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ABSTRACT In the cyber environment, massive amounts of data are generated daily. Artificial Intelli-
gence (AI) technologies can effectively manage this vast data to support efficient operations in the cyber
environment. Thanks to active research, AI has advanced significantly in this regard. However, as AI
achieves higher performance, it becomes increasingly complex, which results in the low interpretability of AI
outputs. This black-box nature of AI technology makes AI challenging to apply in fields like cybersecurity,
where the risk of false positives is significant. To address this issue, researchers have been working on
eXplainable Artificial Intelligence (XAI) technology, with the intention to enhance the utility of AI by
providing interpretations of AI predictions. Most previous research has focused on understanding how
models function in terms of feature importance to interpret AI results. However, this approach fails to
provide clear interpretations in fields where interpretability is crucial, such as security. Therefore, this paper
proposes a framework that offers interpretations of AI results, even in unsupervised environments that are
suitable for security scenarios. Additionally, we have improved the logic of calculation Reference and have
enhanced the function and performance compared with previous research.We provide additional information
that supports interpretation, such as P-Values and References, to offer more effective decision support to
security analysts and to ultimately reduce false alarms and enhance model performance. Overall, we aim
to improve the model’s performance by providing clear interpretations that are suitable for security tasks,
thereby contributing to more effective decision-making by security analysts.

INDEX TERMS XAI, reference, error reduction, anomaly detection and explanation.

I. INTRODUCTION
Due to its ability to effectively process and utilize big
data, Artificial Intelligence (AI) technology has been a field
of active research and development since its early stages.
Thanks to these research efforts, AI technology has evolved
and has become applicable to various fields. However, in pur-
suit of such performance improvements, AI technology has
adopted a more complex output logic, which has resulted in
the decreased interpretability of its output.

In other words, although it has demonstrated excellent
performance, AI technology has acquired a black-box nature
that makes it difficult to identify the mechanism behind its
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output. This characteristic of AI technology has become an
obstacle to its adoption in fields that have a high risk of
false positives. To address these shortcomings and make AI
effective even in fields with a high risk of false positives,
eXplainable Artificial Intelligence (XAI) technology is being
develop.

A. MOTIVATION
Previous well-known XAI technologies, such as Shap-
ley Additive exPlanation(SHAP) [1] and Class Activation
Map(CAM) [2], have primarily provided visual interpreta-
tions based on feature importance. These research approaches
aim to explain how each feature contributes to AI’s decision-
making by calculating the importance of each feature when
AI makes specific decisions.
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FIGURE 1. Examples of interpretations provided by feature importance-based XAI [1], [2].

Such previous research mainly focused on providing inter-
pretations through an understanding of AI’s operational logic
and was developed to target supervised learning models to
compute feature importance for each label. However, visual
interpretations based on feature importance in cybersecurity
may not always provide clear explanations. This is because
cybersecurity relies on attack detection based on the differ-
ences between the original feature values in normal scenarios
and those in attack scenarios. Therefore, in cybersecurity,
interpreting attack decisions based on differences in terms of
feature values in the actual data, rather than relying solely on
feature importance, can offer clearer interpretability.

However, as mentioned in previous studies [3], [4], [5], [6],
the cybersecurity environment often needs greater resources
to label all data, andmost of the collected data consists of nor-
mal data, which leads to class imbalance issues. Additionally,
supervised learning relies on pre-labeled data for detection
while achieving high discrimination accuracy, which makes
it challenging to respond to unknown threats and attacks
that have yet to be detected. Unsupervised learning models
can effectively operate in cybersecurity environments, which
do not require label information during AI training and the
result-generation processes.

Therefore, we were motivated to generate interpretations
for unsupervised learning models that operate in such sce-
narios. Based on Han’s DeepAID [7], which provides clear
interpretations through calculation a Reference that possesses
a normal label while being most similar to malignant data
and provide clear interpretations through feature value com-
parison with that Reference, we aim to offer clear interpreta-
tions for cybersecurity. Furthermore, we generate additional
interpretive metrics such as P-values and the nearest real
data based on the generated References. We aim to enhance
interpretability, reduce false alarms, and improve model per-
formance through AI decision support.

B. CONTRIBUTION
This paper’s main contributions can be broadly categorized
into three major areas as follows:

1) PROVIDING CLEAR AND SUITABILITY FOR THE SECURITY
FIELD INTERPRETATIONS
Most previous research relied on feature importance-based
interpretations. However, in the security field, where detect-
ing anomalies is done using differences in actual data values,
existing techniques often need help to provide clear inter-
pretations. Therefore, we generate References to explain
anomalous signs and offer clear interpretations through Fea-
ture Value Comparison.

2) SUPPORTING EFFECTIVE FALSE ALARM REDUCTION
In the security domain, detecting anomalies early is crucial to
protecting resources and services and to preparing for poten-
tial attacks. Various studies, such as [8], [9], [10], and [11],
have focused on early detection and reducing false alarms to
alleviate the operational burden that arises from these events.
In our framework, we create metrics, such as References and
P-Values, to effectively detect false alarms during AI oper-
ations, thus supporting false alarm reduction and improving
the efficiency of analysts’ Anomaly Detection tasks.

3) ENHANCING REFERENCE GENERATION PERFORMANCE
We improved the existing Reference generation logic tomaxi-
mize its significance. This enhancement resulted in improved
success rates for Reference generation, reduced time required
for Reference generation, and better performance.

This paper is organized as follows: In Chapter 2, we discuss
the trends in XAI research. Within this context, we com-
pare XAI approaches, particularly feature importance-based
XAI and Feature Value Comparison-based XAI, that form
the basis of our proposed framework from the perspective
of the security field. This chapter provides an overview of
the current state of XAI in the security domain. In Chap-
ter 3, we introduce the AI Decision Support Framework
proposed in this paper. We also examine the methods used
for generating various metrics for AI decision support and
discuss the meaning of each metric. In Chapter 4, we inter-
pret the insights we obtain when applying our proposed
framework and illustrate how AI decision support operates
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through examples. Chapter 5 covers the discussion based on
the comprehensive results of this paper. Finally, in Chapter 6,
we summarize the previous content, conclude the paper, and
mention directions for future research.

II. RELATED WORK
A. FEATURE IMPORTANCE-BASED XAI
XAI is a technology that moves away from the black-box
format of traditional AI, which only outputs decision results,
and provides additional interpretations for predictions to help
users understand the inner workings of AI. Figure 1 illustrates
examples of interpretation based on a representative XAI
research [1], [2]. This figure shows that previous XAI tech-
niques were primarily applied to supervised learning models.
They [1], [2] calculate Feature Importance values based on
label information to visually explain the model’s decisions.

Figure 1-(a) represents the Global interpretation and Local
interpretation obtained when SHAP is applied to a supervised
learning-based model that predicts tabular data. Local inter-
pretation information allows analysts to identify the factors
that contribute to individual AI decisions. Global interpreta-
tion information consolidates these local interpretations and
provides a visual understanding of how each feature influ-
ences the overall AI decision.

Figure 1-(b) presents the interpretations obtained when a
CAM is applied to a Convolutional Neural Network (CNN)
model for image classification. CAM visually indicates
which parts of an image the image classification model con-
sidered when it predicted the class. As shown in this figure,
regions of the image that are related to the predicted class
exhibit high activation values.

Based on this interpretive information, analysts can deter-
mine which features influence the current AI’s results and
understand the AI model’s operational process. This helps
to compensate for the black-box nature of traditional AI
technology and increases trust in AI applications.

However, most previous XAI techniques were developed
primarily around supervised learning, and they utilizedmodel
training to explain the AI’s operational process. As a result,
these XAI techniques differ in their learning mechanisms and
have limited applicability to the unsupervised environments
that are suitable for real security scenarios. Furthermore,
in security environments, where attacks must be detected
based on differences between normal scenarios and attack
scenarios, providing interpretations through the feature value
comparison of actual data is often more likely to offer clearer
interpretability than dealing solely with Feature Importance.

B. EXAMPLE TECHNIQUE-BASED XAI
Dwivedi et al. [12] classified existing XAI techniques into
four major categories based on their solutions andmain ideas.
In this chapter, we focus on one category: Example-Based
Techniques.

Examples of XAI techniques that are Example-Based
Techniques include Anchors introduced by Marco [13],

Kernel Shap, and Contrastive Explanation Method. The key
idea behind these techniques is to explain the model’s deci-
sions using specific examples.

The results of such example technique-based XAI are
presented in Tables 1 and 2. The results shown here are inter-
pretations that are obtained when Counterfactual explanation,
one of the Example-Based XAI Techniques mentioned by
Dwivedi [12], is applied. The Counterfactual technique is a
method where the prediction results of a model are presented
differently by modifying the feature values of the input data.
This experiment’s dataset consists of 13 features and is known
as the Heart Disease dataset. As you can see in Tables 1
and 2, the list of features is the same for both, except for
the ‘‘condition’’ item, which represents the model’s predicted
probability for the occurrence of heart disease.

In this experiment, Dwivedi et al. [12] kept unmodifiable
features like Age, Sex, and Cp fixed while modifying the
rest of the features to perform Counterfactual analysis. As
the ‘‘condition’’ value was very high in the input data for
Counterfactual Explainer, the results produced according to
the Counterfactual algorithm showed output samples with
lower ‘‘condition’’ values, as shown in Table 2. These output
samples can provide insights into the model’s predictions. All
four samples with lower ‘‘condition’’ values in Table 2 have a
common feature value of ‘‘ca’’ equal to 0. Therefore, we can
conclude that having a ‘‘ca’’ feature value of 0 results in a
lower probability of having heart disease.

In other words, the high ‘‘condition’’ value in the input
data is because the ‘‘ca’’ feature value was set high. We can
understand the factors that contribute to the model’s predic-
tions based on feature values through such interpretations. In
this way, Example Technique-Based XAI gives the analyst
insights into how each feature influences the model’s predic-
tions and the reasons behind the model’s decisions based on
feature values.

Therefore, in security environments where the detection of
anomalies between normal and attack data is crucial, such as
in technique-based XAI, which provides interpretations by
comparing the features of target data identified as anoma-
lies and example data identified as normal, offers better
interpretability than do the interpretation methods based on
Feature Importance mentioned in Section (II-A).

C. DEEPAID
The DeepAID technique proposed by Han [7] follows a
approach similar to that of Example Technique-Based XAI.
In DeepAID, two losses are generated for data that are clas-
sified as anomalies, and the data values are updated using
an optimizer while these losses are minimized. This process
creates what is known as a ‘‘Reference,’’ which is an exam-
ple with the closest features to the target data but having
a normal label. DeepAID generates interpretations through
this Reference. Reference Value are typically created near
the decision boundary between normal data and anomalies.
Through a Feature Comparison between the Reference and
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TABLE 1. Input of counterfactuals method: A Specific instance in which the patient has heart diseas [12].

TABLE 2. Different outputs of counterfactual explainer [12].

FIGURE 2. Reference-based XAI techniques for effective interpretability in security.

Target data, DeepAID explains to the analyst why the Target
data are classified as an anomalies.

The tendencies of the generated References and the pro-
vided explanations are similar to those in Figure 2. First,
on the left side of Figure 2, References 1 to 3 are generated
for DATA 1 to 3, which fall within the Attack Range. These
References are created close to the normal range while being
very close to the Target data. Therefore, Reference 1 to 3 are
all created near the decision boundary, meaning their values
are within the normal range but have highly anomalous fea-
ture values. This provides an interpretation stating that the
Target data are classified as anomalous because it has more
anomalous values than the most anomalous Reference Value,
even within the Normal range.

Similarly, Feature Value Comparison is performed
between Data-1, classified as an Anomaly, and Reference-1,
resulting in an interpretation as shown on the right. By
interpreting this, we can identify the five features that have
contributed the most to Data-1’s Anomaly classification.
Data-1’s feature values are the same as in the Data-1 column,
and Reference-1’s values for these features are the same
as in the Reference-1 column. As mentioned earlier, the
generated References fall within the Normal range but have

highly anomalous feature values. As a result of the Feature
Value Comparison between Reference-1 and Data-1, Data-1
is classified as having highly anomalous feature values for all
features. Therefore, Data-1 is interpreted as an Anomaly.

In this way, Han [7] and others have adopted an approach
with DeepAID similar to the example technique-based XAI
mentioned in Section (II-B). This approach allows for the
generation of interpretations for unsupervised learning mod-
els and provides interpretations for Anomaly Detection
through Feature Value Comparison. DeepAID’s Reference
generation technique is expected to provide clearer interpre-
tations in the security field.

Therefore, in this paper, we use and improve previously
researched Reference generation mechanisms to create more
effective Reference generation. We propose a framework that
performs AI decision support that is suitable for the security
field by creating metrics based on the generated Reference
and analyzing these metrics comprehensively.

III. PROPOSED METHOD
In this paper, we propose a framework, as shown in Figure 3,
to support effective AI Decision Support in security. The
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FIGURE 3. Proposed framework: Providing clear interpretability for anomaly data.

proposed Framework provides clear interpretation and AI
Decision Support for an Autoencoder model that performs
Anomaly Detection based on raw log data collected in End-
point Detection and Response (EDR).

Through proposed framework, we can provide interpre-
tations for unsupervised learning models and enhance the
Reference generation algorithm proposed by Han [7] and
others to Provide clear Interpretation in the security field.

We confirm through validation work that the proposed
improved Reference generation logic, specifically the calcu-
lation of Optimum Reference, can enhance functional and
performance metrics.

Based on this Optimum Reference, we generate various
metrics such as Nearest Real Data, P-Value, and others to
enhance the clarity of Interpretation.

The proposed framework analyzes these metrics compre-
hensively and provides AI Decision Support for each AI pre-
diction made by AI. This allows analysts to choose whether
to cite the final judgment made by AI. In false alarms caused
by incorrect AI predictions, analysts can contribute to false
alarm reduction and enhance AI’s performance by not citing
AI’s prediction.

A. CALCULATION OF OPTIMUM REFERENCE
We improve the Reference generation algorithm proposed by
Han [7] and generate the OptimumReference. Our Reference
generation process is partially adopted from an algorithm
used in previous research. In previous research, to create
data that align with the purpose of the Reference, two types
of losses, Loss1 and Loss2, are calculated for the updating

data W at each step, starting from the Target Data. Then,
an optimization technique is used to update the feature values
of the dataW to reduce the computed losses. The updated data
w are then used as the Reference.

In this chapter, we explain the calculation methods of the
two losses mentioned earlier, loss1 and loss2, and examine
the meaning of each loss. We also explore how data that align
with the Reference is generated through this process.

The first loss, Loss1, is typically calculated based on the
Mean Squared Error (MSE), a commonly used Anomaly
detection metric for Anomaly Detection mechanisms. The
formula for calculating MSE is given in Equation (1).

MSE “
1
n

ÿn

i“1
(Wi ´ qWi)

2
(1)

In Equation (1), n represents the number of features,
W represents the original values, and qW represents the pre-
dicted reconstruction values. Typically, in autoencoder-based
Anomaly Detection tasks such as [14], [15], [16], [17], and
[18], qW represents the predicted reconstruction values for the
original data W.

Therefore, a high error, or MSE value, between the original
data W and the predicted reconstruction values qW indicates
that the model finds it difficult to reconstruct that data, show-
ing it to be anAnomaly. ThisMSE can be used as anAnomaly
score for Anomaly detection, as shown in Equation (2),
where loss1 is calculated based on the previously mentioned
Anomaly Detection criterion, the threshold MSE.

loss1 “ Relu(MSE pW q ´ thres ˚ (1 ´ eps_rate)) (2)
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FIGURE 4. Trends in W data updates through loss-based optimization (a): loss1, (b): loss2.

The data W identified in Equation (2) represent the inter-
mediate values that start from the original target data and
are eventually generated as the Reference through updating.
‘‘Thres’’ in Equation (2) is the MSE value that serves as
a threshold used by the trained model for Anomaly Detec-
tion. If the updating W data are considered anomalous; the
MSE(W) value exceeds Thres, causing loss1 to have a pos-
itive value. When the Optimizer updates the Feature Value
to minimize loss1, the MSE(W) value decreases. If W data
move into the normal range through updates, the MSE(W)
value becomes smaller than Thres.

In this case, the result of the equation inside the Rectified
Linear Unit (ReLU) activation function becomes negative,
and negative values result in loss1 being set to 0 by the
Rectified Linear Unit (ReLU) activation function.

Consequently, loss1 decreases when the updating data W
moves into the normal range, reaching its minimum when it
reaches the normal range. In other words, when updating the
data based on loss1, the data W move into the normal range,
as shown in Figure 4-(a). As mentioned earlier, Equation (3)
represents the formula for calculating the second loss, loss2.

loss2 “

b

ÿn

i“1
(Wi ´ Origianl DATAi)

2 (3)

Loss2 as calculated according to Equation (3) represents
the Euclidean distance between the data W being updated
and the original data. Therefore, as the updating data W
moves further away from the original data, the value of loss2
increases. When the optimizer updates the feature values of
W in the direction of reducing loss2, theWdatamove towards
the original data, as shown in Figure 4-(b).

However, these two losses tend to be inversely proportional
to each other. As the intermediate W data start from the origi-
nal Anomaly data and move towards the normal category, the
value of loss1 decreases.

This implies that the original feature values classified as
Anomaly have become similar to the normal, and as loss1
decreases, loss2 tends to increase. Therefore, even if W data
is moved toward the normal category using loss1, the W data

FIGURE 5. Proposed algorithm of optimum reference calculation.

may return to the Attack Range if there are no limitations due
to loss2 updates.

Hence, previous researchers, including Han et al. [7], com-
bined loss1 and loss2 in the Reference generation method and
effectively utilized both losses by adjusting the influence of
each loss using hyperparameters.

Combining inversely proportional losses using the pre-
vious method significantly influences the hyperparameters
and diminishes the meaning of the calculated losses. There-
fore, we propose a new Reference generation method that
divides the process into two major steps, as explained below,
to effectively utilize each loss and reduce the influence of
hyperparameters.

The Reference generation algorithm we propose is shown
in Figure 5 and is described by Equation (4). The proposed
Reference generation process consists of two main steps:

Step 1 and Step 2. In each step, only one type of loss is
used for optimizer-based updates, which allows us to utilize
both loss1 and loss2 effectively. Additionally, we aim to
reduce the influence of hyperparameters by eliminating the
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FIGURE 6. Trends in w data updates through step 2.

trade-off parameter that existed in the previous approach.
Furthermore, in Step 2, we apply a dynamic learning rate
based on the update trend to facilitate effective Reference
generation through fine-grained exploration. The details of
the update process at each step are as follows:

wdata “

$

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’
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pStep 1qwt “ SGD pwt´1, loss1t´1q

if loss1t ď 0
then Stop Step1 and goto Step2

pStep 2qwt “ SGD pwt´1, loss2t´1q

if loss1 ą 0
then wt “ wt´1 and Optim
Lr t “ Optim Lr t´1{2

(4)

(Step 1)—Calculate loss1 for the initial w data, which start
from the original Anomaly data, and perform updates based
on an optimizer. Repeat Step 1 until the loss1 of w data
reaches 0, meaning it moves to the normal category. After
this point is reached, conclude Step 1 and proceed to Step 2.

(Step 2)—If in Step 1, w data have reached the normal
category, then in Step 2, update based on loss2 to bring w data

closer to the original anomalous data while still belonging to
the normal category.

During these update iterations, if significant fluctuations
cause w data to move back to the anomalous category, revert
w data to the state it was in just before the previous update and
halve the learning rate to restart the fine-grained exploration.
The advantages that can be obtained through the proposed
Reference Generation Logic, as depicted in Figure 5 and
formulated in Equation (4), are as follows.

1) MORE EFFECTIVE UTILIZATION OF THE ROLES OF EACH
LOSS WITH CONTRASTING CHARACTERISTICS
In the previous approach [7], the losses were combined
into one. However, combining loss1 and loss2, which have
contrasting tendencies, into a single loss and performing
optimizer-based optimization may dilute the significance of
the resulting loss.

Therefore, we divide the Reference Generation into two
major steps. In Step 1, we use loss1 exclusively; in Step 2,
we use loss2 exclusively. This preserves the numerical values
of the generated losses and the roles of each loss, which leads
to more effective optimization.
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TABLE 3. Examples of feature value comparison-based interpretation.

2) GENERATING DATA THAT ARE MORE SUITABLE FOR
REFERENCE BY PROVIDING A DYNAMIC LEARNING RATE
In the previous approach, the termination point for Reference
Generation was set as either when the final loss decreased
by a certain amount during the optimization process or when
the degree of updating, as seen in Figure 6, was high enough
for the w data to revert to the attack category. In the latter
case, if the learning rate is reduced to decrease amount of
Feature Value updates. it allows for more precise exploration,
enabling the generation of a Reference that is closer to the
attack data while maintaining the normal label, compared to
the previous approach.

Therefore, in the step where updates are performed based
on loss2 to get closer to the original anomaly data, as shown
in Figure 6, if the distance to the attack is 0.1, yet the update
amount is higher, around 0.12, indicating that the data is about
to enter the attack category.

In the conventional method, such a case would have imme-
diately terminated the search. However, in the proposed
method, if it is anticipated that the data is about to enter
the attack category, it reverts the data to its previous state,
halves the learning rate responsible for the update magnitude,
reducing the update amount to half of the original at 0.06,
enabling a more precise exploration.

B. NEAREST REAL DATA
In the previous section (III-A), we aimed to create Refer-
ences for Target Anomaly Data based on thresholds used
as Anomaly Detection criteria in unsupervised learning
environments.

The goal was to provide explanations for Anomaly Detec-
tion results even in situations where labels are not available.
However, the feature values of the final generated Reference
are merely estimates that have been iteratively updated to
reduce loss by the optimizer. Therefore, although the gener-
ated Referencemay fall within the normal category according
to the model’s judgment, it could contain feature values that
may not exist in the original data format.

If the generated Reference in this approach has feature
values that do not correspond to actual data format, it may
reduce the clarity of providing interpretation through feature
value comparisons. Therefore, we seek to generate actual data
that could replace the generated Reference, i.e., Nearest Real
Data. Using real, existing data as a basis, we intend to provide
clearer interpretations.,

Distancex “

b

ÿn

i“0
xi ´ Referencei, tx | x P Normalu

Nearest Real Data

“ xtx{x P Normal,MIN ([((Distance))]_x)u (5)

The Nearest Real Data generation method proposed in this
paper is depicted in Equation (5). As can be deduced from
this equation, we utilize a K-Nearest Neighbor(KNN)method
with K“1 using the data that the model considers as normal
to generate the Nearest Real Data. This method identifies
the data point in the real dataset that is most similar to the
Reference generated for normal data according to the model’s
judgment. Therefore, the resulting Nearest Real Data main-
tains the meaning of the original Reference while containing
feature values that can occur in the real world.

A more precise interpretation based on actual values is
achieved by replacing the Reference with Nearest Real Data
during the feature value comparison step.

Analysts ultimately obtain a much clearer Feature
Comparison-based interpretation through this method than
through the conventional approach. Table 3 above provides
an example of how Nearest Real Data, as proposed, can
offer a clear interpretation. Table 3(a) illustrates the Feature
Value Comparison between Target Anomaly and the Refer-
ence, while Table 3(b) shows the Feature Value Comparison
between Target Anomaly and the Nearest Real Data.

Interpretation through feature value comparison in
Table 3(a), the ‘‘Feature Description’’ lists the key features
that significantly impact the Anomaly determination of the
Target Data. ‘‘Original Value’’ represents the Feature Value
of the Target Data, whereas ‘‘Reference Value’’ represents
the Feature Value of the Reference. According to the model’s
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FIGURE 7. Proposed algorithm of optimum reference calculation (Left: Normal process, Right: Attack process).

judgment, the generated Reference is the closest value within
the normal category to the Target Anomaly, and this makes
it the most anomalous value within the normal category.
Therefore, Feature Comparison makes it evident that the
Feature Values of the Target Data are more anomalous than
those of the Reference, which leads to the clear interpretation
that the Target Data are identified as an Anomaly.

However, it is important to note that these datasets are
preprocessed based on a 2-gram hash mapping-based natural
language processing, and this results in all features having
integer values. Despite this, when values optimizing to reduce
the loss based on the optimizer, it can still be observed that the
resulting Reference contains fractional values. As a result, the
generated Reference contains fractional values for features
that cannot occur in real-world scenarios, which may hinder
the interpretability of Comparison-based Interpretation.

On the other hand, as shown in Table 3(b), Nearest Real
Data are based on real-world data that are the most similar
to the Reference, and therefore, the Feature Values are rep-
resented as integers. Through Feature Comparison based on
these actual values, the interpretation of the cause of Anomaly
for the Target Data becomes clearer. Utilizing the Nearest
Real Data allows analysts to obtain a more precise Feature
Comparison-based Interpretation.

C. P-VALUE-BASED IMPROVEMENT OF INTERPRETATION
We utilize the distance between Nearest Real Data and orig-
inal data as one of the AI Decision Support metrics and
a Feature Comparison between data points. The computed
distance values are expected to increase as the Anomaly level
of the Target, which is the Original Data, increases, indicating
a greater distance from the Nearest Real Data (considered
normal). Conversely, distance values are expected to decrease
as the Anomaly level decreases. Therefore, these distance
values allow for comparing the Anomaly levels of each data.

However, it is important to note that the computed distance
values for each pair of original data and Nearest Real Data
may have inconsistent meanings and can be subject to change
based on the data value ranges. For example, if two groups
have average distances of 1000 and 10, respectively, and a
data is measured with a distance of 100 in each group, it could
be considered a normal situation in the first group but a highly
anomalous situation in the second group.

In summary, while distance metrics provide valuable infor-
mation for comparing Anomaly levels, their interpretation
may vary depending on the context and distribution of data
values, which should be considered when making decisions
based on these metrics.

CDF pxq “

ż x

´8

p pxq dt, p pxq“
d
dx
CDF pxq

CDF pDistanceq “ P pX ď Distanceq

“
ÿ

xďDistance
p pxq

P ´ Value pDistanceq “ 1 ´ CDF(Distance) (6)

Therefore, to provide consistent metrics across all data
types, we applied the Cumulative Distribution Function
(CDF) to the Target Data, as demonstrated in experiments
[19], [20], to represent the percentiles of the values within
the data. Furthermore, we adjusted the metrics to match
the existing Anomaly Detection environment, which detects
anoma-lies based on the top n% of values, by calculating
P-Values as shown in Equation (6). We then employed these
P-Values as AI Decision Support metrics. We applied these
P-Values to the MSE and the distance to identify Anomalies.

For True Positives, the MSE and distance tend to be higher
than for False Positives, and this results in lower P-Values.

Conversely, for False Positives, the MSE and distance tend
to be lower than for True Positives, and this results in higher
P-Values. We utilize these metrics to provide AI Decision
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TABLE 4. Process chain featuring description.

TABLE 5. Dataset description.

TABLE 6. Anomaly detection result.

Support and, through this approach, we propose an AI Deci-
sion Support framework that is suitable for the security field.
This framework helps achieve False Alarm Reduction and
enhance AI’s performance in security applications.

IV. EXPERIMENTAL RESULTS
A. DATA DESCRIPTION AND DATA FEATURING
We preprocess the log data collected in the EDR environ-
ment and perform Anomaly Detection using unsupervised
learning-based Autoencoders. The Original Log is in the
format in which logs are recorded when a new process is
executed.

Each log contains important information for identifying
processes, such as a unique identifier field for the newly
created process, parent process information, process name,
process execution path. The recorded information comes in
various formats, and fields like floating-point or integer types
can be used as they are without the need for additional prepro-
cessing. However, for string fields, appropriate embedding
techniques must be applied to represent the meaning of the
string as numerical values for the model to work effectively.

Furthermore, when log data are explored recursively, it is
possible to extract the sequence of processes involved, which
we refer to as the Process chain. In the case of normal pro-
cesses, one would typically observe regular Process chains
that occur during routine operations. However, a series
of attack Process chains may appear related to malicious
processes, as executing malicious scripts often involves a
sequence of processes that would not occur in regular sit-
uations. As a result, the Process chains observed in normal
situations may be quite different from those observed during

attacks, as illustrated in Figure 7. During attacks, one may
notice the involvement of processes like Powershell.exe and
gswin32c.exe, which are not typically seen in normal situa-
tions but are linked to the execution of malicious scripts.

Furthermore, as mentioned in previous studies [21], [22],
[23], in EDR environments, rapid response is crucial, so the
log preprocessing steps must be lightweight. Considering
this, this paper proposes a lightweight feature extraction tech-
nique that focuses on identifying process chains using the
Original Log. It extracts only three key pieces of information:
parent/child process identifiers, process names, and process
image paths. The featuring targets two main aspects:

1) PARENT_PROCESS FEATURING
The parent process is the central process in the Process chain,
and it connects various processes. By focusing on the paths of
these parent processes, the paper embeds information about
whether the Process chain was executed on an anomalous
path. The path is tokenized at directory branches to feature
path strings, and a 2-gram is applied. The resulting values are
then hashed mapping (mod 20).

2) MERGED_CHILD_PROCESS FEATURING
The names of child processes that can be obtained through
the Process chain are concatenated and tokenized at the char-
acter level using a 2-gram. These tokens are then hashed
(mod 100).

This approach detects anomalies when an unusual process
is connected in the Process chain, resulting in a feature count
increase or higher mapping values than for normal situa-
tions. Through the proposed featuring techniques, the paper
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TABLE 7. Example of providing interpretation through reference.

TABLE 8. Performance comparison of reference generation.

incorporates Anomaly information from attacks that are
present in the original logs as features. In the end, we feature
results in 120 feature embeddings on a Process chain basis,
as described in Table 4. The dataset description is provided in
Table 5.

B. DATA DESCRIPTION AND DATA FEATURING
In this study, Anomaly Detection is performed using Autoen-
coder models. The model we used consists of three encoder
layers and three decoder layers. Each Encoder compresses
the original features into representations of 75%, 50%, and
25% of the dimensions. The Decoder then reconstructs these
compressed representations.

The dataset used is the same as that obtained through
the previously mentioned Process Chain Feature technique,

as described in Table 5. Based on this dataset, three Autoen-
coder models were constructed to perform Anomaly Detec-
tion for three types of Process Chains. Anomaly determina-
tion was based on the top 1% of data having the highest MSE
values. The results of Anomaly Detection are presented in
Table 6.
The Anomaly Detection results on the Hwp dataset show

that all attacks were detected with 100% accuracy among
the top 1% of data. Unsupervised learning models like these
have the advantage of being able to detect unknown threats
in label-less environments. However, they are also subject to
significant performance variation based on specified thresh-
olds and can produce numerous false alarms.

Therefore, for effective unsupervised Anomaly Detection,
it is essential to provide decision support for the detected
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TABLE 9. Comprehensive AI decision support results generated by the proposed framework.

anomalies. In cases of false alarms, the results of AI judg-
ment should be carefully considered to reduce false alarms,
while in cases of true positives, clear interpretations of the
detections should be provided. This approach aims to support
the effective utilization of unsupervised Anomaly Detection
models in security.

C. PROVIDING EFFECTIVE INTERPRETATION THROUGH
FEATURE VALUE COMPARISON
We aim to support interpretation in an unsupervised learning
environment using References. The target data consist of two
processes, the 1056th Hwp Process (true positive) and the
470th Hwp Process (false positive), which have the highest
Anomaly score, MSE in different scenarios. By applying the
framework proposed in this paper to these two processes and
interpreting the Nearest Real Data generated, we obtain the
results shown in Table7.

For the true positive data (a) in Table 7, we provide an
interpretation that it is considered an Anomaly due to the fea-
tures that are only present in attacks, such as Powershell.exe,
which does not appear in normal states. When we compare
the Feature Value Comparison results obtained from the true
positive data with the Feature Value Comparison results in
Table 7 for the false positive data (b), we can see that the false
positive data show smaller differences.

This is because, in the case of true positives, attacks occur,
and this introduces unusual features into the feature values.
Therefore, the Nearest Real Data show a significant differ-
ence in the case of true positives and almost no difference
in the case of false positives. These results confirm that the
interpretations generated through Feature Value Comparison

show larger differences as the Anomaly score increases,
depending on the actual severity of the attack.

Furthermore, a comparison of the proposed Reference gen-
eration logic with the Reference generation techniques of
prior research, such as that of Han [7], is presented in Table 8.
Table 8 shows the results for generating References for the
Hwp dataset. From a functional perspective, prior research
fails to create References for four attacks as, despite perform-
ing detection until the last step, the final loss1 remains less
than 0, and this prevents the w data from moving into the
normal category.

In contrast, when the proposed method is used, we con-
firm that all four attacks successfully generate References,
as the final loss1 is less than 0. Moreover, from a perfor-
mance perspective, The fact that the final loss2 obtained
through the proposed method shows a similar value to that
of the previous method indicates that the security proposal
logic is functioning correctly. Additionally, it is observed
that the time required for Reference generation is further
reduced.

D. TOTAL ANOMALY DECISION SUPPORT
The comprehensive results are summarized in Table 9 and
provide decision-support results for the unsupervised learn-
ing model. For Reference generation, one data point with the
highest Anomaly Score from both the true and false positives
was selected for each of the three dataset, resulting in six
results, as specified in Table 5.

Table 9-(a) records the items and their corresponding
results, which were created to support Decision Support. The
meanings of each item are as follows: RMSE, which was
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FIGURE 8. Result of topology visualztion for representatvie two samples of Hwp dataset (Up: Hwp true Positive – 1056 Hwp, Down: Hwp false
alarm – 470 Hwp).

utilized as the Anomaly Score, represents the error between
the original values and the reconstructed values produced by
the Autoencoder.

The second item,Distance, represents the L_2NormValue,
or distance, between the Nearest Real Data produced by the
proposed framework and the original data.
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FIGURE 9. AI decision support for representatvie two samples of Hwp dataset (Left: Hwp true positive – 1056 Hwp, Right: Hwp false alarm – 470 Hwp).

P-Values were calculated based on the model’s judgments
to provide a clear interpretation of these values. Additionally,
to emphasize the clarity of the Anomaly causes, processes
that appeared less frequently in each Process Type were
counted, and the least frequent 2% of processes were desig-
nated as Rare Processes.

This allowed the calculation of the Rare Process linkage
ratio. Lastly, the similarity between the Process Chain gen-
erated from the Nearest Real Data and the original Process
Chain was calculated to represent the similarity to normal
processes intuitively.

In Table 9-(a), Hwp 1056 and 470 represent true and
false positives, respectively. The P-Values for their RMSE
are 0.00704 and 0.75863. This means that the probability
of having a stronger Anomaly tendency than 1056 Hwp is
approximately 0.7%, and the probability of having a stronger
tendency than 470 Hwp is 75.8%. Therefore, it is evident
that 1056 Hwp exhibits a significantly stronger Anomaly
tendency than does 470 Hwp.

This distinction is also identified through the Distance-
based P-values, where 1056 Hwp has a P-value of 0.0647,
whereas 470 Hwp has a P-value of 0.7096. Distance, as pre-
viously mentioned, represents the L_2 Norm value between
the original data and the Nearest Real Data derived from it.

Therefore, a higher ‘‘Distance’’ indicates that the data is
significantly distant from normal patterns, signifying a higher
likelihood of it being an Anomaly. These results emphasize
that 1056 Hwp is significantly further from normal processes
and exhibits a notably higher level of Anomaly within the
Anomaly group.

Additionally, the ratio of Rare Process associations is
based on the frequency of occurrences, which means that
all processes associated with attacks are categorized as Rare
Processes. As a result, in processes where actual attacks
occur, a high ratio of Rare Process associations is observed.
In contrast, the Rare Process association ratio is lower in false
positive processes where no attacks occur.

Finally, the degree of match between the original process
and the Nearest Real Data process is also indicative. In the
case of true positives, process chains that are significantly
different from normal ones result in a lower match rate.
However, process chains that are relatively similar to normal
ones lead to a higher match rate for false positives.

The results of visualizing the anomaly tendencies in the
mentioned topology are shown in Figure 8. As identified in
the figure, representarive true positive of 1056 Hwp exhibits
a distinct difference in topology compared to the most sim-
ilar normal data. In contrast, the false positive detection of
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470 Hwp shows a very similar topology when compared to
the most similar normal data. Thus, true positive and false
positive data show clear differences in topology.

Figure 9 presents the AI Decision Support results for two
representative samples of hwp dataset. Based on Table 9-(a),
comprehensive analysis of the information, AI’s Anomaly
determination is referenced for the processes identified as
anomalies, specifically 1056 Hwp, which is a clear true posi-
tive. Conversely, AI’s determination is not cited for 470 Hwp,
which is suspected to be a false positive. Consequently, AI
decision support is provided.

As illustrated in Table 9-(a), it can be observed that the
differing interpretation trends between false positives and
true positives are not limited to Hwp processes but also
extend to processes of other types. Therefore, approaches like
Table 9-(b) are employed to assist analysts in making deci-
sions and enhance AI performance through false alarm reduc-
tion by leveraging the interpretation information derived from
Table 9-(a).

V. DISCUSSION
The purpose of this paper is to provide interpretability for
anomaly detection results generated by AI in the cybersecu-
rity environment, thereby supporting the explainability of AI
decision-making.

However, existing XAI techniques were primarily
designed based on supervised learning models, making it
challenging to provide interpretations for various unsuper-
vised learning models suitable for anomaly detection.

Moreover, traditional Feature Importance-based XAI tech-
niques provide interpretations by calculating the importance
of each feature and visually presenting it. However, in the
security domain, significant differences between malicious
and normal behavior manifest in the original feature values.
Therefore, relying solely on Feature Importance metrics in
XAI techniques cannot clearly explain the reasons behind
anomaly detections.

For the reasons mentioned above are why we introduced
interpretation based on Feature Value Comparison using ref-
erence data. This technology allows analysts to obtain more
accurate interpretations for data identified as anomalies, even
in an unsupervised learning environment.

For effective Reference application across various models,
it is essential to weaken the influence of various existing
hyperparameters and enhance the logic so that it is adaptable
to different models.

Therefore, through the two-stage division of the Reference
generation logic, we effectively utilized two inversely related
loss functions. This led to improved Reference generation
performance and a higher success rate than has been observed
in prior research.

In addition, we identified the possibility that the existing
reference, based on the optimization-based search approach,
could yield values that do not exist in the real world. We
judged that this could undermine the clarity of the existing
approach. For this reason, we calculate the distance between

the reference and the data classified as normal and replace
the reference with the Nearest Real Data, which is the data
closest to the reference.

Through this, we aim to provide a clearer interpretation by
conducting comparisons based on values that actually exist in
the data.

Finally, to enhance comprehensive AI Decision Support,
we introduce a new metric called Distance in addition to pre-
viously used Anomaly Score metrics such as MSE. Similar to
the previous indicators, this new metric can represent outliers
in the data, allowing for a more comprehensive interpretation
of anomalous data. By applying P-Values to these metrics,
analysts are provided with clear indicators of the severity of
anomalies.

Leveraging these metrics in AI Decision Support enables
analysts to effectively reduce false alarms through confident
identification of true positives and false positives.

However, In unsupervised learning, the frequently used
MSE metric calculates error values for each feature and then
applies their average. This means that if anomalies occur in
various features, the Reference can capture them effectively.

However, anomalies are concentrated in very few features,
and most features have values similar to those of normal
behavior. In this case, the MSE calculation, which applies the
average, can blur such Anomaly patterns.

Therefore, there is room for improvement in the Reference
generation logic, such as implementing logic that can account
for various Anomaly patterns, including cases where only a
few features exhibit strong Anomaly patterns, by increasing
the error weights for those specific features.

VI. CONCLUSION AND FUTURE WORK
We have developed an XAI technique based on Feature Value
Comparison, as we found that existing Feature Importance-
based XAI methods needed to provide clear interpretations
in the security field. We proposed an AI Decision Sup-
port Framework that is suitable for the security environment
using this technique. We demonstrated that this approach
could provide interpretations, even in unsupervised learning
environments, that are relevant to security and offer clearer
interpretability in the security domain by providing a Com-
parison Interpretation based on actual Feature Values.

Furthermore, we achieved performance and functional
improvements relative to prior research through an enhanced
generation logic. We generated various metrics based on
the produced Reference for AI Decision Support. Subse-
quently, when we comprehensively compared these metrics,
we observed significant differences between the true positive
and false positive data in existing AI models. This allowed
us to provide an interpretation and AI Decision Support
and ultimately contribute to False Alarm Reduction and the
enhancement of AI model performance.

In this manner, we identified limitations in the applica-
tion of conventional XAI techniques in security, and we
addressed them by developing a Feature Comparison-based
XAI technique to provide clear interpretations. We aimed
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to support the effective utilization of unsupervised learning-
based Anomaly Detection models in the security domain. In
the future, we plan to capitalize on the advantages of this
Framework to support Interpretation in unsupervised learning
while transitioning to newly developed unsupervised learning
models as central models. We will analyze the results pro-
duced, identify further areas for improvement, and enhance
the AI Decision Support Framework to suit the security
environment.
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