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ABSTRACT An innovative approach to pupil tracking using event cameras is presented in this paper. Our
method incorporates two primary processes: RGB-to-Event image domain translation and pupil localization
utilizing Event Cameras. Initially, we convert traditional RGB images into event-like images with our novel
adaptive StyleFlow algorithm. This advanced algorithm enables the generation of images that are remarkably
similar to those produced by real event cameras in terms of their distinctive characteristics and visual appeal.
Subsequently, we perform the pupil localization process, which involves applying the RetinaFace algorithm.
This algorithm is trained using our unique cross-modal learning strategy on a mixed dataset, consisting
of both RGB and the newly transformed event-like images. When evaluated using real event camera data,
our approach sets a new benchmark in accuracy performance. We achieved a face detection accuracy of
99.4% and a pupil alignment accuracy of 97.2%, exceeding the performance of previous deep learning-based
methods that were trained on conventional RGB images. Our results effectively demonstrate the promising
potential of event camera-based pupil tracking. Furthermore, our study represents an important advance in
the field, offering the possibility of future advancements and potential applications in vehicular systems and
augmented reality heads-up displays (AR HUDs).

INDEX TERMS Cross-modal learning, dynamic vision sensor, event cameras, event image generation, pupil
detection, pupil localization, RGB-to-event image domain translation, training strategy.

I. INTRODUCTION
Eye tracking, which locates the center of the pupil and
estimates gaze direction, is a core technology with diverse
applications in various fields. It plays a significant role
in attention tracking for market research and advertis-
ing [1], enhancing human-robot interaction [2], and enabling
advanced features in automotive applications, including
driver monitoring systems (DMS) [3] and head-up displays
(HUDs) [4], [5]. Additionally, eye tracking finds utility
in augmented reality (AR) [6], virtual reality (VR) [7],
and three-dimensional (3D) display systems [8], as well
as in consumer devices such as mobile smartphones and

The associate editor coordinating the review of this manuscript and

approving it for publication was Turgay Celik .

laptops [8], offering enhanced user interactions and gaming
experiences. In market and advertising research, eye tracking
is utilized to monitor consumers’ attention and analyze the
performance of products [1]. Regarding DMS in vehicular
applications, eye tracking becomes increasingly important
for detecting and monitoring driver status [3]. HUDs enable
the generation of natural 3D content aligned with the user’s
eye position [4], [5]. For AR, VR, and Autostereoscopic 3D
display applications, eye tracking is essential in reducing 3D
fatigue by ensuring the accurate separation of left and right
stereoscopic images, thus providing comfortable viewing
experiences [8], [9]. Moreover, the integration of eye tracking
consumer devices allows for various user interactions in
various applications [2], [10]. Additionally, eye tracking is an
essential tool for human behavior analysis, where rapid eye
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FIGURE 1. Comparison examples between traditional frame-based RGB
camera images (left) and event camera images (right). Event camera
images demonstrate consistency compared to the RGB camera images
under various light conditions: normal light (top), low light (middle), and
image saturation in sunlight (bottom).

movement estimation helps in analyzing user interactions for
consumer analysis and neuroscience applications [11], [12].

Near-range eye tracking is commonly used in wearable
glasses devices, where near-infrared (NIR) LEDs are used to
analyze the corneal reflections from the pupils and extract
users’ gaze information [13], [14]. In contrast, remote eye
tracking is mainly required in applications such as AR
3D HUDs [4], [5], autostereoscopic 3D displays [8], [9],
and DMS [3]. In these applications, remote eye tracking
is important to rapidly and precisely detect and track the
position of the user’s eyes at distances of approximately
1 meter, even under varying lighting conditions [8]. More-
over, these eye tracking systems must be able to handle
real-time processing and consider the constraints posed by
limited system resources in vehicular embedded systems [4],
[5]. Traditional remote eye tracking systems mainly rely
on frame-based RGB cameras and NIR cameras, utilizing
computer vision algorithms to identify and track the center
position of the pupil [4], [5], [8], [9]. However, these methods

often encounter challenges such as motion blur, limited
frame rate speed, and sensitivity to lighting conditions [4],
[5], [8], [9]. Fast eye movement detection is particularly
important in eye tracking research to enable meaningful
applications.

In recent years, asynchronous event image sensors [15],
also known as dynamic vision sensors or neuromorphic
cameras, have emerged as a promising alternative to tra-
ditional frame-based RGB cameras. Event cameras capture
visual information in a fundamentally different way, detect-
ing brightness changes asynchronously at the pixel level,
resulting in an event stream that precisely captures moments
when brightness variations occur [15], [16], [17]. Event
cameras offer several advantages, including high dynamic
range, high speed (up to around 10, 000fps), low power
consumption, and efficient motion tracking, as they generate
events only when actual changes occur [15], [16], [17].
Moreover, they are less sensitive to lighting variations and
offer superior performance compared to frame-based RGB
cameras, as shown in Figure 1. The unique characteristics
of event cameras make them suitable for a wide range of
emerging computer vision and robotics applications. Near-
range eye tracking has been a popular use case for event
cameras, particularly in wearable devices [18]. Some studies
have performed remote eye tracking using event cameras,
demonstrating the feasibility of face and eye detection
using pretrained models on RGB face databases (DB) [19].
However, this study [19] did not conduct training using event
camera data due to the challenges of constructing a large-
scale face event camera image database.

In this paper, we aim to improve the performance of remote
pupil tracking based on event cameras by constructing a
large-scale event face training database using RGB-to-Event
domain translation. Our contributions are as follows:

• Event Camera Training Data Generation: to gener-
ate event-like images from publicly available RGB face
images, we adopted an image domain translation method,
StyleFlow [20]. Our approach, which represents the first
successful application of style-based image-to-image trans-
lation in this domain, enables the use of large-scale RGB
datasets with existing annotations, such as key points and
bounding boxes, to create event-style images without the
need for manual labeling. Furthermore, we introduced a
pre-processing technique that emphasizes the face region,
reducing distortion caused by background information during
the style translation process and resulting in more realistic
event-like images. This method overcomes limitations of
existing event image generation techniques that rely on
video input citeb21 or image shaking [22], allowing for the
generation of event-like images from a single static RGB
image. This is particularly advantageous in scenarios where
constructing video databases from face databases is difficult
and time-consuming due to the extensive labeling process
involved.
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• Enhanced Pupil Localization on Real Event Camera
Images: in our study, we conducted an evaluation of
our proposed cross-modal learning-based pupil localization
algorithm using real event camera images captured by DAVIS
346 (Inivation) [23]. These images were carefully selected
to capture instances where the user’s head movement was
fast enough to reveal eye and face shape information. The
training for this algorithm was conducted using a mixed
dataset, incorporating both RGB and newly transformed
event-like images, to implement a cross-modal learning
approach. For pupil detection and localization, we utilized
the RetinaFace algorithm [24], trained under this cross-
modal learning strategy. Our approach yielded promising
results, achieving a pupil localization accuracy of 97.2% on
real event camera images, demonstrating its superiority over
methods trained solely on RGB or event-like databases with
transfer learning or learning from scratch. This successful
outcome demonstrates the potential and effectiveness of
remote event camera-based pupil localization in practical
applications.

II. RELATED WORKS
A. EVENT CAMERA: BACKGROUND AND APPLICATIONS
The event camera is a next-generation image sensor that
mimics the human visual system and possesses the following
characteristics. Unlike frame-based cameras, it generates
an asynchronous event stream, measuring pixel changes
only when events occur, which are local changes in light
intensity [15], [16], [17]. This feature provides high temporal
resolution, resulting in a low camera system latency advan-
tage and reduced motion blur for rapidly changing visual
information [15], [16], [17]. When there is no change in light
intensity, there is no event output, enabling it to operate with
low power consumption. Another advantage is its ability to
offer a high dynamic range (140dB), enabling it to adequately
capture details in both dark and bright areas [23]. This proves
especially beneficial in environments where light conditions
change rapidly, such as driving through a tunnel.

Although event cameras are not yet commonly used in
commercial applications, they are extensively applied and
researched in various fields such as computer vision, image
processing, AR/VR, robotics, and more. They are actively
researched for object detection and tracking [25], pattern
recognition [26], simultaneous localization and mapping
(SLAM), and visual odometry [27] for real-time operation
in limited embedded system resources such as vehicular
and drones and more. In surveillance [28] and environ-
mental monitoring [29] applications, their high dynamic
range characteristic allows them to reliably monitor varying
environments in low-light conditions and various lighting
scenarios. Furthermore, event cameras can be used for
depth [30] and optical flow estimation [31] by making use
of multi-view event data to estimate 3D depth information
and structure. Regarding the human-related computer vision

field, they are researched in human pose estimation [32],
hand tracking [33], near-range gaze tracking [18] for user
interaction, human behavior understanding, and AR/VR
wearable devices.

B. PUPIL TRACKING: RGB VS EVENT CAMERA-BASED
APPROACHES
Previous studies on remote pupil tracking have mainly relied
on frame-based RGB or NIR cameras [4], [5], [8], [9].
Frame camera-based eye pupil tracking algorithms often
adopt machine learning techniques, where they first perform
face area detection, then regress facial landmark points within
the face region, and finally refine the pupil center position to
track the center of the pupil [4], [5], [8], [9]. These studies
utilize large-scale public face databases or face databases
captured under various user and environmental conditions to
train deep neural networks and complete their algorithms. It’s
important to note that there are several publicly available face
datasets, such as CelebA [34], which includes 202, 599 face
images from 10, 177 individuals, WIDER FACE [35], which
has 32, 203 images, 300W [36], which contains 300 indoor
and outdoor faces, as well as WFLW [37], with 10, 000 faces.
These datasets have 5 to 98 facial landmark points and
face bounding box annotations, which makes them valuable
resources for facial detection and recognition research. These
datasets are also actively used in remote pupil tracking
studies.

The event camera offers specific advantages, which
particularly include its speed and high dynamic range [15],
[16], [17], that are well-suited for pupil localization.
By using event cameras, fast eye movements that traditional
frame-based pupil localization methods struggle to handle
can be addressed, making it suitable for our primary
applications in vehicular systems such as DMS and AR
3D HUD under various lighting conditions. Moreover, its
low power consumption and low bandwidth consumption
characteristics [15], [16], [17] align well with the limited
system resources in vehicular systems. However, a significant
challenge in utilizing event cameras for pupil localization
research is the lack of publicly available face images and
annotation datasets. Constructing and labeling diverse face
databases with event cameras is a challenging task. While
some datasets with limited numbers of face images captured
by event cameras exist [38], they may have constraints in
capturing clear shape information of the pupils due to the
limited resolution of event cameras. Additionally, manual
labeling is a precise and time-consuming process when
real data needs to be captured [38]. To address this issue,
various efforts have been made. One of the previous studies
aimed to acquire event camera data for deep neural network-
based algorithms using image shaking to create dynamic
event streams [22]. However, there is a limitation in which
facial annotations cannot be directly used. Other research
focuses on generating event-like videos from video data [21].
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However, the availability of face video data with keypoint
annotations is limited.

In this paper, we present a solution to address this chal-
lenge. We conducted research on a method to generate event-
like images from a publicly available RGB face database that
includes all the necessary annotation information. To validate
the effectiveness of the generated event-like training dataset,
we trained a pupil localization algorithm using this dataset,
utilizing our unique cross-modal learning strategy on a mixed
dataset of both original RGB and the newly transformed
event-like images and tested them on real event camera videos
captured by DAVIS 346 [23]. The results demonstrated the
effectiveness of our approach. One of the key advantages of
our method is that it can generate event-like images from
a single RGB image, making the labeling process more
efficient compared to directly capturing or building video
datasets, which can be challenging.

III. METHOD
We present a novel method for accurately locating the
center of the pupil using an event camera. Specifically,
we capture event images focusing on face images where the
user’s head movement is fast enough to reveal eye and face
shape information. Our proposed method can be divided into
two key steps: First, we generate training data for event-
like images by an RGB-to-event image domain translation
technique. For this, we utilize the StyleFlow [20] approach.
To ensure the event-like images closely resemble real event
camera images, we initiate a pre-processing stage on the
content images used in this study. Second, we train the pupil
localization model using the generated event-like images and
the RetinaFace [24] algorithm, a state-of-the-art method for
joint face detection and keypoint alignment. We then evaluate
the performance of the trained model using real event images.
The system overview is depicted in Figure 2. Our approach
further improves pupil detection and alignment accuracy by
creating a mixed training dataset that combines RGB images
with the generated event-like images. Informed consent was
obtained from all human subjects participating in this study.

A. EVENT-LIKE TRAINING IMAGE DATABASE GENERATION
THROUGH RGB-TO-EVENT IMAGE DOMAIN TRANSLATION
Achieving high accuracy in pupil localization based on deep
neural network algorithms necessitates a large-scale image
database. For this purpose, we propose a methodology to
create an event-like training image database, to enhance the
accuracy of pupil localization in the context of event cameras.
This method incorporates the StyleFlow [20] algorithm to
convert RGB images into event-like images. StyleFlow is an
algorithm that receives a content image and a style image
as inputs and yields a target image that has been converted
into the texture format of the style image while preserving
the semantic information of the content image [20].
The process begins by extracting content features from the

content image during a forward pass. After this, a backward
pass is carried out, where the Style-Aware Normalization

(SAN) module is used to perform a content-fixed style trans-
formation. This transformation integrates the style features
extracted from the style image, merging the characteristics of
both content and style images [20]. Among the two inputs of
StyleFlow, we use multiple pre-processed grayscale images
obtained from RGB face images as content images. For
the style image, a single real event camera image, captured
directly by us, is used for learning. This process translates the
RGB content image into an event-like image (target image)
that closely resembles the real event camera image style
image. Figure 3. (a) provides a visual representation of our
proposed RGB-to-Event image domain translation method
using our adaptive StyleFlow.

Figure 3. (b) shows multiple pre-processed content images
and the results of event-like image generation for each pre-
processing method. The first method converts the image to
grayscale, as the event camera is a grayscale image that
lacks color information. The second pre-processing method
removes the background information and retains only the face
regions to minimize the influence of unnecessary information
on style translation. Based on the characteristics of event
cameras, which measure only the amount of change in
moving objects andmaintain a constant gray intensitywithout
capturing non-moving background information, the third
method fills the background information in grayscale to
mimic the event camera background.

We trained StyleFlow using these pre-processing methods.
The content image database consisted of 70, 000 images
from the public RGB CelebA [34] dataset, serving as the
training content image database. A single real event face
image, captured directly by us, was utilized as the style image
database.

B. STRATEGIC TRAINING OF PUPIL LOCALIZATION
MODELS USING EVENT CAMERAS: A CROSS-MODAL
TRAINING APPROACH
We utilized the RetinaFace algorithm [24], a leading algo-
rithm among multi-task joint learning strategies, for precise
face detection and facial keypoint alignment in a single stage.
RetinaFace is designed to predict the face bounding box
and five face landmarks, including pupil centers, nose, and
mouth points through training. It utilizes various backbones
networks like ResNet, Mobilenet, and a pretrained network
from ImageNet-11k [39]. As a lightweight model, RetinaFace
can process VGA resolution images in real time on a single
CPU core, making it suitable for real-time pupil tracking [24].
The aim of our research is to detect the exact location of the
pupil center using the RetinaFace algorithm.We achieved this
goal using a cross-modal training approach, integrating both
RGB images and event-like images.

RGB images and event-like images each have their
advantages, making their combination valuable in providing
complementary information about face detection and pupil
detection. This integration enhances the performance of the
pupil localization model. RGB images effectively present the
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FIGURE 2. Overview of our proposed event camera-based pupil tracking method. During the training phase, we construct an event image training
database by applying domain translation algorithms to convert RGB images into event-like images. Using the generated event-like images we train face
detection and pupil localization algorithms. In the testing phase, we evaluate the performance of the trained algorithms on the real event camera images.

FIGURE 3. Illustration of our RGB-to-Event image domain translation using our adaptive StyleFlow [20] algorithm. (a) Multiple pre-processed frames
serve as content image inputs with the background removed, retaining only face regions. These frames are also grayscale-converted. A singular real event
camera image functions as the style input. Target images are then reconstructed considering content and style losses. (b) Comparative results of
event-like image generation through StyleFlow [20], illustrating distinct content image pre-processing techniques: grayscale conversion, facial region
cropping, and background fill with grayscale to emulate event camera background.

location of the pupil due to their sharp edge information,
while event-like images capture pixel changes in a highly
temporal and asynchronous manner, reflecting the rapid
motion of the eyes, the fastest-moving organ in human
faces [40]. However, when trained on event-like images only,
the model could effectively identify the face bounding box

but struggled with pupil alignment. This is because event-
like images lack pupil shape information compared to RGB
images, leading to imprecise keypoint alignment during pupil
regression training. Additionally, real event camera data may
contain variations and complexities not perfectly reflected in
the event-like images generated using StyleFlow. Thus, cross-
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modal training enables the model to adapt to a wider range
of scenarios and perform well on real event camera data.
By incorporating both modalities during training, the model
effectively utilizes complementary information, leading to a
more comprehensive understanding of the data.

TABLE 1. Training database for RGB-to-event image domain translation.

For evaluation metrics, we used face detection accuracy
and pupil alignment accuracy. Pupil alignment accuracy was
measured by determining whether the difference between the
predicted pupil localization and the ground truth was less
than 10mm. We regarded such cases as successful. This was
based on the assumption that the average human adult eye
size is 24mm and the interpupillary distance (IPD) is 65mm,
which allowed us to convert pixel errors to physical errors for
measurement.

IV. EXPERIMENTAL RESULTS
In this research, we conducted a thorough evaluation of
the two methods we proposed: 1) the RGB-to-Event image
domain translation technique and 2) pupil localization using
an event camera. Both algorithms were implemented in
Python and trained and tested on an Ubuntu 20.04.6 LTS PC
with an NVIDIA RTX 3090 (24GB) GPU. The final pupil
localization algorithmwas tested on real event camera images
taken with a DAVIS 346 [23]. The metrics for evaluation,
which were determined in the method section, were face
detection accuracy and pupil alignment accuracy. These
experiments allowed us to validate the practical performance
of our proposed algorithms, and by comparing them with
existing methods, assess the effectiveness of our proposed
techniques. In this Experimental Results section, we will
describe details of the datasets used and the performance of
each proposed method.

A. EVALUATION - RGB-TO-EVENT IMAGE DOMAIN
TRANSLATION
In this section, we evaluate the performance of our pro-
posed RGB-to-Event Image Domain Translation technique.
We utilized StyleFlow [20], which incorporated our proposed
multiple pre-processing techniques, for generating Event-
like images. The training dataset was constructed from
202, 599 RGB images from the CelebA [34] dataset,
serving as content images through the proposed multiple
pre-processing modules, and one real event camera image
captured by DAVIS 346 [23], serving as the style image
(Table 1). We selected one style image from multiple real
event images that showed a fast-moving face, where the
pupil information was clearly visible. This style image was
selected through a trial-and-error process during training,

as it yielded the best results. For training, we utilized
the StyleFlow Pytorch implementation [41]. Our training
employed the Ada optimizer, a learning rate of 0.00005,
a batch size of 1, and a maximum of 70, 000 iterations. Other
hyperparameters adhered to the default values stipulated
in the implementation [41]. The process, which ran on
our NVIDIA RTX 3090 (24GB) GPU, was completed in
approximately three days.

The performance of the trained Event-image generation
model was evaluated via a subjective visual test, which
involved comparing the output images with real event
camera images. However, due to the inherent limitations of
subjective visual testing, the performance will be further
evaluated based on the results of pupil localization in the
subsequent subsection, focusing on results from the pupil
localization task. The model is able to convert an RGB image
with a resolution of 178 by 218 to an event-like image
in approximately 2 seconds. As a result, we successfully
constructed a database of 70, 000 event-like images, derived
from RGB CelebA images, for use in training the pupil
localization algorithm. Some examples of the event-like
images generated by our model are depicted in Figure 4.

TABLE 2. Pupil localization training & testing database.

TABLE 3. Performance of the proposed pupil localization on real event
images captured by DAVIS 346 [23]: face region detection accuracy and
pupil alignment accuracy, considering a precision within 10mm.

B. EVALUATION - CROSS-MODAL TRAINING FOR EVENT
CAMERA-BASED PUPIL LOCALIZATION
In this subsection, we evaluate the accuracy of our proposed
model, trained with our cross-modal training method, in iden-
tifying the location of the pupil using an event camera. Our
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FIGURE 4. Experimental results of the proposed RGB-to-Event domain translation method. Odd columns display original RGB images, and even
columns show the generated Event-like images. Real Event images captured by DAVIS 346 [23] are included for comparison purposes.

FIGURE 5. Learning curve of the proposed Event camera-based pupil
localization: classification Loss, face bounding box loss, and pupil center
localization loss across epochs. The x-axis represents the number of
epochs, and the y-axis represents the corresponding losses.

combined training dataset comprises both RGB and event-
like images, as indicated in Table 2. We used 12, 000 images
with varying face sizes from the WIDER FACE dataset [35]
for the RGB images. The event-like images consist of the 7,
500 images generated by our proposed RGB-to-Event image

FIGURE 6. Pupil localization results on event-Like images, generated
from the proposed RGB-to-Event domain translation method. The red
dots represent the pupil center positions, and the red boxes indicate the
detected face regions.

domain translation method, using CelebA [34] images for the
RGB inputs. Both RGB and generated event-like images were
resized to a resolution of 640 by 640 for training purposes.
The RetinaFace [24] cross-modal training was conducted
from scratch using PyTorch as implemented by [42]. The
backbone network was MobileNet 0.25 [43], and we used
a batch size of 128 for our training on two NVIDIA RTX
3090 (24GB) GPUs. The SGD optimizer was utilized for
training, with other hyperparameters being set in accordance
with the general training setup for RetinaFace [42]. The
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FIGURE 7. Proposed event camera-based pupil localization algorithm on the real event camera (DAVIS 346 [23]). Selected test images are displayed,
capturing instances where the user’s head movement is fast enough to reveal eye and face shape information using the DAVIS 346 [23] event camera. The
red dots indicate the pupil center positions and the red boxes represent the detected face regions.

training process proceeded until the 250th epoch (Figure 5).
The results of the pupil localization training are presented in
Figure 6.
For testing, we utilized real event camera images captured

by DAVIS 346 [23] with our cross-modal trained model.
Two participants were recorded using DAVIS 346, with the
participants instructed to move at a speed that would allow
for clear capturing of face and pupil shape information. Given
that our study aims to only test images that exhibit sufficient
face and pupil information, we selected 1, 172 images with
an adequate amount of edge detail from the video dataset
for our testing (Table 2). The testing performance of the
proposed pupil localization on the 1, 172 real event camera
images demonstrated an accuracy of 99.4%, with successful
face detection in 1, 165 instances. Among these successful
face detection instances, pupil localization was successful
in 1, 132 cases, indicating an accuracy of 97.2%. Importantly,
we measured the precision of pupil localization against a
threshold of 10 mm, based on the rationale provided in the
Method section. This metric was chosen considering the
average human adult eye size and interpupillary distance,
converting pixel errors to physical errors for meaningful
assessment (Table 3). Figure 7 provides a sample of the
results obtained from the actual event camera, illustrating the
successful localization of pupils within the 10 mm precision
range.

V. DISCUSSION
Our results demonstrate the feasibility of pupil tracking
based on event cameras. While the quality of the event-
like images generated using our proposed method was
acceptable according to subjective visual tests, their validity
was also proved through the learning process for the pupil
localization algorithm. Our final pupil localization algorithm

showed strong performance when used with real event
cameras where the user’s head movement was fast enough
to reveal eye and face shape information, indicating that
our method for generating images similar to event images
works effectively. The face detection accuracy was very high,
at 99.4%, and the pupil alignment accuracy was 97.2%, a bit
lower than detection but still showing excellent performance.
As shown in the examples in Figure 7, even with various
user movements, the system was able to accurately find the
center of the pupil in the event camera images. This shows
it could be suitable for vehicular systems like DMS and AR
3D HUD applications where the driver’s face may move in
various ways.

In the RGB to Event image domain translation, we suc-
cessfully produced event-like images very similar to actual
event camera images using our adaptive StyleFlow algorithm,
which combines multiple pre-processing methods and the
StyleFlow [20] algorithm. This achievement represents the
first successful application of style-based image-to-image
translation specifically for event camera image generation,
marking a significant advancement in this field. To further
evaluate the superiority of our method, we extended our
comparisons to include not only the Style Transfer [44] algo-
rithm, one of the most renowned methods in style translation,
but also additional real-time style transfer approaches like
Fast Style Transfer [45] and AdaIN [46]. The Fast Style
Transfer algorithm, based on a perceptual loss [47], and
AdaIN, which transfers the global mean and variance of a
style image to a content image in the feature space, were
both trained and tested with an event image style. These
additional methods provide a comprehensive perspective on
the adaptability and efficiency of various style translation
techniques in event-like image generation.We also conducted
training and performance comparison tests with the original
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FIGURE 8. Comparative visualization of RGB-to-Event image domain translation methods. From left to right: Original RGB images (first column), images
translated using Style Transfer [44] (second column), fast style transfer [45] (third column), AdaIN [46] (fourth column), StyleFlow [20] (fifth column), and
our adaptive StyleFlow enhanced with the proposed pre-processing method (sixth column). The seventh column displays real event images captured by
DAVIS 346 [23] for direct comparison.

TABLE 4. Performance of the proposed pupil localization method according to different training strategies.

StyleFlow [20] algorithm to demonstrate the superiority of
our proposed pre-processing module. All of these previ-
ous methods, including the original StyleFlow [20], used
real event camera images as style input. However, when

generating event-like images, the Style Transfer [44], Fast
Style Transfer [45], and AdaIN [46] algorithms resulted in
images that, upon pixel-by-pixel comparison with real event
camera images, appeared more clustered and less reflective
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FIGURE 9. Comparison of pupil localization results using different strategies, evaluated with DAVIS 346 images from [23]. The red box indicates the
detected face box, and the two red circles show the localized pupil centers in each figure. Illustrated models are: (a) pretrained on RGB WiderFace [35],
(b) transfer learning with 1k and 7.5k event-like sets, (c) learning from scratch on 32k and 70k event-like sets, and (d) our ‘‘Cross-modal Learning’’
approach, which utilized learning from scratch by integrating 12k RGB and 7.5k event-like images.’’

of the distinct pixel characteristics inherent in event camera
images. While the original StyleFlow [20] algorithm reduced
this clustering issue somewhat, it was not removed entirely,
and a variety of artifacts appeared in the facial images due
to background information. When we used our proposed
multiple pre-processing method and StyleFlow [20], these
artifacts disappeared because the focus was on converting
the face region to an event camera, resulting in images very
similar to real event images. As a result, our proposed method
was successful in generating event-like images without
artifacts, capturing the sensitive, sparse responses to pixel-
level motion, a characteristic of event cameras. A comparison
of event-like image generation results for each method is
shown in Figure 8.

To validate the effectiveness of our proposed cross-
modal training, we compared the results of transfer learning
on a pretrained RetinaFace model [42] using our event-
like database, learning from scratch using only event-like
data, and our proposed cross-modal training. All tests
were performed on the same 1, 172 real event images.
Table 4 shows the performance comparison of these different
training methodologies. In terms of face detection accuracy,
both transfer learning and learning from scratch showed a
significant improvement over the pretrained model based on
RGB images. However, when it came to pupil alignment,
neither transfer learning nor learning from scratch, despite
using the event-like image database, demonstrated any sig-
nificant performance boost. Only our proposed cross-modal
learning methodology achieved a high accuracy of 97.2%.
Figure 9 describes the visual comparison of pupil localization
results by different training strategies. We measured success
accuracy based on a precision threshold of 10 mm for pupil
localization. Other training strategies often resulted in an
output with errors greater than 10 mm from the center of

the pupil and exceeded the boundaries of the eye shape.
This emphasizes the effectiveness of our cross-modal training
methodology, which uses a mixed database of RGB and
event-like images. One of the noticeable aspects of Figure 9
is how the tightness of the face detection bounding box
affects the precision of pupil localization. The bounding box
results created by our proposed cross-modal learning were
tighter compared to other methods, leading to an increase
in pupil localization precision. This indicates that while
other methods could detect faces with high success rates,
their box regression wasn’t accurate, which in turn affected
the final pupil localization precision. This suggests that our
cross-modal training method, utilizing a mixed database of
RGB and event-like images, can adapt to a wider range
of scenarios and perform well on real event camera data.
By incorporating both modalities during training, the model
effectively utilizes complementary information, leading to
a more comprehensive understanding of the data. Despite
the positive results, our study also has limitations. The
performance was lowest when learning solely from event-like
images, indicating imperfections in our RGB-to-event image
domain translation. This observation is strengthened as we
expanded the dataset for such learning from 32, 000 to 70,
000 images. This increase in the size of the training data led
to a decrease in both detection accuracy and pupil alignment
accuracy.

A. COMPARISON WITH EXISTING APPROACHES
Our proposed study is aligned with existing research efforts
in the field of eye tracking using event cameras. Event
cameras have been extensively studied for near-range eye-
gaze tracking, primarily for wearable devices, where high
temporal resolution is essential. For instance, Angelopou-
los [18] combined NIR cameras with event cameras to
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TABLE 5. Performance comparison with other methods.

achieve higher temporal resolution in gaze tracking compared
to traditional NIR camera-based methods. This approach
used event cameras for temporal interpolation between
NIR image frames, providing a solution to capture fast
eye movements that conventional RGB or NIR cameras
may miss.

However, when it comes to remote eye tracking using
event cameras, research is still in its early stages. Lenz et al.
[19] focused on remote eye blink detection using Prophesee
Gen3 ATIS [48]. This method used the temporal signature
of eye blinks to detect whether blinks occurred. Based
on this information, a Gaussian tracker and face detector
were utilized, enabling face detection only when blinks
were detected. While this study provided insights into face
detection and blink-related eye-region detection, it did not
include pupil center localization, a core aspect of our
research. Ryan et al. [49] also aimed at remote blinking
detection using Prophesee Gen4 [50] and achieved high
precision in face and eye-region detection. To enable face and
eye-region detection, they proposed a network architecture
called GR-YOLO. The training process utilized synthetic
event frame images generated from N-Helen data. The N-
Helen dataset was created by applying random augmentations
and transformations with 6 degrees of freedom (DOF)
to RGB Helen data [51], using a deep learning-based
frame interpolation algorithm to generate video data. This
generated video data was then transformed into synthetic
event data using the ESIM [52] algorithm, a video-to-event
simulator. Face and eye-region detection achieved a precision
performance of 90%. However, they did not undertake pupil
center localization as a separate task. Furthermore, EDDD
method, as presented by [53], primarily focuses on event-
based drowsiness detection for driving safety. They mounted
a DAVIS 346 [23] event camera in vehicles to collect
a significant dataset of event camera images. Using this
dataset, they trained machine learning models for drowsiness
detection with high accuracy, ranging from 94.42% to

99.9%, across various scenarios. Notably, this paper did
not evaluate face detection, eye detection, or pupil center
localization accuracy. The NEFER method [38] focused on
creating a facial expression dataset using event cameras,
generating synthetic event data from GoPro-captured high-
resolution RGB video data through ESIM [52]. They trained
a YOLOv2 [54]-based event-camera face detector and
developed Xception [55]-based face alignment techniques.
While they achieved a facial expression accuracy of 30.95%,
they did not assess the accuracy of real event camera-based
face, eye, or pupil detection. Please refer to Table 5 for a
detailed performance comparison.

One of the primary advancements in our work is the
accurate localization of pupil centers. This is particularly
significant as pupil center localization plays an essential
role in AR 3D HUD applications [4]. Accurately localizing
pupil centers is more intricate than detecting face or eye
regions, especially considering the subtle shape variations
in the entire face region. Additionally, our RGB-to-event
image domain translation method, StyleFlow [20], enables
efficient generation of synthetic event training data from
a single RGB image, eliminating the need for extensive
video datasets. Unlike methods relying on video input
or image shaking to create dynamic event streams, our
approach efficiently produces event-like images from static
RGB images, reducing the complexity and time required for
dataset construction. Furthermore, our cross-modal learning
strategy, utilizing both RGB and event images, significantly
enhances the performance of face detection and pupil
localization compared to previous studies. We outperformed
existing methods in terms of accuracy. In summary, our
study demonstrates substantial advancements in remote pupil
tracking using event cameras, with a focus on accurate pupil
center localization. We have overcome the challenges of
previous studies, presenting an efficient method for creating
synthetic event training data and proposing cross-modal
learning techniques.
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VI. CONCLUSION
In conclusion, our study successfully demonstrates the
potential of event camera-based pupil tracking. The method
we proposed for generating event-like images delivered
promising results with visuals closely matching real event
camera images. Additionally, the pupil localization training
with these generated event-like images proved the effect
of the RGB-to-event image domain translation. Our final
pupil localization algorithm, developed with our proposed
cross-modal training strategy, demonstrated high accuracy
in both face detection and pupil alignment. This surpassed
the performance of previous deep learning-based methods
trained on conventional RGB images and traditional training
schemes. Our approach, representing the first successful
application of style-based image-to-image translation for
event camera image generation, establishes a new foundation
in synthetic event image generation. Additionally, recog-
nizing the potential for network architecture advancements
specifically customized for event camera data, we have
outlined this promising direction as a future research area,
expanding on the foundation established by our current work.
In sum, our work marks a significant step forward in event
camera-based pupil tracking technology.
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