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ABSTRACT Shuffling is an essential countermeasure employed during the implementation of cryptographic
algorithms to mitigate vulnerabilities against side-channel attacks, regardless of the algorithm’s nature.
However, a comprehensive and structured shuffling framework has yet to be established, resulting in the
need for developers to create customized solutions adapted to their specific algorithmic or operational
requirements. This research paper introduces an innovative and systematic shuffling framework, providing
developers with a set of guidelines to effectively select suitable shuffling methodologies aligned with
their specific objectives. Additionally, we illustrate the application of this framework to the CRYSTALS-
Dilithium signature algorithm, a finalist in NIST’s Post-Quantum Cryptography (PQC) standardization
process. By leveraging our framework, we devise shuffling countermeasures and present an extensive array
of twelve shuffling schemes. For each scheme, shuffling schemes are applied universally to all operations
involving any confidential data, regardless of existence of known attacks targeting corresponding data.
We also measured the performance of implementations of our shuffling schemes, the minimal overhead
is 12.4%.

INDEX TERMS Side-channel countermeasure, hiding countermeasure, shuffling countermeasure,
horizontal shuffling, vertical shuffling.

I. INTRODUCTION
The security of widely used public key cryptosystems such
as RSA and ECC is based on mathematical hard problems
that factoring large integer and solving the discrete logarithm
problem. In 1994, Shor proposed a quantum algorithm that
can effectively break these hard problems [1]. Moreover, the
recent significant advancements in quantum computers have
increased the threat to modern cryptosystems. As a result,
the research and development of post-quantum cryptography
(PQC) (also known as quantum-resistant cryptography) have
been triggered.

The associate editor coordinating the review of this manuscript and
approving it for publication was Jiafeng Xie.

In 2016, National Institute of Standards and Technology
(NIST) initiated PQC standardization project to develop
additional public key cryptography including key encapsu-
lation mechanism and digital signature algorithms [2]. The
design criteria of PQC algorithms are to ensure the security
and efficiency of cryptographic algorithms which are secure
against both classical and quantum attacks. After multiple
rounds, in 2022, NIST announced four algorithms for
standardization, and fourth round candidate algorithms [3].
NIST also recommended two primary algorithms for most
use cases: CRYSTALS-Kyber for key establishment and
CRYSTALS-Dilithium for digital signatures [4], [5].
Side-channel attack (SCA) is a physical attack utilizing

side-channel information, such as timing variations, power
consumption, or electromagnetic radiation, leaked during
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execution of cryptographic algorithms [6]. Although the
design of PQC algorithms is focused on protecting against
quantum attacks, their implementations may still be vulner-
able to SCAs. Therefore, during the NIST PQC standardiza-
tion project, NIST wanted to gather more information about
the costs of implementing in a way that provides resistance to
SCAs [7].

To mitigate SCAs, there are two common countermeasures
called masking and hiding schemes [8]. Masking scheme
aims to randomize the intermediate data with additional data,
called masks, during the execution. On the other hand, hiding
scheme aims to make the side-channel leakage independent
of intermediate values or at least reduce the linkage between
them. Shuffling is one of the most common one among hiding
schemes and it can be the better choice for an implementation
against SCAs because of the heavy cost of masking when
deployed carefully.

There are a generalized and systematic framework for
masking schemes like d-th order masking and ISW masking
schemes [9]. However, to the best of our knowledge,
hiding countermeasures have only been proposed in an
algorithm-specific manner. For instance, [10] proposed a
shuffling scheme specialized for AES when implemented
on smart cards, and [11], [12] proposed shuffling schemes
tailored for long integer multiplication and number theoretic
transform (NTT) used in various cryptographic algorithms.
Additionally, [13], [14], [15] presented shuffling schemes
specifically designed for Saber and CRYSTALS-Dilithium,
which are currently undergoing standardization in NIST’s
PQC competition. Although various shuffling schemes
specialized for different algorithms have been extensively
proposed, a generalized and systematic framework, similar to
what exists for masking schemes, has not been put forward.

Such a structured and generalised framework helps
countermeasure designers to facilitate the design of shuf-
fling schemes. They can identify the appropriate shuffling
characteristics for their targeted cryptographic algorithms.
By identifying the potential dimensions and dependencies
of the permutations used in the horizontal shuffling, as well
as the number of folds in the potential vertical shuffling,
they can determine the possible shuffling methods by their
combinations. Consequently, designers can select the optimal
shuffling method from among the feasible options, taking
into account the appropriate trade-off between security and
performance within their target implementation environment.

A. OUR CONTRIBUTIONS
We make a dual contribution in this study. Firstly, we intro-
duce a novel and comprehensive framework for shuffling,
addressing a significant gap in the existing literature. Unlike
previous research that focused on specific cryptographic
algorithms or customized techniques for particular opera-
tions [10], [11], [12], [13], [14], [15], our framework offers
a general approach akin to masking. By providing imple-
menters with clear guidelines on incorporating shuffling

into their target cryptographic algorithms, we alleviate the
challenges of considering all relevant factors without proper
guidance.

Secondly, we apply our framework to the CRYSTALS-
Dilithium signature algorithm, which has been selected as a
finalist in NIST’s PQC standardization process. We develop
and implement twelve distinct shuffling countermeasures,
taking into account both the targeted operations of previous
attacks and operations involving secret values that have
not yet been exploited. Through a comparative performance
analysis, we demonstrate that our proposed countermeasures
incur a minimal overhead of 12.4%. Overall, our contribu-
tions encompass the establishment of a systematic shuffling
framework and its practical application to the CRYSTALS-
Dilithium algorithm, providing valuable guidance and effec-
tive countermeasures in the domain of side-channel analysis.

B. ORGANIZATION
The structure of this paper is as follows. In Section II,
we provide an explanation of shuffling countermeasures
and their application to various cryptographic algorithms.
Section III presents our proposed systematic framework for
shuffling countermeasure. Within this framework, we cate-
gorize shuffling countermeasure into horizontal and vertical
shuffling and provide a detailed explanation of their respec-
tive characteristics. Moving on to Section IV, we describe
the application of the shuffling framework proposed in
Section III to CRYSTALS-Dilithium. We discuss the methods
of applying the framework to CRYSTALS-Dilithium and
compare the performance of different applicable shuffling
countermeasures. Finally, in Section V, we summarize the
contributions made in this paper and conclude by discussing
the results of the applied shuffling schemes.

II. RELATED WORK
The objective of the hiding scheme is to ensure that the power
consumption of cryptographic devices remains unaffected by
intermediate values and operations performed [8]. There are
two approaches to achieving this goal. The first approach
involves inducing random power consumption in devices,
while the second approach aims to maintain consistent
power consumption across all data values and operations.
However, achieving complete randomization or uniformity
of power consumption in cryptographic devices is not
practically feasible. Nevertheless, there have been several
proposals that aim to approximate this objective. These
proposals can be categorized into two groups. The first group
focuses on altering the timing of operations to introduce
randomized power consumption. By modifying the execution
timing of operations, the power consumption becomes less
predictable and exhibits a more random pattern. The second
group of proposals involves techniques that manipulate the
amplitude of power consumption. Although these proposals
may not achieve perfect randomization or uniformity, they
offer methods to approach the goal of mitigating power
analysis attacks by introducing power variations and reducing
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correlations between power consumption and sensitive data
or operations.

A. SHUFFLING COUNTERMEASURES
Shuffling is a widely utilized technique to introduce ran-
domness in the timing of operations, thus enhancing the
security of cryptographic devices against power analysis
attacks. By shuffling the order of operations, the execution
timing becomes less predictable, introducing a level of
randomization in power consumption. The objective is to
disrupt any patterns or correlations that may exist in the power
consumption profile, making it challenging for attackers to
analyse and exploit the power side-channel information.

There are various methods available for shuffling oper-
ations, each with its own unique characteristics. Some
commonly used techniques include:

• Random Permutation (RP): This method involves
randomly permuting the order of operations using
a random permutation function [16]. By applying a
random permutation, the execution order of operations
is randomized, enhancing the level of shuffling.

• Random Start Index (RSI): In this approach, the starting
index of operations is randomized [17]. Each time
the operations are executed, a different starting point
is chosen, leading to varying execution orders and
introducing additional variability.

• Reverse Shuffle (RS): This method allows the selection
of either a forward or reverse execution order for the
operations [17]. By enabling the reverse direction as
an option, it introduces further randomness in the order
of operations, making it more challenging to establish
patterns.

• Sweep Swap Shuffle (SSS): This technique expands the
operation sequence into a matrix form and performs
the operations based on row or column order [17].
By reshaping the operation sequence and executing
based on row or column order, it introduces randomness
in the execution order.

These methods offer varying levels of shuffling and can be
applied based on the specific requirements and constraints
of the system or algorithm. The primary goal is to disrupt
any inherent patterns or correlations, thereby enhancing the
security against power analysis attacks.

B. SHUFFLING ON VARIETY CRYPTOGRAPHIC
ALGORITHM
Shuffling countermeasures serve as an effective option to
mitigate side-channel analysis in cryptographic algorithms,
regardless of their type, including symmetric key, public key,
and PQC algorithms. Herbst et al. introduced a technique for
applying shuffling to software implementations of AES in
2006 [10], which was later extended by Tillich et al. [18].
Additionally, Rivain et al. proposed a method that com-
bines higher-order masking with shuffling for enhanced
security [19]. These papers specifically focus on shuffling

methods for AES, as block ciphers commonly employ
a one-dimensional array to represent intermediate states.
Consequently, these techniques can be readily adapted
to other block ciphers with similar one-dimensional state
representations.

For classical public key algorithms like RSA and ECC,
Lee et al. proposed a shuffling method for long integer
multiplication operations [11]. Moreover, Nguyen and Pham
presented a shuffling technique for operations in the Mont-
gomery domain [20]. Since the discussion on PQC began,
numerous attack papers on PQC algorithms, such as Saber
and CRYSTALS-Dilithium, have emphasized the necessity of
shuffling schemes to counter the proposed attacks [12], [13],
[14], [15].

Similar to masking, shuffling is an indispensable coun-
termeasure in safeguarding cryptographic algorithms against
side-channel analysis, regardless of their type. In the context
of attacks on PQC, profiling attacks have received significant
attention, and relying solely on masking may not be sufficient
to thwart such attacks. As a result, shuffling has emerged
as a crucial defence mechanism and has gained considerable
attention in the field.

III. SYSTEMATIZATION OF SHUFFLING
As mentioned in Section II-B, a significant number of papers
have been published on the application of shuffling counter-
measures. However, most of these papers propose methods
that are specific to particular cryptographic algorithms, and
a generalized framework for shuffling countermeasures has
not been presented. Therefore, in this section, our objective
is to define shuffling, classify different types of shuffling,
and establish properties that can be associated with each
categorized shuffling method.
Definition 1 (Shuffling): Shuffling is a technique used to

randomize the order of instructions, which include both
functions and operations, within a cryptographic algorithm.
Definition 1 provides the definition of shuffling as defined

by Mangard et al. [8], where shuffling is described as a
method of randomizing the order of instructions. In this study,
we further classify instructions into two categories: functions
and operations. Based on this classification, we categorize
shuffling into two types: horizontal shuffling and vertical
shuffling. The classification of functions and operations can
vary depending on the perspective and context. For example,
in the case of the Advanced Encryption Standard (AES),
functions such as AddRoundKey, SubBytes, ShiftRows, and
MixColumns can be considered. These functions represent
higher-level operations that manipulate the data. Within
the SubBytes function, individual Sbox operations can be
viewed as lower-level operations. It is evident that a function
encompasses multiple operations within its scope.

A. HORIZONTAL SHUFFLING
Definition 2 (Horizontal Shuffling): Horizontal shuffling

refers to the technique of randomizing the order of operations
within a function in a cryptographic algorithm. It involves
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FIGURE 1. Example of applying permutation to AES’s intermediate state.

rearranging the sequence of operations within a function to
introduce randomness in their execution order.

Horizontal shuffling is defined as the process of rear-
ranging the order of independent operations within a
function to introduce randomness in the execution order,
while preserving the overall functionality of the function
(Definition 2). To achieve horizontal shuffling, a randomly
generated permutation is commonly used, representing a
random execution order for the independent operations
within the function. By applying this random permutation,
the execution order of operations is shuffled, leading to
increased variability and reduced correlation between power
consumption and sensitive data.
Property 1 (Permutation Dependency): Permutation dep-

endency indicates the degree to which functions share
permutations. All functions can share one permutation (Full-
Dependence), or functions can be grouped and only share
in a group (Group-Dependence). And all functions can use
permutations independently (Independence).

Permutations used in horizontal shuffling have two
properties. The first property relates to the dependency
between permutations used for different functions where
horizontal shuffling is applied. Based on this dependency,
there are three types of permutations used in horizontal
shuffling:
• Full-Dependence: In this case, a single permutation is
repeated throughout the entire cryptographic algorithm.
The same permutation is used repeatedly for all
functions where horizontal shuffling is applied.

• Group-Dependence: Functions that undergo shuffling
are grouped together, and each group shares a common
permutation. However, different groups utilize indepen-
dent permutations. This allows for variations in the
shuffling patterns within different groups of functions.

• Independence: Each function that undergoes shuffling
uses its own independent permutation. This provides
the highest level of variability and randomness, as each
function has a unique shuffling order.

These different levels of permutation dependency offer
flexibility in the application of horizontal shuffling, enabling
various trade-offs between security and overhead.

In the encryption algorithm that aims to apply shuffling
countermeasure, there are l functions that use secret values,
and these l functions can be grouped into g groups. In the case
of Full-Dependence, a single permutation P is used to apply
shuffling permutation to the l functions. Here, permutation
refers to an array that stores the randomly shuffled indexes
of an intermediate values or intermediate state. For example,
an unprotected intermediate state of AES can be shuffled by
a permutation P as depicted in Figure 1. In the case of Group-
Dependence, g permutationsP0,P1, · · · ,Pg−1 are generated,
and the functions belonging to the i-th group share the same
permutation Pi. This means that each group of functions uses
a distinct permutation. Finally, in the case of Independence,
l permutations P0,P1, . . . ,Pl−1 are generated, and only the
i-th function uses the permutation Pi. This means that all
l functions use unique permutations.
Property 2 (Permutation Dimension): Permutation dimen-

sion is the maximum number of dimensions to use when
creating permutations. If the maximum operation dimension
of functions is p, and the result is b = f (a) ∈ Fd1×d2×···×dp ,
then the permutation dimension is less than or equal to p.
The second property relates to the dimension of the

permutation used in horizontal shuffling. The intermediate
states targeted within the functions where shuffling is applied
may not be limited to one-dimensional arrays; they can also
be multidimensional arrays. For instance, if an intermediate
state is a 2D array of size K × L, there are two approaches
for generating permutations. The first approach, the 1-D
permutation approach, involves creating a one-dimensional
permutation of size K and a separate one-dimensional per-
mutation of size L. The shuffling process repeatedly uses the
L-sized one-dimensional permutationwhenever each element
of the K -sized permutation is invoked. The second approach,
the 2-D permutation approach, utilizes a one-dimensional
permutation of size K and a two-dimensional permutation of
size K × L. With this approach, a different one-dimensional
permutation of size L is chosen for each corresponding
one-dimensional permutation of size K . The goal is to
have K independent permutations of size L, where each
permutation of size L is independent from the others.

AES’s MixColumns is a suitable example. MixColumns
can be represented as the equation s′ = MC(s) ∈ GF(28)4×4.
Like this, MixColumns is a 2-dimensional operation, which
means the permutation dimension can be up to 2. Figure 2 (a)
illustratesMixColumnwithout applying the permutation. The
first operation to be performed is s′0 = (2 • s0) ⊕ (3 • s1) ⊕
s2 ⊕ s3.
An example of applying the shuffling countermeasure

using 1-D permutations is shown in Figure 2 (b), where
permutations Pcol for column indices and Prow for row
indices are generated. Pcol is applied first, followed by
the application of Prow to each individual column. Since a
common row permutation Prow is used for each column, the
matrix multiplication in Figure 2 (a) is rearranged to the
matrix multiplication in Figure 2 (b). In this case, the first
operation to be performed is to compute the value of the 0th
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FIGURE 2. Example of permutation dimension on AES’s MixColumns.

row of the 2nd column, which is s′8 = (2 • s8) ⊕ s11 ⊕
(3 • s9)⊕ s10.
Figure 2 (c) demonstrates an example of applying the

shuffling countermeasure using 2-D permutations. The

permutation Pcol for column indices is the same as the
1-D permutation, but independent permutations Prow for row
indices are generated for each column. In this case, the first
operation to be performed is to compute the value of the
3rd row of the 2nd column, which is s′11 = s11 ⊕ (2 • s8) ⊕
s10 ⊕ (3 • s9).

These approaches provide different strategies for applying
permutations to multidimensional arrays, enabling effective
shuffling of the intermediate state in cryptographic algo-
rithms. It is important to note that if the maximum dimension
of the operation is p, the permissible dimension for the
permutation is p or lower. As depicted in Figure 3, horizontal
shuffling can be visualized in a plane where permutation
dependency and permutation dimension represent the axes.

B. VERTICAL SHUFFLING
Definition 3 (Vertical Shuffling): Vertical shuffling is a

method of randomizing the order of functions in an crypto-
graphic algorithm. If there are multiple f2 functions within
f1 function, multiple f3 functions within f2 function, and so
up to fv, then up to v-fold vertical shuffles are possible.

Vertical shuffling is a method of shuffling the order of
function invocations within a cryptographic algorithm. It has
two key characteristics:

• Independence: The target functions for vertical shuffling
must be independent of each other. This means that their
execution order can be altered without affecting the out-
put. If the functions perform different operations, they
can be distinguished by observing side-channel traces.
For example, in AES, the SubBytes and ShiftRows
functions can be invoked in any order without impacting
the result. Although the original AES specification
specifies the order of performing SubBytes followed
by ShiftRows, these functions have an independent
relationship, allowing for the possibility of performing
ShiftRows first without any issues. Shuffling the order
of executing the SubBytes and ShiftRows functions
randomly is referred to as 1-fold vertical shuffling.

• Function Grouping: Functions can be grouped and
composed into higher-level functions, and the order of
these function groups can be shuffled, while maintaining
the order of functions within each group. This is known
as 2-fold vertical shuffling. By generalizing this concept,
if functions are grouped into v layers and these layers can
be independently shuffled, it is possible to apply v-fold
vertical shuffling.

One of the most representative examples of vertical
shuffling is RSA-CRT (Chinese Remainder Theorem).
In RSA-CRT, the signature is generated by computing
sp = mdp mod p and sq = mdq mod q, where dp =
d mod p − 1 and dq = d mod q − 1. Then, S = sq +((
sp − sq mod p

)
·
(
q−1 mod p

)
mod p

)
·q is calculated. The

processes of creating sp and sq are independent, allowing the
randomization of their execution order. This is referred to as
1-fold vertical shuffling.
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FIGURE 3. Shuffling space.

In summary, vertical shuffling allows for the ran-
domization of function execution order, considering both
single-layer and multi-layer shuffling where functions can be
grouped and shuffled independently at different levels. This
concept is represented by the vertical axis in Figure 3.

IV. RESULTS AND DISCUSSIONS
This section presents an example of applying the shuffling
countermeasure, as defined in Section III, to CRYSTALS-
Dilithium.

A. SHUFFLING ON CRYSTALS-DILITHIUM
1) CRYSTALS-DILITHIUM
CRYSTALS-Dilithium [5] is one of the three digital signature
finalists of the NIST PQC standardization process. Its
security is based on the hardness of theModule Learning with
Errors (M-LWE) and Module Short Integer Solution (M-SIS)
problems.

CRYSTALS-Dilithium consists of three different parameter
sets:Dilithium2,Dilithium3, andDilithium5, depending on
NIST security levels. It is operating in the polynomial ring
Rq = Zq [X ] / (Xn + 1), where n = 256 and q is 8380417 =
223−213+1. The remaining parameters are given in Table 1.
Algorithm 1 and Algorithm 2 specify key generation and

signature generation of CRYSTALS-Dilithium, respectively.
Please note that all lines of the algorithms are based on the
implementation in PQClean [21]. In Algorithm 1, although
not explicitly written as a function, there is a process of
packing the public key pk and the secret key sk in line 13.
Similarly, in Algorithm 2, there is a process of unpacking sk
before line 1. The NTT representation of a ∈ Rq is denoted
as â = (a (r0) , a (−r0) , . . . , a (r127) , a (−r127)) ∈ Z256

q ,

TABLE 1. Parameters of CRYSTALS-Dilithium.

where ri = rbrv(128+i) mod q and r = 1753 which is the
512-th root of unity modulo q. All multiplication operations
are efficiently processed using point-wise multiplication in
the NTT domain for optimization purposes. For more details,
please refer to the original article [5].

2) FUNCTIONS TO BE PROTECTED
In CRYSTALS-Dilithium, the elements of the secret key sk
that should not be exposed to an attacker are K , s1, s2, and
t0. Therefore, all operations involving these elements are
potentially vulnerable to attacks.

In Algorithm 1 for key generation, an attacker may attempt
to obtain s1 or s2 by attacking line 4 where they are generated.
Lines 5 to 8 use s1, line 9 uses both s1 and s2, and
lines 10 and 11 use t0, all of which are potential targets
for attacks. Finally, the process of packing the sk elements
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Algorithm 1 CRYSTALS-Dilithium: KeyGen
Input: -
Output: Public key pk = (ρ, t1),

Secret key sk = (ρ,K , tr, s1, s2, t0)
1: ζ ← {0, 1}256

2: (ρ, ς,K ) ∈ {0, 1}256×3 := H1 (ζ )

3: Â ∈ Rk×l
q := ExpandA (ρ)

4: (s1, s2) ∈ S lη × Skη := H2 (ς)

5: ŝ1 := NTT (s1)
6: t̂ := Âŝ1
7: t̂ = t̂ mod+Q
8: t := NTT−1

(̂
t
)

9: t = t + s2
10: t = t mod±Q/2
11: (t1, t0) := Power2Round (t, d)

12: tr ∈ {0, 1}384 := CRH (ρ ∥ t1)
13: return pk = (ρ, t1), sk = (ρ,K , tr, s1, s2, t0)

in line 13 can also be considered as a potential target for
attacks.

In Algorithm 2 for signature generation, there are more
potential points of attack compared to Algorithm 1. First,
the process of unpacking sk before executing Algorithm 2
can be a target for attacks, similar to the packing process
in Algorithm 1. In line 4, NTT transformations are per-
formed on s1, s2, and t0 individually. The operations from
lines 5 to 11 are initiated from the secret value K .
Lines 15 to 18 involve the usage of s1. Furthermore, lines 20
to 24 involve the usage of K and s2, while lines 25 to
28 utilize t0. Lastly, the secret values associated with
lines 29 and 30 are K , s2, and t0. Although line 19 is an
operation associated with s1, it is solely a range verification
operation for the values included in the disclosed signature.
Therefore, it does not involve any sensitive computations that
require protection.

CRYSTALS-Dilithium uses SHAKE for random value
extraction. In Algorithm 1, line 2, and Algorithm 2, line 2,
SHAKE is utilized. In Algorithm 1, line 2, SHAKE is
performed to generate ρ, ς , and K . ρ is a public value,
and ς serves as the seed for generating s1 and s2 using
rejection sampling. Even if an attacker could reveal the values
of s1 and s2 due to the shuffling applied during rejection
sampling, she wouldn’t be able to determine the indices
where each value is stored. Thus, applying shuffling to the
part generating ς would not enhance security. Therefore,
the shuffling is applied only to the part generating K .
In Algorithm 2, line 2, y is generated using ρ′, which
is generated using SHAKE as a seed. In the deterministic
version, to ensure that the same signature is generated for the
samemessage, shuffling cannot be applied to the part generat-
ing ρ′. Countermeasures such as masking scheme or dummy
operations could be used for this part, but these options lie
beyond the scope of this paper and are left to the designer’s
discretion.

Algorithm 2 CRYSTALS-Dilithium: Sign
Input: Message m,

Secret key sk = (ρ,K , tr, s1, s2, t0)
Output: Signature σ = (z, c, h)
1: µ ∈ {0, 1}384 := CRH (tr ∥ m)

2: ρ′ ∈ {0, 1}384 := CRH (K ∥ µ)

3: Â ∈ Rk×l
q := ExpandA (ρ)

4: κ := 0, ŝ1 := NTT (s1), ŝ2 := NTT (s2),
t̂0 := NTT (t0)

5: y ∈ s̃γ1
l
:= ExpandMask

(
ρ′, κ ++

)
6: ŷ := NTT (y)
7: ŵ := Â̂y
8: ŵ = ŵ mod+Q
9: w := NTT−1 (ŵ)

10: w = w mod±Q/2
11: w1 := Decompose (w, 2γ2)
12: c̃ ∈ {0, 1}256 := H (µ ∥ w1)

13: c ∈ Bτ := SampleInBall (̃c)
14: ĉ := NTT (c)
15: ẑ := ĉŝ1
16: z := NTT−1 (̃z)
17: z = z+ y
18: z = z mod+Q
19: If ∥z∥∞ ≥ γ1 − β, then goto line 5
20: r̂0 := ĉŝ2
21: r0 = NTT−1 (r̂0)
22: r0 = w− r0
23: r0 = r0 mod+Q
24: If ∥r0∥∞ ≥ γ2 − β, then goto line 5
25: ĥ := ĉt̂0
26: h = NTT−1

(̂
h
)

27: r1 := h mod+Q
28: If ∥r1∥∞ ≥ γ2, then goto line 5
29: r0 = r0 + r1
30: h := MakeHint (−r1, r0, 2γ2)
31: If ∥h∥∞ > ω, then goto line 5
32: return σ = (z, c̃, h)

3) HORIZONTAL SHUFFLING
In CRYSTALS-Dilithium, we can utilize three types of
permutation dependency. When using Full-Dependence per-
mutation, a single permutation can be used for each KeyGen
and Sign algorithm. On the other hand, when using Inde-
pendence permutation, each target function in the KeyGen
and Sign algorithms that requires shuffling countermeasures
should use independent permutations. Lastly, to use Group-
Dependence permutation, we need to establish criteria for
grouping the functions first.

The secret key of CRYSTALS-Dilithium consists of four
secret values: K , s1, s2, and t0. The relationships among these
secret values are as follows:

As1 + s2 = t (= (t1, t0)) (1)

and y and w are generated using the secret value K .
In line 17 of Algorithm 2, y is added to the result of
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multiplying c and s1. Similarly, in line 22, w is subtracted
from the result of multiplying c and s2. While the result of
adding y is publicly disclosed, the result of subtracting w is
not. Therefore, it is possible to recover s1 from K , but not s2,
due to the lack of public information about the subtraction
operation.

Based on the interrelationships among the four secret val-
ues, we can group the operations that need countermeasures
in Algorithm 1 and Algorithm 2. We can group the relevant
operations in Algorithm 1 as follows:
• Group 1:

– Lines 2 and 13, where K (related to s1) is used.
– Lines 4 to 8 and 13, where s1 is generated or used.

• Group 2:
– Lines 4 and 13, where s2 is generated or used.

• Group 3:
– Lines 10, 11, and 13, where t0 is generated or used.

• Group 4:
– Line 9, where both s1 and s2 are used together. This

group should be separated from the groups where
s1 or s2 are used solely.

Similarly, grouping the operations in Algorithm 2 can be done
as follows:
• Group 1:

– Lines 0, 4, and 15 to 18, where s1 is used.
– Lines 0 and 5 to 11, where K (related to s1) is used.

• Group 2:
– Lines 0 and 4, where s2 is used.

• Group 3:
– Lines 0, 4, and 25 to 28, where t0 is used.

• Group 4:
– Lines 20 to 24, where both K and s2 are used

together.
• Group 5:

– Lines 29 and 30, where K , s2, and t0 are used
together.

In this case, there is an additional step before performing the
operations in Algorithm 2, which is the unpacking process of
the secret key, sk . Let’s denote this step as a new line, line 0,
which represents the process of unpacking the secret key.
This step can be similar to the process described in line 13 of
Algorithm 1.
By using 4 groups in the KeyGen algorithm and 5 groups in

the Sign algorithm to apply Group-Dependence permutation,
even if one group is analysed, it is not possible to determine
the permutations of other groups based on the analysed
permutation information. Therefore, the grouping criteria we
defined are valid.

Table 2 illustrates the operations requiring shuffling coun-
termeasures in the key generation algorithm of CRYSTALS-
Dilithium along with their operation counts. Sampling,
NTT, NTT−1, multiplication, reduction, addition, rounding,
and packing are the targeted operations. Table 3 presents

TABLE 2. The detailed iteration count of the target operations in
Algorithm 1.

TABLE 3. The detailed iteration count of the target operations in
Algorithm 2.

the operations necessitating shuffling countermeasures in
the signature algorithm, along with their operation counts.
Unpacking, NTT, NTT−1, sampling, multiplication, reduc-
tion, decompose, addition, subtraction, norm check, and
MakeHint are the operations targeted. Since both algorithms
involve multiplication operations with a dimension of k ×
l × n, we can use a maximum of 3-D permutation. However,
since both k and l represent the number of polynomials,
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we will consider 1-D and 3-D permutations and omit 2-D
permutations.

In addition, for the transformations to and from the NTT
domain in CRYSTALS-Dilithium, we modify the shuffling
method proposed by Ravi et al. in 2020 [12]. Ravi et al.
proposed three shufflings specifically for the NTT: Coarse-
Full-Shuffle, Coarse-In-Group-Shuffle, and Fine-Shuffle.
However, Hermelink et al. in 2023 demonstrated that both
Coarse-In-Group-Shuffle and Fine-Shuffle are vulnerable to
attacks when applied to CRYSTALS-Kyber [22]. Although the
NTT used in CRYSTALS-Dilithium utilizes all eight layers
and does not allow sparse NTT inputs as in Hermelink et al.’s
attack, we still analyse that it is vulnerable to attacks with
high complexity. Therefore, we adopt Coarse-Full-Shuffling
for our shuffling. However, in the implementation code of
Ravi et al., different permutations were used for each layer.
Since using different permutations does not enhance security,
for the sake of efficiency, we choose to use the same
permutation for the layers within the NTT operation.

Using the three permutation dependencies (Full-Dependence,
Independence, and Group-Dependence) and two permutation
dimensions (1-D and 3-D), we can construct six different
horizontal shufflings for CRYSTALS-Dilithium. These can
be represented as six points on the plane formed by the
permutation dependency axis and the permutation dimension
axis, as shown in Figure 4.

4) VERTICAL SHUFFLING
To apply vertical shuffling, the functions or groups of func-
tions should possess the characteristics mentioned in Sec-
tion III-B. However, the KeyGen algorithm of CRYSTALS-
Dilithium does not have a relevant part for vertical shuffling.
In the Sign algorithm, there are two possible parts that
satisfy the criteria. The first one is the NTT transformation
operations of s1, s2, and t0, which occur in line 4 and are
all independent and identical functions. These operations can
be shuffled vertically. The second part, which consists of
groups from line 15 to 19, line 20 to 24, and line 25 to 28,
requires some modifications to satisfy the criteria for vertical
shuffling. However, the group from line 25 to 28 does not
include any addition or subtraction operations, which are
required for vertical shuffling. Therefore, it cannot be directly
shuffled vertically. Considering the difference in the number
of polynomials between s1, s2, and t0 in different security
levels of CRYSTALS-Dilithium, it is necessary to address
the distinguishability issue that arises from the different
polynomial counts. To address this issue, Algorithm 3
is presented, which modifies the sign algorithm to apply
vertical shuffling while considering the varying number of
polynomials in s1, s2, and t0. This modified algorithm ensures
that the shuffling is performed in a way that mitigates the
distinguishability through side-channel trace observation.

In Algorithm 2, line 4 is divided into lines 4 and 5
in Algorithm 3. In line 4, only the NTT transformation
functions for l polynomials of s1, s2, and t0 are performed,

Algorithm 3 CRYSTALS-Dilithium: Sign With Vertical
Shuffling
Input: Message m,

Secret key sk = (ρ,K , tr, s1, s2, t0)
Output: Signature σ = (z, c, h)

...

4: κ := 0, ŝ1 := NTT (s1),
ŝ2 [0 : l − 1] := NTT (s2 [0 : l − 1]),
t̂0 [0 : l − 1] := NTT (t0 [0 : l − 1])

5: ŝ2 [l : k − 1] := NTT (s2 [l : k − 1]), t̂0 [l : k − 1] :=
NTT (t0 [l : k − 1])

...

15: ẑ := ĉŝ1
16: z := NTT−1 (̃z)
17: z = z+ y
18: z = z mod+Q
19: If ∥z∥∞ ≥ γ1 − β, then goto line 5
20: r̂0 [0 : l − 1] := ĉŝ2 [0 : l − 1]
21: r0 [0 : l − 1] = NTT−1 (r̂0 [0 : l − 1])
22: r0 [0 : l − 1] = w [0 : l − 1]− r0 [0 : l − 1]
23: r0 [0 : l − 1] = r0 [0 : l − 1] mod+Q
24: If ∥r0 [0 : l − 1] ∥∞ ≥ γ2 − β, then goto line 5
25: ĥ [0 : l − 1] := ĉt̂0 [0 : l − 1]
26: h [0 : l − 1] = NTT−1

(̂
h [0 : l − 1]

)
27: r1 [0 : l − 1] := h [0 : l − 1] mod+Q
28: d [0 : l − 1] = d [0 : l − 1]−h [0 : l − 1]
29: If ∥r1 [0 : l − 1] ∥∞ ≥ γ2, then goto line 5
30: r̂0 [l : k − 1] := ĉŝ2 [l : k − 1]
31: r0 [l : k − 1] = NTT−1 (r̂0 [l : k − 1])
32: r0 [l : k − 1] = w [l : k − 1]− r0 [l : k − 1]
33: r0 [l : k − 1] = r0 [l : k − 1] mod+Q
34: If ∥r0 [l : k − 1] ∥∞ ≥ γ2 − β, then goto line 5
35: ĥ [l : k − 1] := ĉt̂0 [l : k − 1]
36: h [l : k − 1] = NTT−1

(̂
h [l : k − 1]

)
37: r1 [l : k − 1] := h [l : k − 1] mod+Q
38: d [l : k − 1] = d [l : k − 1]−h [l : k − 1]
39: If ∥r1 [l : k − 1] ∥∞ ≥ γ2, then goto line 5

...

shuffling their execution order. Then, in line 5, the NTT
transformations for the remaining k− l polynomials of s2 and
t0 are performed, shuffling their execution order as well.
In Algorithm 2, lines 15 to 28 are replaced by lines 15

to 39 in Algorithm 3. Similar to the preceding NTT
transformation function, lines 20 to 29 are first executed for l
polynomials, while lines 30 to 39 handle the remaining k − l
polynomials. There are two differences from Algorithm 2.
Firstly, in line 19, the norm check function undergoes
horizontal shuffling. In Algorithm 2, horizontal shuffling was
applied to the norm check function for r0 and r1, as they
handle secret values, but not for z, which is a public value.
However, to ensure indistinguishability in the side-channel
trace, Algorithm 3 applies horizontal shuffling to the norm
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FIGURE 4. Proposed shufflings on shuffling space.

check function for z as well. Secondly, dummy subtraction
operations are added in lines 28 and 38 of Algorithm 3.
These dummy operations are included to maintain the same
structure as other function groups. In the modified algorithm,
vertical shuffling is applied by shuffling three groups: lines
15 to 19, lines 20 to 24, and lines 25 to 29. Then, two groups
are shuffled: lines 30 to 34 and lines 35 to 39, to further apply
vertical shuffling.

By applying the vertical shuffling described in this section
to the horizontal shuffling explained in Section III-B,
we can add six points with 1-Fold vertical shuffling to the
shuffling space illustrated in Figure 4. In this way, we can
explore a total of 12 shuffling methods that can be applied
to CRYSTALS-Dilithium. These shuffling methods provide
different combinations of horizontal and vertical shuffling to
enhance the security of the algorithm.

B. IMPLEMENTATION RESULTS
We utilized the PQClean implementation [21] of CRYSTALS-
Dilithium as our baseline code in this study. The code was
compiled using clang-1403.0.22.14.1 on a MacBook Air
equipped with an Apple M1 chip. We employed the -O3
compilation option for optimization purposes. To generate
permutations, we leveraged the Knuth-Yates algorithm,
as implemented in the code provided by Ravi et al. [12].
For performance measurement, we utilized neon-ntt1 and
calculated the average number of clock cycles over one
thousand executions.

Table 4, 5, and 6 showcase the performance measurement
outcomes for the three security levels, encompassing all
twelve combinations where both techniques were employed.
The 3D permutation, along with group dependence, was
utilized, and the inclusion of vertical shuffling was denoted
as ‘‘3-D Group-Dependence + 1-Fold’’. It should be noted
that vertical shuffling is solely applicable to the sign
algorithm; thus, the performance was solely measured for
the sign algorithm. Upon applying 1-D Full-Dependence
to security level 5, the results demonstrated the lowest
overhead, with a 12.4% increase in KeyGen and a 17.18%
increase in Sign. When exclusively employing horizontal
shuffling with a 1-dimensional permutation, the overhead

1https://github.com/neon-ntt/neon-ntt

TABLE 4. Performance of shuffling on CRYSTALS-Dilithium security level 2.

TABLE 5. Performance of shuffling on CRYSTALS-Dilithium security level 3.

remained below 60%. While the presented outcomes may
appear relatively substantial, it is crucial to consider that the
implemented countermeasures cover not only the targeted
operations of the attacks proposed for CRYSTALS-Dilithium,
but also operations involving secret values that have yet
to be attacked. Naturally, as the permutation dimension
increases, the permutation becomes more independent, and
vertical shuffling is introduced, the overhead proportionally
escalates.

Indeed, the most secure countermeasures are 3-D Inde-
pendence for KeyGen and 3-D Independence + 1-Fold for
Sign. However, the overhead of most secure methods are
very high. Hence, making a proper choice of shuffling
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TABLE 6. Performance of shuffling on CRYSTALS-Dilithium security level 5.

countermeasure is essential for a countermeasure designer
to strike a balance between security and performance
considering specific environment of the target cryptographic
device and assumptions about potential attackers.

V. CONCLUSION
In this study, we have introduced a comprehensive and
systematic framework for shuffling techniques. Unlike pre-
vious research that focused on proposing specific shuf-
fling methods for particular algorithms or operations, our
framework provides a structured approach for designers to
identify suitable shuffling characteristics for cryptographic
algorithms, considering their unique properties. This enables
designers to make well-informed decisions when selecting
appropriate countermeasures.

Moreover, we applied our framework to CRYSTALS-
Dilithium, which is one of the PQC signature algorithms
selected as a finalist in NIST’s PQC standardization process.
We developed and implemented twelve shuffling coun-
termeasures and evaluated their performance. Importantly,
we applied these countermeasures to functions that have not
been previously targeted by attacks. The results demonstrated
a minimal overhead of 12.4%, indicating the feasibility and
effectiveness of our proposed shuffling techniques.
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