during the prioritization
process whenever required. Quiroz et al. [15] employ an
interactive tool that prompts the user to make a decision
once every generation. Tonella et al. [20], [27] employ an
interactive genetic algorithm. However, partial automation

143838 VOLUME 11, 2023

R. Anwar, M. B. Bashir: SLR of AI-Based Software Requirements Prioritization Techniques

and user involvement can lead to increased time consumption
and erroneous results.

The surveyed optimization-based requirements prioritiza-
tion methods utilized real case studies, with the exception
of [9]. In addressing the Multi-Objective Next Release Prob-
lem (MONRP) [16], four algorithms were employed to
simultaneously maximize both value and cost. The study
revealed that weighted and Pareto optimum genetic algo-
rithms, as well as the NSGA-II algorithm, demonstrated
evidence to support the notion that NSGA-II is well-suited
for solving the MONRP. The IGA algorithm [20], [27] was
also employed in real software systems. In a real-world case,
the proposed method was compared against the state-of-the-
art interactive prioritization approach known as Incomplete
Analytic Hierarchy Process (IAHP). The authors of this study
claim that IGA outperforms IAHP. However, the primary
concern with IGA is redundancy problem handling. Further-
more, another optimization algorithm called ACO [23] was
implemented via a real case study, which produced more
valid and accurate results by utilizing binary tournament
as a selection method. There were no notable variations in
ACO’s results before and after the time constraints were
applied. Finally, the non-dominated sorting genetic algorithm
with Pareto tournament for a multi-objective optimization
approach was utilized to test the efficacy of the proposed
approach (NSGA-IIPT) [50]. This was implemented utilizing
various examples selected from two real-world datasets.

Feather and Menzies conducted a study, referenced in [3],
which used TAR2 to create 100,000 model variants. These
variants were analyzed using a computer program to iden-
tify the values that caused the most significant deviation
from expert predictions. In another study, Quiroz et al. [15])
collected data from three users, presenting nine individuals
for user review using a probabilistic tournament selection
approach. It is important to conduct further user studies to
evaluate the tool’s practicality and user interface evolution.
Gongalez and Toledano [40]) used two real datasets to assess
the effectiveness of their proposed technique, applying four
development effort constraints to each dataset. This led to the
evaluation of their proposal using four distinct datasets.

In a total of nine surveyed studies, explicit information
was provided regarding the tools employed for implementing
optimization techniques. For instance, the EVOLVE method
[7] utilized Palisade’s Risk optimizer tool, which offers a
range of methods for modifying variables. However, in one
study [50], researchers claimed to have used a software tool
to implement the Non-dominated sorting genetic algorithm
with Pareto tournament for a multi-objective optimization
approach (NSGA-IIPT), without specifying the name of the
tool or providing a web link for additional information.
They only mentioned system requirements for experimenta-
tion. Similarly, Gongalez and Toledano [40] only provided
hardware and software requirements, without specifying the
software tool employed. On the hardware side, they used an
Intel Xeon 2.33 GHz CPU with 4 GB RAM and the gcc
4.4.5 compiler on a Linux kernel 3.13 64-bit OS. In contrast,

Alrezaamiri et al. [48], [63], and [42] evaluated the effective-
ness of their proposed techniques using the Matlab R2014b
tool.

Feather and Menzies [3] used the Tar2 summarizing tool
to analyze their data set and identify larger treatment sets.
Deb et al. [4] implemented NSGA-11 with an optimizer
tool, while Saliu and Ruhe [11] utilized ILOG-CPLEX Opti-
mizer for their bi-objective evolving algorithm. Baker et al.
[10] employed greedy and simulated annealing techniques
in a C++ environment, while Quiroz et al. [15] utilized
evolutionary methods for UI design evolution in XML
User-interface Language (XML UIL). XUL was chosen due
to its adaptability and ease of widgetmodification. The syntax
and structure of XUL also allow for the creation of a variety of
programs, from simple two-button interfaces to full-fledged
applications with menu bars, toolbars, and other conventional
widget capabilities. The resulting programs appear to be cre-
ated by the user, with no hint of AI-powered assistance.

After analyzing and comparing various optimization meth-
ods, the techniques of Harman et al. were excluded from
the evaluation, as per [9] and [11]. Statistical analysis
of the results indicated that optimization-based prioritiza-
tion methods outperformed existing techniques. Specifically,
NSGA-II, a Pareto GA, and a Single-Objective GA were
found to perform better than Random Search. Additionally,
a comparison of IGA, GA, and RAN using the ANOVA test
revealed that both GA and IGA outperformed RAN signif-
icantly. Furthermore, the Wilcoxon Rank Sum Test showed
that ACO performed significantly better than GA. Nonethe-
less, ACO’s major limitation is that it only accounts for
synthetic data and may overlook certain aspects of real-world
events.

In their study, Finkelstein et al. [17] conducted a perfor-
mance comparison of ‘intelligent’ search-based optimization
algorithms against Random Search. They found that the for-
mer outperformed the latter significantly. Their evaluation
included comparisons of theHybrid EGRILPmodel [43] with
other prioritizing and schedulingmodels. Results showed that
EGRILP produced the most optimal solution. In addition,
the NSGA-IIPT algorithm outperformed other algorithms
in an independent samples t-test. The Least-Squares-Based
Random Genetic Algorithm was also evaluated against other
methods, and VOP was found to be more efficient in pro-
ducing error-free results, consistency, and ease of usage.
However, the statistical analysis tool used in their perfor-
mance comparison tests was not specified.

Gongalez and Toledano [40] utilized the Shapiro-Wilk
test to determine that the arithmetic mean was an accept-
able statistical measurement for their data. They conducted
a comparative analysis using three quality factors to evaluate
their study against other comparable papers that have been
published. The first factor was the number of non-dominant
solutions discovered, referred to as NDS. The favor was given
to Pareto fronts with the most non-dominated solutions. The
second factor evaluated was the hyper-volume (HV) indica-
tor. This measure was used to calculate the volume in the

VOLUME 11, 2023 143839

R. Anwar, M. B. Bashir: SLR of AI-Based Software Requirements Prioritization Techniques

target space covered by members of a non-dominated set of
solutions Q. Algorithms with greater HV values were deemed
favorable. The third quality indicator, D-Spread, evaluated
the degree of dispersion achieved by collecting obtained
solutions. This indicator calculated the Euclidean distances
between successive solutions in the Pareto front to evaluate
solution diversity. Pareto fronts with a lower spread value
were deemed better.

In summary, optimization-based requirements prioriti-
zation techniques have been shown to produce accurate,
cost-effective, and optimal solutions. However, these tech-
niques face challenges in terms of scalability, efficiency, and
redundancy that require further attention. Parameters used for
the evaluation of optimization-based requirements prioritiza-
tion techniques are given in Table 29.

3) STRENGTHS AND WEAKNESSES OF MACHINE
LEARNING-BASED TECHNIQUES (RQ1)
Following a thorough analysis of machine learning
algorithm-based techniques, we have determined that the
techniques presented in Table 30 produce partially accurate
requirement ordering. While machine learning techniques
are less manual and therefore less prone to human error,
there is still room for improvement in the accuracy of the
results. Some techniques, such as those presented in [8], are
partially automated, which increases the probability of error.
Additionally, the user’s cognitive burden required to offer a
ranked preference relation, as described in [5], has no impact
on the approximation inaccuracy.

Researchers in [52] and [54] have claimed that less depen-
dency between requirements improves accuracy. Gupta et al.
in [54] use minimum disagreement between stakeholders’
and developers’ priority as a measure of accuracy.

All of the surveyed machine learning techniques proposed
in [5], [8], [19], [26], [34], [52], [54], [65], and [58] offer
scalable solutions, as they can prioritize a large number of
software requirements and can be used in a variety of scenar-
ios. Table 30 shows that all techniques can be easily extended
and overcome redundancy problems by removing repeating
groups of requirements, which leads to efficiency in terms of
cost and time.

The results indicate that the case-based ranking technique
proposed in [5] and [34] is efficient in terms of time, but not
cost-effective. On the other hand, the technique proposed in
[26] is cost-effective, but less efficient. There is no evidence
of efficiency and cost-benefit in [8]. However, the techniques
proposed in [19], [52], [54], [65], and [58] are both efficient
and cost-effective. Analysts’ judgment effort connected with
pairwise comparison is kept within reach in these techniques.

According to surveys, most Machine Learning prioriti-
zation techniques provide solutions that are less redundant
than those presented in [65] and [58]. Additionally, only the
techniques discussed in [52], [54], and [65] are evaluated
for ease of use. All of the techniques were tested with real,
synthetic, and artificial datasets as well as sample software

project data using various classification models, classifier
feature sets, and software tools.

In the field of data analysis, a tool called a classification
tool is utilized to identify and organize various non-functional
requirements such as security, performance, and usability.
This is discussed in [19]. Meanwhile, the nearest neighbor
classifier is employed for case-based ranking in decision
support systems as stated in [5], and the K-means clas-
sifier is utilized in [65] and [34]. Binary learning weak
classifier is utilized in [26] and [58] to partially order require-
ments, while binary classifier is used to classify requirements
in [8]. Finally, Multiple base learners are utilized in the
rank boost algorithm in [52], while the swarm optimization
algorithm is used in CDBR discussed in [54] to generate final
priority.

Various classification models are utilized in scientific
research, including the self-multi-user loop model, basic
single-user loop model, basic multi-user loopmodel, and iter-
ated single-user loop model for iterative process and binary
classifier. These models are discussed in sources like [5], [8],
[19], [26], [34], [52], [54], [58], and [65].

During the prioritization process, it is crucial to carefully
identify the feature set. Researchers evaluate their techniques
based on feature sets such as accuracy and elicitation effort
in [8], security, performance, or usability in [19], number
of requirements and disagreement level in [26], stakeholder
preferences, time consumption, and accuracy in [65], accu-
racy in [58], requirements dependency in [52], and minimum
disagreement in [54].
Multiple studies were analyzed to test the effectiveness

of various techniques for prioritizing requirements based on
machine learning. The studies that were analyzed include [5],
[8], [19], [26], [52], [54], [58], [65], and [34]. However, some
of the studies did not provide details on the tools used. For
example, [5], [34], and [54] did not mention the tools used.
In [19], an automated tool was mentioned but not named.
On the other hand, the study mentioned in [26] implemented
a three-step prioritization approach using a web-based tool
called Score, and theMann-Whitney-Wilcoxon test was used.
Other tests used in the studies include the Shapiro-Wilk W
test in [52], ANNOVA test in [54], arithmetic mean and
standard deviation in [34], SRPTackle-Tool in [65], and a
Python tool in [58]. A table showing the parameters used for
evaluation is included in the studies.

C. COMPARISON OF AI-BASED REQUIREMENTS
PRIORITIZATION TECHNIQUES
Figures 6 and 7 compare Fuzzy logic, Optimization, and
Machine Learning software prioritization techniques based
on the total number of ‘Yes’ responses for each parameter.
The results suggest that optimization-based RP techniques
are claimed to be themost accurate (100%), affordable (91%),
and easy to use (54.54%) in the literature, compared to fuzzy
logic-based RP techniques and machine learning-based RP
techniques. However, optimization-based RP techniques are

143840 VOLUME 11, 2023

R. Anwar, M. B. Bashir: SLR of AI-Based Software Requirements Prioritization Techniques

TABLE 29. Analysis of optimization algorithms-based requirement prioritization techniques.

TABLE 30. Analysis of machine learning-based requirements prioritization techniques.

also found to be the least scalable (4.54%), least efficient, and
least effective in handling redundancy (4.54%), as compared
to the surveyed fuzzy logic and machine learning-based RP
techniques. These findings highlight research gaps that need
to be addressed in future work.

According to research, only 41% of optimization-based RP
techniques provide tool-related information, while 95.45%
use case studies as their research methods and 91% are
statistically analyzed. The authors of these studies are encour-
aged to provide information about their tools to help other
researchers in the research process.

On the other hand, 60% of studies on Fuzzy logic-based
RP techniques report that their methods are scalable and
affordable. However, only 73.33% of these studies have
been tested using case studies. Interestingly, accuracy
(13.33%) and optimal solution (20%) are not commonly

discussed or evaluated. It is also noteworthy that only
46.66% of fuzzy logic techniques are analyzed statistically,
in contrast to optimization and machine learning-based RP
techniques.

Machine learning-based RP techniques have shown
exceptional results in scalability (100%), optimal solution
(88.88%), efficiency (77.77%), and redundancy handling
(66.66%). However, only 33.33% of these studies claim that
machine learning-based RP techniques produce more than
80% accurate results. It is worth noting that all surveyed
machine learning-based techniques provide tool support
information, and case studies are conducted with statistical
analysis.

The overall results of this study to highlight the identified
limitations and strengths of three surveyed AI-based RP tech-
niques are demonstrated below in Figure 7:

VOLUME 11, 2023 143841

R. Anwar, M. B. Bashir: SLR of AI-Based Software Requirements Prioritization Techniques

FIGURE 6. Comparison of AI-based requirements prioritization
techniques.

FIGURE 7. Limitations and strengths of AI-based requirements
prioritization techniques.

D. ADVANTAGES OF MACHINE LEARNING ALGORITHMS
OVER AI TECHNIQUES (RQ2)
Machine learning techniques are a highly effective and
scalable approach for dealing with large sets of require-
ments. They have been found to outperform expert elicitation
effort and requirement priority trade-offs. To achieve better
results, it is recommended to use Pareto fronts with a lower
spread value, as suggested by various sources, including
Avesani et al. [5], Shao et al. [52], Gupta and Gupta [54],
and others.

However, when the number of requirements increases,
optimization algorithms tend to slow down, as noted in
sources such as [2], [4], [7], [11], [15], [16], and [63]. On the
other hand, machine learning techniques are generally time-
efficient, as indicated by sources such as Avesani et al. [5],
Shao et al. [52], Gupta and Gupta [54], and others.

In terms of producing optimal sets of solutions for priori-
tization, research conducted by Avesani et al. [5], Shao et al.
[52], and Gupta and Gupta [54] demonstrate that machine
learning techniques are highly effective, whereas fuzzy logic
frameworks presented in [25], [37], [39], [51], [60], [61],
and [64] have not been verified for optimal sets of solutions.
It’s interesting to note that optimization algorithms may

generate redundant solutions, sometimes even repeating iden-
tical requirements multiple times due to inherent randomness,
as noted in [20].

It has been observed that machine learning techniques
are becoming increasingly popular for requirements priori-
tization. These techniques can be easily scaled and provide

FIGURE 8. Advantages of machine learning-based RP techniques over
other AI-based RP techniques.

optimal solutions. However, there is room for improvement
in terms of the accuracy of prioritization results [5], [26]. The
benefits of using machine learning-based RP techniques are
summarized in Figure 8.

E. LIMITATIONS OF APPLYING AI-BASED TECHNIQUES
FOR SOFTWARE REQUIREMENTS PRIORITIZATION (RQ3)
There are various AI techniques available to prioritize soft-
ware requirements, but each of them comes with their own
set of advantages and limitations. Fuzzy logic-based tech-
niques, for example, may lack accuracy and may not always
provide the best solution. Many of these techniques only
offer theoretical or framework models that have not been
statistically validated. Ejnioui et al. [25] have introduced the
cardinality theory to determine the expected value, and they
plan to test their simulation algorithm for accuracy in the
future.Momeni et al. [31] have proposed a neuro-fuzzy-based
approach that consumes 9% less time than other techniques.
Sadiq and Jain [30] have suggested a fuzzy technique for
requirements prioritization in a goal-oriented requirements
elicitation process, but their tool is yet to be tested in a real
setting for accuracy. Jawale and Bhole [37] have developed
an adaptation module, but its accuracy is still unknown as it
has not been tested on real datasets. Dabbagh and Lee [39]
have provided an illustrative example for prioritizing require-
ments, but more experiments in the real world are needed to
evaluate the technique’s accuracy [51], [60], [61].

As the number of requirements increases, optimization
techniques may slow down and produce redundant sets of
solutions. Furthermore, these techniques may repeat the same
requirements multiple times within a solution, due to their
random nature [[2], [3], [4], [7], [11], [15], [16], [63]].

Simulated annealing, proposed by Bagnall et al. [2], is best
suited for smaller problems and may not yield optimal solu-
tions for larger problems. Both heuristic and exact methods
have room for improvement.

Feather and Menzies [3] present a defect and preven-
tion model that relies heavily on TAR2. This makes it less
efficient and unable to scale unless TAR2 scales as well.

143842 VOLUME 11, 2023

R. Anwar, M. B. Bashir: SLR of AI-Based Software Requirements Prioritization Techniques

Manual selection can also be time-consuming and may not
provide ideal solutions. The EVOLVE method, proposed by
Greer and Ruhi, becomes less efficient as the population size
increases. While the probability of obtaining better results
improves, it comes at the expense of computation time.
NSGA, proposed by Zhang et al. [16], is effective for Specific
Multi-Objective Next Release Problems (MONRP) but is
unable to handle dependency problems.

Quiroz et al. [15] propose a technique that requires test-
ing with a large sample size to determine the usability of
the tool and its effectiveness in steering and biasing the
evolution of user interfaces. Meanwhile, Sagrado et al. [21]
utilize GRASP, ACS, and GA techniques for prioritization
and individual repair to transform valid solutions. However,
the quality of the solution is yet to be tested, which will be
done in the future. Tonella et al. [20] present an interactive
genetic algorithm that needs empirical investigation with real
users. The convergence of the method is not guaranteed, and
it depends on the consistency of the fitness function over
time during incremental knowledge acquisition. The main
problem with this approach is redundancy.

De Souza et al. [23] offer an ant colony optimization
technique for prioritization but with less efficiency in terms
of implementation time. When evaluating the same number
of solutions, ACO is significantly slower than the other two
metaheuristics, potentially due to its more sophisticated con-
structive process in constructing potential solutions. Finally,
Gongalez and Toledano [40] propose a differential evolution
method. However, it requires further research as it has only
been tested on two datasets.

Machine learning algorithms need to be accurate to
meet the desired level of agreement among prioritized
requirements. A case-based ranking system proposed by
Avesani et al. [5] has limitations, as it puts a heavy cognitive
load on users when providing a rated preference relation,
leading to approximation errors. This technique must be
improved because it only shows a 4% disagreement for 10%
of pairs of requirements.

Duan et al. [19] present a technique that offers 74% recall
and 16% precision. However, the approach’s limitations are
tied to the underlying classification, traceability, and clus-
tering algorithms that rely on probabilistic data mining and
information extraction techniques. Therefore, the output may
not provide perfect accuracy or recall.

Perini et al. [26] propose a case-based ranking system that
generates a 12% disagreement between desired and achieved
results and a 24% disagreement for bug criteria. However,
this technique cannot handle dependencies and cannot update
ranks on runtime.

Expanding the application of DRank proposed by
Shao et al. [52] by including new dependency types is crucial.
The model currently only supports contribution and business
dependencies. Table 31 below summarizes the limitations of
the AI-based requirements prioritization techniques.

VI. DISCUSSION
This section discusses the results of our study and identifies
areas for future research based on literature gaps. Our sys-
tematic literature review (SLR) reveals a substantial increase
in the use of AI techniques for prioritizing software require-
ments. Demographic analysis indicates that this area attracts
the attention of both researchers and requirements engineers.
Fig. 5 shows that most studies in this direction were published
in 2015 and 2017. The total number of papers published for
fuzzy logic is 15, for optimization techniques it’s 22, and for
machine learning it’s 9. However, the trend of using machine
learning techniques is rapidly increasing.

Fig. 4 shows that high-quality journals account for 61% of
the publications from 2000 to 2021, followed by conferences
with 35% and books with 4%. This indicates an increasing
effort to explore this research direction.

After analyzing the data in Tables 28, 29, and 30,
we conclude that nine parameters are commonly used to
evaluate all surveyed fuzzy logic, optimization, and machine
learning-based requirements prioritization techniques. These
parameters include accuracy, scalability, efficiency, afford-
ability, the optimal set of solutions, ease of use, tool support,
case study, and statistical analysis, with varying levels of
‘Yes’, ‘Partial’, and ‘No’ responses. However, some param-
eters are specific to certain AI techniques. For instance,
consistency ratio, self-adaptive, and positive membership
functions are only used for fuzzy logic-based prioritization
techniques. Fitness function and interactivity are used to
evaluate optimization-based prioritization techniques, while
classifier, classification model, and feature set are used
for machine learning-based prioritization techniques. The
parameter of ‘Redundancy problem handling’ is another
evaluation criterion used for both machine learning and
optimization-based prioritization techniques, but not for sur-
veyed fuzzy logic techniques. These specific parameters are
related to the functionality of these AI-based prioritization
techniques.

The study conducted a systematic literature review (SLR)
to evaluate different techniques for prioritizing requirements,
including fuzzy logic, optimization, and machine learning.
It identified the strengths andweaknesses of these techniques,
as well as the advantages of usingmachine learning over other
AI-based approaches. However, the study also highlighted
the limitations of applying AI techniques in requirements
prioritization.

Based on the results of the systematic literature review
(SLR), it has been observed that Fuzzy logic has the potential
to handle a vast number of requirements [24], [25], [30],
[31], [35], [37], [49], [59], [61]. However, there is a need to
enhance its accuracy [25], [30], [31], [36], [37], [39], [44],
[49], [51], [59], [60], [61], [64] and develop an optimal set
of solutions [25], [30], [31], [37], [39], [44], [49], [51], [59],
[60], [61], [64]. This aspect requires further research to be
thoroughly explored in the future.

VOLUME 11, 2023 143843

R. Anwar, M. B. Bashir: SLR of AI-Based Software Requirements Prioritization Techniques

TABLE 31. Limitations of applying AI-based requirements prioritization techniques.

Although optimization techniques [2], [3], [4], [7], [9],
[10], [11], [15], [16], [17], [18], [20], [21], [23], [27],
[40], [42], [43], [48], [50], [55], [63] can generate accu-
rate results, there is a need for further research to eval-
uate the efficiency, scalability, and redundancy handling

metrics of optimization-based requirements prioritization
techniques [2], [3], [4], [7], [9], [10], [11], [15], [16], [17],
[18], [20], [21], [23], [27], [40], [43], [48], [50], [55], [63].

Techniques for prioritizing requirements based onmachine
learning have proven to be scalable [5], [8], [19], [26],

143844 VOLUME 11, 2023

R. Anwar, M. B. Bashir: SLR of AI-Based Software Requirements Prioritization Techniques

TABLE 32. Strengths and weaknesses of AI-based RP techniques.

VOLUME 11, 2023 143845

R. Anwar, M. B. Bashir: SLR of AI-Based Software Requirements Prioritization Techniques

TABLE 32. (Continued.) Strengths and weaknesses of AI-based RP techniques.

143846 VOLUME 11, 2023

R. Anwar, M. B. Bashir: SLR of AI-Based Software Requirements Prioritization Techniques

TABLE 32. (Continued.) Strengths and weaknesses of AI-based RP techniques.

VOLUME 11, 2023 143847

R. Anwar, M. B. Bashir: SLR of AI-Based Software Requirements Prioritization Techniques

TABLE 32. (Continued.) Strengths and weaknesses of AI-based RP techniques.

143848 VOLUME 11, 2023

R. Anwar, M. B. Bashir: SLR of AI-Based Software Requirements Prioritization Techniques

TABLE 32. (Continued.) Strengths and weaknesses of AI-based RP techniques.

VOLUME 11, 2023 143849

R. Anwar, M. B. Bashir: SLR of AI-Based Software Requirements Prioritization Techniques

TABLE 32. (Continued.) Strengths and weaknesses of AI-based RP techniques.

143850 VOLUME 11, 2023

R. Anwar, M. B. Bashir: SLR of AI-Based Software Requirements Prioritization Techniques

TABLE 32. (Continued.) Strengths and weaknesses of AI-based RP techniques.

VOLUME 11, 2023 143851

R. Anwar, M. B. Bashir: SLR of AI-Based Software Requirements Prioritization Techniques

TABLE 32. (Continued.) Strengths and weaknesses of AI-based RP techniques.

143852 VOLUME 11, 2023

R. Anwar, M. B. Bashir: SLR of AI-Based Software Requirements Prioritization Techniques

TABLE 32. (Continued.) Strengths and weaknesses of AI-based RP techniques.

VOLUME 11, 2023 143853

R. Anwar, M. B. Bashir: SLR of AI-Based Software Requirements Prioritization Techniques

TABLE 32. (Continued.) Strengths and weaknesses of AI-based RP techniques.

[34], [52], [54], [65] and capable of producing optimal solu-
tions [5], [8], [19], [26], [34], [52], [54], [65]. However, the
accuracy of their results could be improved [5], [19], [26],
[34], [52], [54].

Accuracy of the results claimed in different ML studies is
4% disagreement in [8], 10%, 15%, 20% disagreement in [5],
74% recall and 16% precision in [19], 12% disagreement
between desired and achieved results and 24% disagreement
for bug criteria in [26] which is strong evidence that machine
learning techniques for requirements prioritization need to be
well researched focusing accuracy parameter.

In summary, the findings revealed that the limitation of
one of the AI-based techniques is the strength of other
AI-based RP techniques and vice versa. For instance, both
fuzzy logic-based RP techniques and machine learning-based
RP need to improve the accuracy of prioritization while
optimization-based RP techniques are good at accuracy. Sim-
ilarly, fuzzy logic-based RP techniques produce less optimal
solutions while machine learning-based RP techniques are
good at generating optimal solutions. The scalability is a com-
mon problem of both fuzzy logic and machine learning-based

RP techniques and the strength of optimization-based RP
techniques.

The literature survey results conclude that the limitations
of AI-based RP techniques such as accuracy, optimal set
of solutions, efficiency, scalability, and redundancy handling
still exist. If RP techniques are to be pervasively adopted in
the field of RE, there is a strong need to adopt the identified
current strengths and address their inherent limitations. Thus,
the current work presents a small leap forward that can serve
as guidelines for the future development of RP techniques.

The findings of this SLR are very helpful for researchers as
it gives directions for future work. The identified strengths of
AI-based techniques may be merged to propose a novel idea
to address the identified weaknesses of AI-based techniques.
The identified weaknesses of AI-based requirements priori-
tization techniques invite research attention which is a major
contribution of this SLR.

VII. RELATED WORK
Literature shows many conventional and systematic literature
reviews have been conducted so far to analyze the domain

143854 VOLUME 11, 2023

R. Anwar, M. B. Bashir: SLR of AI-Based Software Requirements Prioritization Techniques

TABLE 33. Results of quality scores of selected studies.

of requirements prioritization from different perspectives and
angles. Nine review studies related to the RP process are
collected.

Kaur and Bawa [28] present an overview of conven-
tional prioritization strategies, followed by an analysis in
light of software requirements prioritization. Prioritization

VOLUME 11, 2023 143855

R. Anwar, M. B. Bashir: SLR of AI-Based Software Requirements Prioritization Techniques

techniques are classified as manual vs. algorithmic proce-
dures, simple vs. complicated in terms of complexity, fine
vs. coarse in terms of granularity, and ratio vs. ordinal in
terms of scale in this study. This study analyzes 7 pri-
oritization techniques including analytic hierarchy process,
value-oriented prioritization, cumulative voting, numerical
assignment, binary search tree, planning game, and B tree
prioritization rather than AI-based requirements prioritiza-
tion techniques. All three research questions that have been
answered in our SLR i.e., RQ1, RQ2, and RQ3 are missing
in this study.

Achimugu et al. [32] conduct a systematic literature study
on requirements prioritization and select 73 primary stud-
ies to discover that current prioritization techniques have
several shortcomings, including scalability, ways for deal-
ing with rank changes throughout requirements evolution,
stakeholder coordination, and requirements dependency con-
straints. In addition, the applicability of existing approaches
in a complex and real scenario has yet to be addressed.
This SLR identifies limitations of existing techniques and the
processes involved in prioritization but the main focus is on
the conventional techniques while RQ1 and RQ2 are missing
in this study.

Pitangueira et al. [38] offers a thorough study and mapping
of the search-based software engineering (SBSE) methodolo-
gies that have been presented to handle software requirement
selection and priority problems as well as presenting quanti-
tative and qualitative assessment whereas our study focuses
on strengths andweaknesses of fuzzy logic, optimization, and
machine learning techniques to prioritize requirements.

Devulapalli et al. [41] conducted a survey on require-
ments prioritization to uncover requirements prioritization
practices in software development companies and to better
understand the relationship between requirements prioritiza-
tion and software delivery and resource allocation. This study
examines the data to determine which areas need attention
in terms of requirements prioritization. The surveyed papers
were selected subjectively, rather than following a systematic
searching procedure. In contrast, our study is an SLR rather
than a summary.

Yousaf et al. [46] conduct a thorough literature review
of 10 techniques for requirements prioritization. Most of
these techniques are conventional that are compared using
the following criteria: time, number of comparisons, ease of
use, scalability, and accuracy whereas our study focuses on
the evaluation of every aspect of AI-based requirements pri-
oritization techniques using both general as well as specific
criteria related to surveyed AI-based requirements prioritiza-
tion techniques.

Sufian et al. [56] perform a systematic literature review
of 33 papers to identify various techniques and tools
used for requirements prioritization and the limitations of
these techniques. This SLR compares the top ten con-
ventional requirements prioritization techniques based on
three parameters: scalability, ease of use, and consistency
whereas our study evaluates three AI-based requirements

prioritization techniques to identify their strengths as well as
weaknesses.

Hujainah et al. [57] conduct a thorough literature review
of 122 relevant studies to identify strengths, opportuni-
ties, and limitations of current techniques. The stakeholders
engaged in the requirements prioritization process are identi-
fied and new stakeholder categories are offered. The study
demonstrates that present methodologies have significant
limitations in terms of time utilization, scalability, quantifi-
cation, and priority of participating stakeholders, as well as
requirement interdependence and the requirement for highly
skilled human involvement. The scope of this survey is
much broader than that of our study as it covers literature
analyzing 108 techniques which include most of the con-
ventional requirements prioritization techniques whereas our
study analyzes AI-based requirements prioritization tech-
niques using both common as well as specific evaluation
criteria to investigate the strengths and limitations of these
techniques in greater depths.

Bukhsh et al. [62] compare requirements prioritization
techniques proposed in 102 papers between 2007 and
2019 using a variety of criteria such as accuracy, ease of use,
scalability, efficiency, attractiveness, time consumption, fault
tolerance, reliability, complexity and level of automation. Out
of the 15 studies, 13 are compared using specific criteria with
the AHP with at least one other RP method whereas in our
study focus is on evaluation of AI-based RP techniques to
identify their strengths and weaknesses. Authors of this SLR
come to the conclusion that the Analytical Hierarchy Process
is the most precise and widely used approach for prioritizing
requirements in industry. However, scalability is still a major
problem. Furthermore, authors claim that machine learning
has potential in addressing these problems.

Dabrowski et al. [66] conduct comprehensive SLR cover-
ing 182 papers published between 2012 and 2020 to identify
various techniques to analyze App reviews for software engi-
neering and classifies App review analysis not only in terms
of mined information and applied data mining techniques but
most importantly in terms of supported software engineering
activities. This study evaluates 22 review mining approaches
on basis of evaluation criteria: accuracy, efficiency, useful-
ness, informativeness and usability whereas our study differs
in domain i.e. evaluation of AI-based requirements prioritiza-
tion techniques. Our study differs from this SLR as we focus
on detailed and specific analysis of AI-based requirements
prioritization techniques using key parameters to identify
their potential benefits and limitations.

This review is a unique work synthesizing knowledge
from the literature for evaluation of AI-based requirements
prioritization techniques using key parameters to identify
their strengths and weaknesses. Our SLR, however, differs
substantially from previous studies in scope of the literature
surveyed and depth of our analysis. Our study is different
from previous works in accordance with the generic as well
as specific parameters we considered for the evaluation of
AI-based techniques to identify strengths and weaknesses

143856 VOLUME 11, 2023

R. Anwar, M. B. Bashir: SLR of AI-Based Software Requirements Prioritization Techniques

(RQ1), advantages of machine learning techniques over other
AI-based requirements prioritization techniques (RQ2) and
limitations of applying AI-based techniques in requirements
prioritization (RQ3) to identify new research areas.

VIII. CONCLUSION, LIMITATIONS, AND FUTURE WORKS
Software requirements prioritization techniques are deemed
successful if they deliver accurate, scalable, efficient, less
redundant, and optimal solutions. The performance of
AI-based requirements prioritization techniques depends
heavily on both generic and specific parameters. This sys-
tematic literature review aims to identify the strengths and
weaknesses of AI-based RP techniques, including Fuzzy
Logic, Machine Learning, and optimization algorithm-based
techniques for requirement prioritization. The evaluation cri-
teria used are of two types: general criteria for evaluation, and
specific criteria for fuzzy logic, optimization, and machine
learning techniques. These criteria help to identify the pros
and cons of AI-based prioritization techniques and enable
stakeholders to make informed decisions while prioritizing
requirements and selecting prioritization techniques.

Fuzzy logic-based requirements prioritization techniques
are known to be scalable but need to improve their accuracy.
Optimization-based techniques achieve an accurate priori-
tized list of requirements but can slow down when there are
several requirements, produce a redundant set of solutions,
and repeat the same requirements more than once. Machine
learning-based techniques produce the best optimal and scal-
able solutions, but their accuracy needs improvement as they
do not achieve a minimum level of disagreement.

There are various AI-based approaches that offer advan-
tages, but they also have limitations due to their nature.
Therefore, no technique exists that fits well for all required
features in the domain of requirements prioritization. As a
result, an improved AI-based software requirements prioriti-
zation technique is needed, which integrates the benefits of
fuzzy logic, optimization, and machine learning techniques
to achieve better results.

Some limitations of existing literature include:

• A limitation of the existing literature is that while using
the evaluation criteria, authors did not mention explicitly
the reason why they selected the evaluation criteria for
their proposed techniques, from where they get these
evaluation criteria either from literature or based on their
personal experience and what measures they used for the
selected evaluation criteria. They have not mentioned
that the efficiency parameter is used either in terms of
time or computational cost.

• Most of the authors claimed that their proposed tech-
niques are accurate and efficient but they do not
statistically analyze the proposed technique so the out-
put values in a number of the selected metrics such
as accuracy and efficiency are missing. Therefore, the
results produced in these cases are mostly unreliable.
The selection of appropriate evaluation metrics is still

an open research problem. All the evaluation criteria
against each study mentioned in tables 28, 29, 30 with
values of ‘No’ and ‘Partial’ need rigorous research.

• Most of the studies proposed the techniques to prior-
itize non-functional requirements while a few studies
considered functional requirements. There is a need for
coverage of functional aspects in the AI-based RP pro-
cess as well.

• The existing AI-based requirements prioritization tech-
niques are not aligned with the client’s priorities. The
client may be bothered by some features and may not
for others. Some features may involve profitability and
productivity for the client business, and some may not.
There is a slogan in software engineering that ‘‘Client
is always right’’. However, the client’s perspective is
missing in existing AI-based RP techniques.

• Most of the existing AI-based RP techniques do not con-
sider technical dependencies while prioritizing require-
ments. Technical dependencies have great potential in
the requirements prioritization process. So considering
technical dependencies while prioritization of require-
ments is still a gray area. There is great potential for
further research related to AI-based software require-
ments prioritization using appropriate parameters.

• A few studies provided ‘tool support’ information and
datasets for results validation. Most of the studies did
not use the public data set for validation. Public datasets
should be used so that future researchers can conduct
empirical studies to reproduce the results and make fur-
ther improvements.

• The study results show that there are less number of
studies on machine learning techniques in Requirements
prioritization as compared to fuzzy logic and optimiza-
tion techniques. Further research is required in the
requirements prioritization process by applyingmachine
learning techniques to achieve accuracy and efficiency.

• As shown in Table 28, there are only two fuzzy
logic-based techniques that are analyzed using con-
sistency ratio. So there is a need to evaluate fuzzy
logic-based techniques based on consistency ratio.
Moreover, a self-adaptive feature of fuzzy logic-based
RP techniques needs to be well-researched.

In order to achieve reliable and intended results in priori-
tizing software requirements, it is necessary to shift towards
AI-based techniques and carefully select appropriate param-
eters and criteria for measuring their effectiveness. Although
several conventional and AI-based prioritization techniques
have been proposed, there is currently no literature survey
that focuses on parametric-based evaluation. To address this
research gap, further studies are needed to evaluate AI-based
techniques using both generic and specific criteria.

To this end, we conducted a thorough literature survey
to evaluate AI-based software requirements prioritization
techniques using a comprehensive set of parameters. Our
analysis revealed that while a variety of prioritization tech-
niques exist, there is still room for improvement in terms of

VOLUME 11, 2023 143857

R. Anwar, M. B. Bashir: SLR of AI-Based Software Requirements Prioritization Techniques

scalability, accuracy, efficiency, redundancy, and the optimal
set of solutions. By evaluating these AI-based techniques on
various parameters, we hope to provide valuable insights to
researchers, requirement analysts, planners, and other stake-
holders to help themmake informed decisions when selecting
the most appropriate prioritization technique for their needs.

Some potential areas of focus include:
1). A fully automated system for requirements prioritiza-

tion integrating potential features of machine learning, fuzzy
logic, and optimization techniques is required to address the
problem of accuracy, scalability, efficiency, and redundancy.

2). Future work could focus on developing machine
learning-based requirements prioritization methods that can
effectively incorporate more accurate, scalable, and less
redundant solutions.

3). The DRank system for Requirements prioritization
needs to be developed in the future to cover more dependency
types other than contribution and business dependencies.

4). Fuzzy logic-based RP systems require improvement in
accuracy and the optimal set of solutions. Future work could
focus on developing fuzzy logic-based RP methods for scal-
able solutions, and further improving the prioritization results
in terms of accuracy, optimal set of solutions, consistency
ratio, and self-adaptivity.

5). Optimization-based RP techniques need to improve
prioritization results in terms of efficiency, scalability, and
redundancy. Therefore, future work could focus on devel-
oping optimization-based RP techniques for more scalable,
efficient, and less redundant solutions.

6). Most of the surveyed fuzzy logic-based RP techniques
are not tested or validated for the statistical significance of
results. Future work may extend to focus on the validation of
results.

Overall, there are many directions that future work in
AI-based Requirements prioritization problems could take,
including improving accuracy, scalability, efficiency, redun-
dancy, consistency ratio, self-adaptability, and an optimal set
of solutions.

DECLARATIONS
This section includes declarations as stated below.

• Funding The authors did not receive support from any
organization for the submitted work.

• Conflict of interest/Competing interests All authors cer-
tify that they have no affiliations with or involvement in
any organization or entity with any financial interest or
non-financial interest in the subject matter or materials
discussed in this manuscript.

• Ethics approval We ensure that accepted principles of
ethical and professional conduct have been followed for
this research.

• Consent for publication All authors agreed with the
content and all gave explicit consent to submit and they
obtained consent from the responsible authorities at the

institute/organization where the work was carried out
before the work was submitted.

• Availability of data and materials The datasets generated
during and/or analyzed during the current study are
available from the corresponding author upon reason-
able request.

• Code availability ‘Not applicable’
• Authors’ contributions All authors contributed to the
study’s conception and design. Material preparation,
data collection, literature review, analysis, and the first
draft of the manuscript was written by [Rahila Anwar]
under the supervision of [Dr. Muhammad Bilal Bashir].
All authors commented on previous versions of the
manuscript. All authors read and approved the final
manuscript.

REFERENCES
[1] L. A. Zadeh, ‘‘Fuzzy sets,’’ Inf. Control, vol. 8, pp. 338–353, Jun. 1965.
[2] A. J. Bagnall, V. J. Rayward-Smith, and I. M. Whittley, ‘‘The next

release problem,’’ Inf. Softw. Technol., vol. 43, no. 14, pp. 883–890,
Dec. 2001.

[3] M. S. Feather and T. Menzies, ‘‘Converging on the optimal attainment of
requirements,’’ in Proc. IEEE Joint Int. Conf. Requirements Eng., Essen,
Germany, Sep. 2002, pp. 263–270.

[4] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, ‘‘A fast and eli-
tist multiobjective genetic algorithm: NSGA-II,’’ IEEE Trans. Evol.
Comput., vol. 6, no. 2, pp. 182–197, Apr. 2002, doi: 10.1109/4235.
996017.

[5] P. Avesani, S. Ferrari, and A. Susi, ‘‘Case-based ranking for decision sup-
port systems,’’ inProc. Int. Conf. Case Based Reasoning. Berlin, Germany:
Springer, 2003, pp. 35–49.

[6] P. Avesani, C. Bazzanella, A. Perini, and A. Susi, ‘‘Supporting the require-
ments prioritization Process. A machine learning approach,’’ in Proc. 16th
Int. Conf. Softw. Eng. Knowl. Eng. (SEKE), Canada, 2004, pp. 306–311.

[7] D. Greer and G. Ruhe, ‘‘Software release planning: An evolutionary and
iterative approach,’’ Inf. Softw. Technol., vol. 46, no. 4, pp. 243–253,
Mar. 2004.

[8] P. Avesani, C. Bazzanella, A. Perini, and A. Susi, ‘‘Facing scalability
issues in requirements prioritization with machine learning techniques,’’
in Proc. 13th IEEE Int. Conf. Requirements Eng. (RE), Aug. 2005,
pp. 297–305.

[9] M. Harman, A. Skaliotis, K. Steinhöfel, and P. Baker, ‘‘Search-
based approaches to the component selection and prioritization prob-
lem,’’ in Proc. 8th Annu. Conf. Genetic Evol. Comput., Jul. 2006,
pp. 1951–1952.

[10] P. Baker, M. Harman, K. Steinhofel, and A. Skaliotis, ‘‘Search based
approaches to component selection and prioritization for the next release
problem,’’ in Proc. 22nd IEEE Int. Conf. Softw. Maintenance, Sep. 2006,
pp. 176–185.

[11] M. O. Saliu and G. Ruhe, ‘‘Bi-objective release planning for evolving
software systems,’’ in Proc. 6th Joint Meeting Eur. Softw. Eng. Conf.
ACM SIGSOFT Symp. Found. Softw. Eng., Dubrovnik, Croatia, Sep. 2007,
p. 105, doi: 10.1145/1287624.1287641.

[12] L. Karlsson, T. Thelin, B. Regnell, P. Berander, and C. Wohlin, ‘‘Pair-
wise comparisons versus planning game partitioning—Experiments on
requirements prioritisation techniques,’’ Empirical Softw. Eng., vol. 12,
no. 1, pp. 3–33, Jan. 2007, doi: 10.1007/s10664-006-7240-4.

[13] B. A. Kitchenham and S. M. Charters, ‘‘Guidelines for performing system-
atic literature reviews in software engineering,’’ KeeleUniv. Univ. Durham,
Keele, England, Tech. Rep. EBSE-2007-01, 2007.

[14] M. Gen and L. Lin, ‘‘Genetic algorithms,’’ inWiley Encyclopedia of Com-
puter Science and Engineering. American Cancer Society, 2007, pp. 1–15.

[15] J. C. Quiroz, S. J. Louis, A. Shankar, and S. M. Dascalu, ‘‘Interactive
genetic algorithms for user interface design,’’ in Proc. IEEE Congr. Evol.
Comput., Sep. 2007, pp. 1366–1373.

[16] Y. Zhang, M. Harman, and S. A. Mansouri, ‘‘The multi-objective next
release problem,’’ in Proc. 9th Annu. Conf. Genetic Evol. Comput.,
Jul. 2007, pp. 1129–1137.

143858 VOLUME 11, 2023

http://dx.doi.org/10.1109/4235.996017
http://dx.doi.org/10.1109/4235.996017
http://dx.doi.org/10.1145/1287624.1287641
http://dx.doi.org/10.1007/s10664-006-7240-4

R. Anwar, M. B. Bashir: SLR of AI-Based Software Requirements Prioritization Techniques

[17] A. Finkelstein, M. Harman, S. A. Mansouri, J. Ren, and Y. Zhang,
‘‘A search based approach to fairness analysis in requirement assignments
to aid negotiation, mediation and decision making,’’ Requirements Eng.,
vol. 14, no. 4, pp. 231–245, Dec. 2009, doi: 10.1007/s00766-009-0075-y.

[18] J. J. Durillo, Y. Zhang, E. Alba, and A. J. Nebro, ‘‘A study of
the multi-objective next release problem,’’ in Proc. 1st Int. Symp.
Search Based Softw. Eng., May 2009, pp. 49–58, doi: 10.1109/SSBSE.
2009.21.

[19] C. Duan, P. Laurent, J. Cleland-Huang, and C. Kwiatkowski, ‘‘Towards
automated requirements prioritization and triage,’’ Requirements Eng.,
vol. 14, no. 2, pp. 73–89, Jun. 2009.

[20] P. Tonella, A. Susi, and F. Palma, ‘‘Using interactive GA for require-
ments prioritization,’’ in Proc. 2nd Int. Symp. Search Based Softw. Eng.,
Sep. 2010, pp. 57–66.

[21] J. del Sagrado, I. M. del Águila, and F. J. Orellana, ‘‘Ant colony optimiza-
tion for the next release problem: A comparative study,’’ in Proc. 2nd Int.
Symp. Search Based Softw. Eng., Sep. 2010, pp. 67–76.

[22] J. J. Durillo, Y. Zhang, E. Alba, M. Harman, and A. J. Nebro, ‘‘A study
of the bi-objective next release problem,’’ Empirical Softw. Eng., vol. 16,
no. 1, pp. 29–60, Feb. 2011.

[23] J. T. de Souza, C. L. B. Maia, T. do N. Ferreira, R. A. F. do Carmo, and
M. M. A. Brasil, ‘‘An ant colony optimization approach to the software
release planning with dependent requirements,’’ in Search Based Software
Engineering. Berlin, Germany: Springer, 2011, pp. 142–157.

[24] M. Ramzan, M. A. Jaffar, and A. A. Shahid, ‘‘Value based intelligent
requirement prioritization (VIRP): Expert driven fuzzy logic based pri-
oritization technique,’’ Int. J. Innov. Comput. Inf. Control, vol. 7, no. 3,
pp. 1017–1038, 2011.

[25] A. Ejnioui, C. E. Otero, and A. A. Qureshi, ‘‘Software requirement priori-
tization using fuzzy multi-attribute decision making,’’ in Proc. IEEE Conf.
Open Syst., Oct. 2012, pp. 1–6.

[26] A. Perini, A. Susi, and P. Avesani, ‘‘A machine learning approach to
software requirements prioritization,’’ IEEE Trans. Softw. Eng., vol. 39,
no. 4, pp. 445–461, Apr. 2013.

[27] P. Tonella, A. Susi, and F. Palma, ‘‘Interactive requirements prioritization
using a genetic algorithm,’’ Inf. Softw. Technol., vol. 55, no. 1, pp. 173–187,
Jan. 2013.

[28] G. Kaur and S. Bawa, ‘‘A survey of requirement prioritization methods,’’
Int. J. Eng. Res. Technol, vol. 2, no. 5, pp. 958–962, 2013.

[29] M. Pergher and B. Rossi, ‘‘Requirements prioritization in software
engineering: A systematic mapping study,’’ in Proc. 3rd Int. Work-
shop Empirical Requirements Eng. (EmpiRE), Jul. 2013, pp. 40–44, doi:
10.1109/EmpiRE.2013.6615215.

[30] M. Sadiq and S. K. Jain, ‘‘Applying fuzzy preference relation for
requirements prioritization in goal oriented requirements elicitation pro-
cess,’’ Int. J. Syst. Assurance Eng. Manage., vol. 5, no. 4, pp. 711–723,
Dec. 2014.

[31] H. Momeni, H. Motameni, andM. Larimi, ‘‘A neuro-fuzzy based approach
to software quality requirements prioritization,’’ Int. J. Appl. Inf. Syst.,
vol. 7, no. 7, pp. 15–20, Aug. 2014.

[32] P. Achimugu, A. Selamat, R. Ibrahim, and M. N. Mahrin, ‘‘A systematic
literature review of software requirements prioritization research,’’ Inf.
Softw. Technol., vol. 56, no. 6, pp. 568–585, Jun. 2014.

[33] K. Govindan, M. Kaliyan, D. Kannan, and A. N. Haq, ‘‘Barriers analysis
for green supply chain management implementation in Indian indus-
tries using analytic hierarchy process,’’ Int. J. Prod. Econ., vol. 147,
pp. 555–568, Jan. 2014.

[34] P. Achimugu and A. Selamat, ‘‘A hybridized approach for prioritizing
software requirements based on K-Means and evolutionary algorithms,’’
in Computational Intelligence Applications in Modeling and Control,
vol. 575, A. T. Azar and S. Vaidyanathan, Eds. Cham, Switzerland:
Springer, 2015, pp. 73–93, doi: 10.1007/978-3-319-11017-24.

[35] M. I. Babar, M. Ghazali, D. N. A. Jawawi, S. M. Shamsuddin, and
N. Ibrahim, ‘‘PHandler: An expert system for a scalable software require-
ments prioritization process,’’ Knowl.-Based Syst., vol. 84, pp. 179–202,
Aug. 2015, doi: 10.1016/j.knosys.2015.04.010.

[36] P. Achimugu, A. Selamat, and R. Ibrahim, ‘‘Using the fuzzy multi-
criteria decision making approach for software requirements prioritiza-
tion,’’ Jurnal Teknologi, vol. 77, no. 13, pp. 21–28, Nov. 2015, doi:
10.11113/jt.v77.6321.

[37] B. Jawale andA. T. Bhole, ‘‘Adaptive fuzzy hierarchical cumulative voting:
A novel approach toward requirement prioritization,’’ Int. J. Res. Eng.
Technol., vol. 4, no. 5, pp. 365–370, May 2015.

[38] A. M. Pitangueira, R. S. P. Maciel, andM. Barros, ‘‘Software requirements
selection and prioritization using SBSE approaches: A systematic review
and mapping of the literature,’’ J. Syst. Softw., vol. 103, pp. 267–280,
May 2015.

[39] M. Dabbagh and S. P. Lee, ‘‘An approach for prioritizing NFRs according
to their relationship with FRs,’’ Lect. Notes Softw. Eng., vol. 3, no. 1,
pp. 1–5, 2015.

[40] J. M. Chaves-González and M. A. Pérez-Toledano, ‘‘Differential evolution
with Pareto tournament for the multi-objective next release problem,’’
Appl. Math. Comput., vol. 252, pp. 1–13, Feb. 2015.

[41] S. Devulapalli, A. Khare, and O. R. S. Rao, ‘‘Requirement prioritization-
survey and analysis,’’ in Proc. Int. Congr. Inf. Commun. Technol., Udaipur,
India, Oct. 2015, pp. 567–575.

[42] A. C. Kumari and K. Srinivas, ‘‘Comparing the performance of quantum-
inspired evolutionary algorithms for the solution of software requirements
selection problem,’’ Inf. Softw. Technol., vol. 76, pp. 31–64, Aug. 2016,
doi: 10.1016/j.infsof.2016.04.010.

[43] S. Valsala and A. R. Nair, ‘‘Requirement prioritization and scheduling in
software release planning using hybrid enriched genetic revamped integer
linear programmingmodel,’’Res. J. Appl. Sci., Eng. Technol., vol. 12, no. 3,
pp. 347–354, Feb. 2016.

[44] N. Mishra, M. A. Khanum, and K. Agrawal, ‘‘Approach to prioritize
the requirements using fuzzy logic,’’ presented at the ACEIT Conf.,
2016.

[45] F. Evbota, E. Knauss, and A. Sandberg, ‘‘Scaling up the planning game:
Collaboration challenges in large-scale agile product development,’’ in
Agile Processes in Software Engineering and Extreme Programming,
vol. 251, H. Sharp and T. Hall, Eds. Cham, Switzerland: Springer, 2016,
pp. 28–38.

[46] M. Yousuf, M. U. Bokhari, and M. Zeyauddin, ‘‘An analysis of software
requirements prioritization techniques: A detailed survey,’’ in Proc. 3rd
Int. Conf. Comput. Sustain. Global Develop. (INDIACom), Mar. 2016,
pp. 3966–3970.

[47] R. Qaddoura, A. Abu-Srhan, M. H. Qasem, and A. Hudaib, ‘‘Require-
ments prioritization techniques review and analysis,’’ in Proc. Int.
Conf. New Trends Comput. Sci. (ICTCS), Oct. 2017, pp. 258–263, doi:
10.1109/ICTCS.2017.55.

[48] R. V. Rao, D. P. Rai, and J. Balic, ‘‘A multi-objective algorithm
for optimization of modern machining processes,’’ Eng. Appl. Artif.
Intell., vol. 61, pp. 103–125, May 2017, doi: 10.1016/j.engappai.2017.
03.001.

[49] K. Gulzar, J. Sang, M. Ramzan, and M. Kashif, ‘‘Fuzzy
approach to prioritize usability requirements conflicts: An
experimental evaluation,’’ IEEE Access, vol. 5, pp. 13570–13577,
2017.

[50] M. H. Marghny, H. M. El-Hawary, and W. H. Dukhan, ‘‘An effective
method of systems requirement optimization based on genetic Algo-
rithms,’’ Inf. Sci. Lett., vol. 6, no. 1, pp. 15–28, Jan. 2017.

[51] K. S. Ahmad, N. Ahmad, H. Tahir, and S. Khan, ‘‘Fuzzy_MoSCoW: A
fuzzy based Moscow method for the prioritization of software require-
ments,’’ in Proc. Int. Conf. Intell. Comput., Instrum. Control Technol.
(ICICICT), Kannur, India, Jul. 2017, pp. 433–437.

[52] F. Shao, R. Peng, H. Lai, and B. Wang, ‘‘DRank: A semi-automated
requirements prioritization method based on preferences and depen-
dencies,’’ J. Syst. Softw., vol. 126, pp. 141–156, Apr. 2017, doi:
10.1016/j.jss.2016.09.043.

[53] A. Hudaib, M. H. Qasem, and N. Obeid, ‘‘FIPA-based semi-centralized
protocol for negotiation,’’ in Cybernetics Approaches in Intelligent Sys-
tems. Cham, Switzerland: Springer, 2018, pp. 135–149, doi: 10.1007/978-
3-319-67618-0-13.

[54] A. Gupta and C. Gupta, ‘‘CDBR: A semi-automated collaborative execute-
before-after dependency-based requirement prioritization approach,’’
J. King SaudUniv. Comput. Inf. Sci., vol. 34, no. 2, pp. 421–432, Feb. 2022,
doi: 10.1016/j.jksuci.2018.10.004.

[55] H. Ahuja, Sujata, and U. Batra, ‘‘Performance enhancement in
requirement prioritization by using least-squares-based random
genetic algorithm,’’ in Innovations in Computational Intelligence,
B. Panda, S. Sharma, and U. Batra, Eds. Singapore: Springer, 2018,
pp. 251–263.

[56] M. Sufian, Z. Khan, S. Rehman, and W. Haider Butt, ‘‘A systematic litera-
ture review: Software requirements prioritization techniques,’’ in Proc. Int.
Conf. Frontiers Inf. Technol. (FIT), Dec. 2018, pp. 35–40.

VOLUME 11, 2023 143859

http://dx.doi.org/10.1007/s00766-009-0075-y
http://dx.doi.org/10.1109/SSBSE.2009.21
http://dx.doi.org/10.1109/SSBSE.2009.21
http://dx.doi.org/10.1109/EmpiRE.2013.6615215
http://dx.doi.org/10.1007/978-3-319-11017-24
http://dx.doi.org/10.1016/j.knosys.2015.04.010
http://dx.doi.org/10.11113/jt.v77.6321
http://dx.doi.org/10.1016/j.infsof.2016.04.010
http://dx.doi.org/10.1109/ICTCS.2017.55
http://dx.doi.org/10.1016/j.engappai.2017.03.001
http://dx.doi.org/10.1016/j.engappai.2017.03.001
http://dx.doi.org/10.1016/j.jss.2016.09.043
http://dx.doi.org/10.1007/978-3-319-67618-0-13
http://dx.doi.org/10.1007/978-3-319-67618-0-13
http://dx.doi.org/10.1016/j.jksuci.2018.10.004

R. Anwar, M. B. Bashir: SLR of AI-Based Software Requirements Prioritization Techniques

[57] F. Hujainah, R. B. A. Bakar, M. A. Abdulgabber, and K. Z. Zamli,
‘‘Software requirements prioritisation: A systematic literature review on
significance, stakeholders, techniques and challenges,’’ IEEE Access,
vol. 6, pp. 71497–71523, 2018.

[58] N. R. Bollumpally, A. C. Evans, S. W. Gleave, A. R. Gromadzki, and
G. Learmonth, ‘‘A machine learning approach to workflow prioritization,’’
in Proc. Syst. Inf. Eng. Design Symp. (SIEDS), Charlottesville, VA, USA,
Apr. 2019, pp. 1–5, doi: 10.1109/SIEDS.2019.8735589.

[59] Y. V. Singh, B. Kumar, S. Chand, and D. Sharma, ‘‘A hybrid approach for
requirements prioritization using logarithmic fuzzy trapezoidal approach
(LFTA) and artificial neural network (ANN),’’ in Futuristic Trends in
Network and Communication Technologies. Singapore: Springer, 2019,
pp. 350–364.

[60] H. Sadia, S. Q. Abbas, and M. Faisal, ‘‘Volatile requirement prioritiza-
tion: A fuzzy based approach,’’ Int. J. Eng. Adv. Technol., vol. 8, no. 5,
pp. 2467–2472, Jun. 2019.

[61] D. Mougouei, D. M. W. Powers, and E. Mougouei, ‘‘A fuzzy frame-
work for prioritization and partial selection of security requirements in
software projects,’’ J. Intell. Fuzzy Syst., vol. 37, no. 2, pp. 2671–2686,
Sep. 2019.

[62] F. A. Bukhsh, Z. A. Bukhsh, and M. Daneva, ‘‘A systematic literature
review on requirement prioritization techniques and their empirical evalu-
ation,’’ Comput. Standards Interface, vol. 69, Mar. 2020, Art. no. 103389.

[63] H. Alrezaamiri, A. Ebrahimnejad, and H. Motameni, ‘‘Parallel multi-
objective artificial bee colony algorithm for software requirement opti-
mization,’’ Requirements Eng., vol. 25, no. 3, pp. 363–380, Sep. 2020, doi:
10.1007/s00766-020-00328-y.

[64] A. Bisht and M. Kushwaha, ‘‘Parameter optimization of software require-
ment by using fuzzy algebra,’’ Int. J. Res. Develop. Appl. Sci. Eng., vol. 20,
no. 1, 2020. Accessed: Aug. 29, 2021.

[65] F. Hujainah, R. B. A. Bakar, A. B. Nasser, B. Al-Haimi, and K. Z. Zamli,
‘‘SRPTackle: A semi-automated requirements prioritisation technique for
scalable requirements of software system projects,’’ Inf. Softw. Tech-
nol., vol. 131, Mar. 2021, Art. no. 106501, doi: 10.1016/j.infsof.2020.
106501.

[66] J. Da̧browski, E. Letier, A. Perini, and A. Susi, ‘‘Analysing app reviews
for software engineering: A systematic literature review,’’ Empirical Softw.
Eng., vol. 27, no. 2, p. 43, Mar. 2022, doi: 10.1007/s10664-021-10065-7.

RAHILA ANWAR received the M.I.T. degree in
information technology from the University of
Arid Agriculture Rawalpindi, Pakistan, in 2003,
and the M.S. degree in computer science, major
in software engineering, from Allama Iqbal Open
University, Islamabad, Pakistan, in 2017. She
is currently pursuing the Ph.D. degree in com-
puter science with Iqra University, Islamabad,
with a focus on AI-based software requirements
prioritization.

Since 2008, she has been a Lecturer in computer science with the Higher
Education Department of Azad Kashmir. Her research interests include
software engineering, emerging techniques of artificial intelligence, and
integration of AI techniques in requirement engineering for prioritization.

Ms. Anwar’s award includes the Best Teacher Award, in 2007.

MUHAMMAD BILAL BASHIR was born in
Faisalabad, in 1985. He received the B.S. degree
from the University of Central Punjab, in 2006, the
M.S. degree in software and system engineering
from Mohammad Ali Jinnah University, in 2009,
and the Ph.D. degree from the Capital University
of Science and Technology, Islamabad, Pakistan,
in 2018, with a focus on search-based mutation
testing.

Since 2018, he has been an Assistant Professor
with Iqra University, Islamabad. Before joining Iqra University, he has
also been a System Administrator in an international web hosting orga-
nization, JaguarPC LLC., since 2006. His main research interests include
software testing, mobile agents, and the semantic web. He has 14 research
publications.

143860 VOLUME 11, 2023

http://dx.doi.org/10.1109/SIEDS.2019.8735589
http://dx.doi.org/10.1007/s00766-020-00328-y
http://dx.doi.org/10.1016/j.infsof.2020.106501
http://dx.doi.org/10.1016/j.infsof.2020.106501
http://dx.doi.org/10.1007/s10664-021-10065-7

