
Received 9 November 2023, accepted 3 December 2023, date of publication 14 December 2023,
date of current version 29 December 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3343249

Analysis of Feature Selection Methods in
Software Defect Prediction Models
MISBAH ALI 1, TEHSEEN MAZHAR1, TARIQ SHAHZAD 2, YAZEED YASIN GHADI 3,
SYED MUHAMMAD MOHSIN 4,5, SYED MUHAMMAD ABRAR AKBER 6,
AND MOHAMMED ALI 7
1Department of Computer Science, Virtual University of Pakistan, Lahore 55150, Pakistan
2Department of Computer Sciences, COMSATS University Islamabad, Sahiwal Campus, Sahiwal 57000, Pakistan
3Department of Computer Science and Software Engineering, Al Ain University, Abu Dhabi, United Arab Emirates
4Department of Computer Science, COMSATS University Islamabad, Islamabad 45550, Pakistan
5College of Intellectual Novitiates (COIN), Virtual University of Pakistan, Lahore 55150, Pakistan
6Department of Computer Graphics, Vision and Digital Systems, Faculty of Automatic Control, Electronics and Computer Science, Silesian University of
Technology, 44-100 Gliwice, Poland
7Department of Computer Science, Applied College, King Khalid University, Abha 61421, Saudi Arabia

Corresponding authors: Tehseen Mazhar (tehseenmazhar719@gmail.com), Syed Muhammad Mohsin (syedmmohsin9@gmail.com),
and Syed Muhammad Abrar Akber (abrar.akber@polsl.pl)

This work was supported by the Deanship of Scientific Research (DSR), King Khalid University, Abha, Saudi Arabia,
under Grant RGP.1/380/43.

ABSTRACT Improving software quality by proactively detecting potential defects during development is
a major goal of software engineering. Software defect prediction plays a central role in achieving this goal.
The power of data analytics and machine learning allows us to focus our efforts where they are needed
most. A key factor in the success of software fault prediction is selecting relevant features and reducing
data dimensionality. Feature selection methods contribute by filtering out the most critical attributes from
a plethora of potential features. These methods have the potential to significantly improve the accuracy
and efficiency of fault prediction models. However, the field of feature selection in the context of software
fault prediction is vast and constantly evolving, with a variety of techniques and tools available. Based
on these considerations, our systematic literature review conducts a comprehensive investigation of feature
selection methods used in the context of software fault prediction. The research uses a refined search strategy
involving four reputable digital libraries, including IEEE Explore, Science Direct, ACMDigital Library, and
Springer Link, to provide a comprehensive and exhaustive review through a rigorous analysis of 49 selected
primary studies from 2014. The results highlight several important issues. First, there is a prevalence of
filtering and hybrid feature selectionmethods. Second, single classifiers such as Naïve Bayes, Support Vector
Machine, and Decision Tree, as well as ensemble classifiers such as Random Forest, Bagging, and AdaBoost
are commonly used. Third, evaluation metrics such as area under the curve, accuracy, and F-measure are
commonly used for performance evaluation. Finally, there is a clear preference for tools such as WEKA,
MATLAB, and Python. By providing insights into current trends and practices in the field, this study offers
valuable guidance to researchers and practitioners to make informed decisions to improve software fault
prediction models and contribute to the overall improvement of software quality.

INDEX TERMS Machine learning, feature selection, software defect prediction, artificial intelligence.

I. INTRODUCTION
Feature selection (FS) methods are used to identify and retain
the most relevant and informative data features for building
accurate prediction models [1], [2], [3], [4], [5]. In literature,
various terms such as attributes, metrics, and dimensions

The associate editor coordinating the review of this manuscript and

approving it for publication was Walter Didimo .

have been used for software features [6], [7]. The data
contains numerous features, giving rise to noisy, irrelevant,
and redundant information. As a result, the learning algorithm
experiences an increase in both computation time and error
rate [8], [9]. As the volume of data grows exponentially, the
quality of data required for processing decreases gradually.
This restriction is commonly referred to as the ‘‘Curse of
Dimensionality’’, a concept introduced by Richard Bellman

145954


 2023 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.
For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

VOLUME 11, 2023

https://orcid.org/0009-0004-0152-150X
https://orcid.org/0000-0001-5718-5585
https://orcid.org/0000-0002-7121-495X
https://orcid.org/0000-0003-0886-9061
https://orcid.org/0000-0002-8863-2568
https://orcid.org/0000-0002-5908-4013
https://orcid.org/0000-0002-4379-6059


M. Ali et al.: Analysis of Feature Selection Methods in Software Defect Prediction Models

in the 1960s and remains a topic of ongoing research [10],
[11], [12]. Feature selection is a crucial step in data pre-
processing, addressing the challenge of high-dimensional
datasets [13]. This challenge involves two aspects: irrelevant
variables, where certain features (independent variables) do
not impact the target features (dependent variables), and
redundant variables, where independent variables exhibit
high correlation and can be removed [14].
In recent years, feature selection methods have gained

more prominence due to their capability to enhance pre-
diction accuracy and reduce model creation time [15],
[16], [17], [18], [19]. These methods find applications in
various domains, including healthcare and medicine, fraud
detection, sentiment analysis, etc. [20], [21], [22], [23]. Four
main categories of feature selection methods exist filter,
wrapper [24], [25], embedded, and hybrid [10], [26]. Brief
description of each fatire selection method is gioven in the
following.
Filter Method: The Filter method, an open-loop approach,

is one of the earliest feature selection methods. It assesses
features based on their intrinsic characteristics before the
learning tasks. This method relies on four measurement
criteria: information, dependency, consistency, and distance.
It performs feature selection independent of the machine-
learning algorithm and utilizes statistical standards to rank
the feature subsets [27], [28], [29]. Examples include Infor-
mation Gain, Chi-square test, and Correlation Coefficient etc.
Wrapper Method: The Wrapper method, also known as

a closed-loop approach, encapsulates the feature selection
process around the learning algorithm and utilizes the
accuracy or error rate of the classification process to evaluate
features. Its goal is to select the most discriminating feature
subset by reducing a specific classifier’s estimation error.
The wrapper method performs feature selection based on the
learning algorithm’s performance, ultimately choosing the
most optimal features for the prediction process. Due to their
multivariate nature, most wrapper methods require extensive
computation times to achieve convergence, making them
impractical for large datasets. Examples include forward
selection, backward elimination, and recursive elimina-
tion [30], [31].
Embedded Method: The Embedded method is a built-in

feature selection mechanism that integrates feature selection
directly into the learning algorithm, leveraging its properties
to guide feature evaluation. Compared to thewrappermethod,
the embedded approach is more efficient computationally
while maintaining similar performance levels [32]. By com-
bining the qualities of filter and wrapper methods, the
embedded method selects features during the implementa-
tion of the algorithm, resulting in reduced computational
complexity [33]. This is achieved by avoiding repeated
executions of the classifier and the examination of every
feature subset. Examples include LASSO and regularization
tree-based methods.
Hybrid Method: Recent advancements in feature selection

have led to the development of a hybrid method. This

FIGURE 1. Feature selection methods.

approach can be formulated by combining two distinct
methods, for example, integrating both wrapper and filter
techniques with identical criteria or feature selection method-
ologies. By adopting a hybrid method, the benefits of both
methods can be achieved, leveraging their complementary
strengths to enhance the feature selection process [34].
Figure 1 illustrates the hierarchical structure of feature
selection methods.

Software defect prediction (SDP) uses historical data
and machine learning techniques to predict and identify
potential defects in software systems during the development
phase. The main objective of software defect prediction
is to proactively identify areas of code that are likely
to contain flaws, allowing the software quality assurance
team to focus their testing and debugging efforts on these
high-risk areas [35], [36], [37]. Over the past decade,
several researchers have presented empirical evidence that
incorporating the feature selection method in the pre-
processing step leads to improved classification accuracy in
the context of software defect prediction [38], [39], [40].
A systematic literature review (SLR) is a structured research
process to systematically identify, evaluate, and synthesize
existing literature on a specific research topic or question.
It aims to provide a comprehensive and unbiased overview
of the available evidence related to the chosen topic.

Considering the importance of feature selection in pre-
dicting software failures, it’s worth noting that a previous
systematic review has provided valuable insights from the last
decade of research [41]. This earlier review, which examined
15 primary studies from 2007 to 2017, laid the groundwork
for exploring the role of feature selection methods, but left
room for further investigation. This SLR attempts to extend
this research to a broader and more up-to-date spectrum.
By considering a selection of 49 primary studies from
reputable repositories from 2014 to 2023, including IEEE
Xplore, Science Direct, ACM Digital Library and Springer
Link, this SLR takes a comprehensive look at the latest
advances in the field. It aims to review and update the
current state of feature selection techniques in software
bug prediction, provide new insights into their application

VOLUME 11, 2023 145955



M. Ali et al.: Analysis of Feature Selection Methods in Software Defect Prediction Models

and relative performance, and thus expand the body of
knowledge.

A. OBJECTIVE OF THE STUDY
The main objective of this SLR is to conduct a thorough
and comprehensive investigation and analysis of the use
of feature selection methods in the context of software
failure prediction. The study aims to identify the predominant
types of feature selection techniques implemented, the
classification approaches used, the performance evaluation
measures used, the datasets used, and the commonly used
tools for executing feature selection methods. A thorough
review of primary studies will provide a detailed and up-to-
date understanding of the current landscape of software fault
prediction methods.

B. MOTIVATION OF THE STUDY
This study is motivated by the central role of predicting
software defects in improving software quality. Early detec-
tion of potential defects during development can significantly
reduce the cost and effort of fixing software problems
after deployment. Feature selection methods are recognized
as key to the accuracy and efficiency of fault prediction
models as they identify relevant features and reduce the
dimensionality of the data. The motivation behind this SLR is
to provide researchers and practitioners with insights into the
latest trends and best practices in feature selection methods
for predicting software defects. By answering key research
questions, this study aims to enable stakeholders to make
informed decisions to improve the effectiveness of software
fault prediction models, ultimately leading to higher software
quality and reliability. The study focuses on papers published
since 2014 and extracts relevant literature from four well-
known online search libraries: ACM, IEEE Xplore, Science
Direct and Springer Link. Initially, 13,123 articles were
found, and through a rigorous systematic research process,
49 relevant articles were selected as primary studies (PS).

C. CONTRIBUTION OF THE STUDY
We have identified the role of Feature Selection methods for
software defect prediction and the role of the classification
approach (i.e. individual, ensemble) for software defect
prediction through feature selection. Identified performance
evaluation of software defect prediction models employing
feature selection methods. Identified datasets which have
been selected for the implementation of feature selection
methods.

D. ORGANIZATION OF THE STUDY
The remaining sections of the paper follow this structure:
Section II delineates the research methodology, Section III
presents the review’s findings, and lastly, Section IV con-
cludes the article while providing suggestions for future
work. The step-by-step process to conduct the SLR is shown
in Figure 2. It comprises three primary phases, with each

step further subdivided into multiple sub-phases. List of
abbreviations is given in Table 1.

II. RESEARCH PROTOCOL
A research protocol refers to a comprehensive plan and set
of guidelines that outline the entire process of conducting the
review. It provides a detailed framework for conducting the
review, including the research questions to be addressed,
the search strategy for identifying relevant studies, the
inclusion and exclusion criteria for study selection, the
methods for data extraction and synthesis, and the criteria for
assessing the quality of the selected studies [42], [43], [44].

A. PHASE 1: PLANNING THE REVIEW
This Phase lays the foundation for the systematic and struc-
tured approach of the SLR. During this Phase, comprehensive
guidelines are established to select the primary studies.
By carefully planning the review, researchers can ensure
that the review process is well-structured, systematic, and
methodologically sound, leading to reliable and valuable
insights [33]. The key aspects of this Phase are defined below.

1) IDENTIFICATION OF THE RESEARCH QUESTIONS
The main objective of this study is to conduct a system-
atic literature review (SLR) that identifies, analyzes, and
summarizes empirical evidence related to the usage of FS
methods for software defect prediction. The study focuses
on datasets employed, FSmethods, classification approaches,
evaluation measures, and machine learning tools. To achieve
this goal, the research questions and the motivation behind
each question have been formulated to guide the review
process, as shown in Table 2.

2) SELECTION OF DATA SOURCES
Data sources are the libraries or repositories from where the
research studies should be retrieved. Four digital libraries
have been chosen to extract the primary analyses, namely
IEEE Xplore, Science Direct, ACM Digital Library, and
Springer Link. The full text of the documents is searched to
identify the primary studies. There are various options avail-
able to search each digital library for pertinent information.
To find the most relevant literature, the search strategy is
modified to satisfy the needs of the respective data source.
The chosen data sources and the count of studies yielded by
the search queries are shown in Table 3.

3) FORMULATION OF THE SEARCH STRING
A search string is a carefully crafted combination of keywords
and search operators used to identify relevant studies that
address the research question or topic of the review. This
step focuses on specific keywords and their synonyms, drawn
from the identified research questions in Table 3, to construct
the search string. These keywords are combined using the
‘AND’ and ‘OR’ conditions in the specified sequence to
formulate the ensuing search string:

145956 VOLUME 11, 2023



M. Ali et al.: Analysis of Feature Selection Methods in Software Defect Prediction Models

FIGURE 2. Systematic literature review process.

TABLE 1. List of abbreviations.

TABLE 2. Research questions and motivation.

((‘‘software’’’ OR ‘‘program’’ OR ‘‘system’’) AND
(‘‘bug’’ OR ‘‘defect’’ OR ‘‘error’’ OR ‘‘fault’’) AND
(‘‘prediction’’ OR ‘‘estimation’’ OR ‘‘interpretation’’

OR ‘‘classification’’) AND (‘‘features’’ OR ‘‘attributes’’
OR ‘‘dimensions’’ OR ‘‘metrics’’) AND (‘‘selection’’,
‘‘reduction’’, ‘‘engineering’’, ‘‘extraction’’, ‘‘elimination’’)

VOLUME 11, 2023 145957



M. Ali et al.: Analysis of Feature Selection Methods in Software Defect Prediction Models

TABLE 3. Query results from data sources.

FIGURE 3. Search string formulation process.

TABLE 4. Search string formulation.

AND (‘‘Technique’’ OR ‘‘algorithm’’ OR ‘‘classifier’’ OR
‘‘method’ OR ‘‘model’’ OR ‘‘framework’’ OR ‘‘approach’’)).
The process of formulating the search string is presented in
Figure 3 whereas, search string formulation keyword and
relevant alternative words are shown in Table 4.

4) DEFINING THE INCLUSION CRITERIA
Inclusion criteria in an SLR refer to the predefined rules
used to determine which studies will be included in the

TABLE 5. Quality assessment criteria.

review. In this review, the following inclusion criteria will be
considered:

• Studies must have been published in the English
language from 2014 to 2023

• The subject of the study should be focused on feature
selection methods utilized in the domain of software
defect prediction

• Selected studies must involve empirical research, con-
ducting practical experiments on specific datasets

• The experiments conducted within the study should
pertain to the classification of software defects using
feature selection methods

• Each chosen study must comprehensively evaluate the
performance of the applied feature selection methods

• The scope of chosen articles should be confined
to publications in reputable journals, conferences, or
books

5) DEFINING THE EXCLUSION CRITERIA
Exclusion criteria in an SLR refer to pre-designed conditions
to determine which studies will be excluded from the review.
The following categories of studies have been designated for
exclusion:

• Those published before 2014
• Those whose primary focus is not on feature selection
methods and their application in SDP

• Studies that lack empirical analysis results
• Studies that fail to evaluate the performance of executed
feature selection methods

6) DEFINING THE QUALITY ASSESSMENT CRITERIA
Quality assessment (QA) criteria in an SLR refer to the
predefined standards or guidelines used to assess the included
studies’ quality, reliability, and validity. Defining quality
assessment criteria aims to ensure that the selected primary
studies offer sufficient details to analyze the identified
research question effectively. In this step, a standard is
defined against each research question. Each quality assess-
ment criterion is denoted by C and its respective number,
as shown in Table 5.

B. PHASE 2: CONDUCTING THE REVIEW
Comprehensive state-of-the-art literature review is carried i.e.
detailed in the following.

145958 VOLUME 11, 2023



M. Ali et al.: Analysis of Feature Selection Methods in Software Defect Prediction Models

TABLE 6. List of selected primary studies.

TABLE 7. Quality assessment criteria.

1) SELECTION OF PRIMARY STUDIES
Primary studies (PS) refer to the individual articles or
book sections that directly address the research questions
or topic of the review. In this review, the primary studies
were selected using the Tollgate approach, a structured
methodology consisting of five phases [47]. This approach
was helpful for the careful selection of primary studies, taking
into account the established quality criteria. The individual
phases of the tollgate approach are outlined in Figure 4, with
‘N’ denoting the total number of primary studies in each
Phase. The selected primary studies are presented in Table 6.

Out of the selected primary studies, 21 are journal articles,
23 are part of conference proceedings, and 5 belong to book
chapters. Figure 5 illustrates the count of primary studies
according to the publication type.

C. EXTRACTION OF RELEVANT LITERATURE
The literature extracted from each primary study comprises
the following details: proposed/used feature selection meth-
ods and classification approach. (i. e., individual/ensemble),
performance evaluation measures, defect datasets for exper-
iments, and tools used to implement feature selection

VOLUME 11, 2023 145959



M. Ali et al.: Analysis of Feature Selection Methods in Software Defect Prediction Models

FIGURE 4. Phases of the tollgate approach for selection of primary studies.

FIGURE 5. Distribution of primary studies by publication type.

techniques. Figure 6 depicts the distribution of studies across
years.

1) DATA SYNTHESIS
The data synthesis stage in an SLR refers to combining
and analyzing the extracted data from the selected primary
studies to draw meaningful conclusions and answer the
research questions. During this stage, the collected data from
various studies are systematically examined and synthesized
to identify relationships among the findings.

FIGURE 6. Distribution of primary studies across the years.

D. PHASE 3: REPORTING THE REVIEW
1) QUALITY ASSESSMENT
Each primary study is assessed using the quality assessment
criteria (C) shown in Table 7. Based on this assessment, each
study is assigned a score between 0 and 1. In this scoring
procedure, which is widely used in systematic literature

145960 VOLUME 11, 2023



M. Ali et al.: Analysis of Feature Selection Methods in Software Defect Prediction Models

reviews (SLRs), a score of 1 is assigned if the study explicitly
meets the quality assessment criterion, 0.5 if it partially meets
the standard, and 0 if it does not meet the criterion at all
[42], [46]. To determine the final score for each study, the
scores obtained for all quality assessment criteria are added
together as shown in Table 7.

After assessing the quality of the chosen primary studies,
it was noted that they achieved a score exceeding 90% for
criteria C1, C2, C3, and C4. However, for C5, only 63% of
the studies could answer the respective research question.
This finding indicates that the selected primary studies offer
sufficient information regarding feature selection techniques.

2) REPORT RESULTS
This is the last step of an SLR that addresses the identified
research questions. The detailed answers to respective
research questions from primary studies will be discussed in
the next section.

III. RESULTS
This section will address the research questions outlined in
Table 2.

A. RQ1: WHICH FEATURE SELECTION METHODS ARE
IMPLEMENTED FOR SOFTWARE DEFECT PREDICTION?
Feature selection methods are used in machine learning and
data analysis to select a subset of relevant features or variables
from a larger set of available features. These methods
aim to improve model performance, reduce overfitting and
shorten training times by selecting the most informative
and important features [9], [33]. Various FS methods have
been proposed by researchers to improve the performance of
the method under consideration [76]. In the following sub-
sections, comprehensive overview of filter, wrapper, hybrid
and embedded FS methods is provided, highlighting how
each of these categories has been used in primary studies in
the field of software fault prediction.

1) FILTERED FEATURE SELECTION METHOD
The researchers of [1], presented FS method comprising
three algorithms. In the first algorithm, a specific subset of
attributes was selected from the entire attribute pool with
all possible pairwise combinations. After the combination,
the attributes were reordered based on their frequency,
with attributes with higher frequency being considered
more important. The second algorithm helped to select the
candidate attributes. Finally, the third algorithm determined
the best attribute subset by testing all possible pairwise
combinations and selecting the best one. The experimental
results showed that data-aware FS performed better, even
with a simple classifier. In [2] the researchers proposed a
new FS framework based on feature clustering and feature
ranking called FECAR. The framework consisted of two
phases: Feature clustering and feature selection. In the feature
clustering phase, a k-medoids clustering algorithm based
on the feature-feature correlation (FF) measure was used

to partition features into clusters. In the feature selection
phase, relevant features from each cluster were selected based
on FCR measures to create the final feature subset. In the
study, symmetric uncertainty was used as FF correlation
measure and information gain, chi-square and ReliefF were
considered as FC relevancemeasures. The results showed that
the FECAR framework effectively reduced the redundancy
rate and improved the performance of the error predictors.

In [66], the researchers attempted to improve the accu-
racy of metric-based SDP by introducing the ReliefF-LC
algorithm, which combined ReliefF feature selection and
correlation analysis. This innovative approach effectively
addressed the problem of redundant metrics and their
negative impact on prediction accuracy. Experiments were
conducted on two National Aeronautics and Space Admin-
istration (NASA) datasets, and the proposed algorithm was
compared with two other FS methods. The experimental
results showed the remarkable potential of the proposed
algorithm to significantly improve the fault prediction perfor-
mance. In [3], a network of software attributes demonstrating
the presence of mutual information between features was
presented. A clustering-based attribute selection method was
proposed. The researchers used the maximum information
coefficient (MIC) to determine attribute correlations within
the network. This formed the basis for selecting subsets
of features using methods such as spectral clustering,
hierarchical clustering, k-means clustering and F-score based
feature selection. Spectral clustering based feature selection
showed better performance in SDP.

In [8], the authors proposed an optimized model for
fault prediction using statistical process control and the
FS method. In the FS method, the relevance of different
attributes was analyzed using methods such as correlation
and analysis of variance (ANOVA). Correlation assessed the
dependency between attributes and their proximity, while
ANOVA assessed attribute variance within and between
classes. By applying these techniques, irrelevant or redundant
attributes were identified and filtered out, resulting in an
optimized data set for the SDP. In [50], the researchers
proposed a new FS method using clusters of hybrid data
for cross-project failure prediction (CPDP). The approach
included two phases: a feature clustering phase using a
density-based clustering method called DPC and a feature
selection phase using three ranking strategies: local feature
density (LDF), similarity of feature distributions (SFD) and
feature class relevance (FCR). Experimental studies on real
software projects showed that the proposed method performs
better than the baseline methods and remains stable across
different classifiers. Authors of [39] proposed a FS method
based on a similarity measure (SM). The aim was to extract
relevant features while taking into account the distributional
differences of samples in different classes (defective or non-
defective). The approach involved updating feature weights
based on class-specific sample similarity, ranking features,
and then sequentially evaluating feature subsets using the
k-nearest neighbor (KNN) model with the area under the

VOLUME 11, 2023 145961



M. Ali et al.: Analysis of Feature Selection Methods in Software Defect Prediction Models

curve (AUC) metric for classification performance. The
proposed method was compared with other FS approaches
on eleven NASA datasets, demonstrating its effectiveness
especially on large and imbalanced datasets.

Authors of [13], have proposed a novel FS method that
uses clusters of hybrid data for cross-project failure prediction
(CPDP). The approach included two phases: a feature
clustering phase using a density-based clustering method
called DPC and a feature selection phase using three ranking
strategies: local feature density (LDF), feature distribution
similarity (SFD) and feature class relevance (FCR). Exper-
imental studies on real-world software projects have shown
that the proposed method outperforms the baseline methods
and remains stable across different classifiers. In [70], the
researchers investigated different FS and extraction methods.
The methods used correlation-based feature selection (CFS),
principal component analysis (PCA) and kernel principal
component analysis (KPCA). The results showed that SVM
with CFS feature selection method provided the best predic-
tion accuracy compared to PCA + SVM and KPCA + SVM.
In [53], the researchers proposed a method that combined
a genetic algorithm (GA) for feature optimization with a
deep neural network (DNN) for classification. The GA was
improved by a new chromosome design and a new technique
to calculate the fitness function. The experimental results
showed that the proposed method outperformed the existing
techniques and achieved a remarkable classification accuracy.
In [58], the researchers investigated feature subset selection
and feature ranking approaches with the aim of improving
the performance of CPD. Two FS methods were investigated:
first, feature subset selection, in which a subset of the
most relevant features was selected using methods such as
Correlation-Based Feature Selection. The second method is
feature ranking, in which the features are ranked according
to their importance using techniques such as SM, correlation
and gain ratio. These FS methods were applied to the initial
projects to ensure consistent feature sets. The study found that
both FS approaches improved CPDP accuracy, suggesting
that selecting relevant features or ranking them can improve
prediction across different projects.

In [61], researchers proposed a FS method using associ-
ation rule mining (ARM). The process involved analyzing
historical software data that included metrics related to
software complexity, code size, and other pertinent attributes.
The ARM method was then used to uncover patterns or rules
that indicated correlations between certain metrics and the
occurrence of errors. The results of the empirical evaluations
showed that the proposed method combining NB with ARM-
based feature selection yielded higher precision, recall,
F-measure, and accuracy scores compared to conventional
methods. In [73], the researchers proposed a FSmethod based
on random selection. The aim was to identify a compact set
of features that would allow effective prediction of defects
and thus reduce the effort and cost of data collection for
defect prediction models. The study found that the Random

Subset Feature Selection (RSFS) algorithm outperformed
other algorithms in terms of performance. In [5], the
researchers presented a framework that enables supervised
filter feature selection methods to incorporate feature set
information from external knowledge sources. The frame-
work was applied to improve the Minimum Redundancy
Maximum Relevance (MRMR) algorithm, resulting in the
MRMR grouping algorithm, which was designed to achieve
higher classification accuracy by promoting the selection
of features from different feature groups. The proposed
framework showed significant accuracy improvements over
the traditional MRMR algorithm and other commonly used
filtering methods. In [62], the researchers investigated the
interaction between FS methods and sampling methods and
analyzed the impact on the accuracy of prediction models
for SDP. They used three specific methods: chi-square,
information gain and relief. These methods evaluated the
relevance of each feature in the dataset. The study found
that when using chi-square and information gain for FS, it’s
advantageous to first perform sampling for the AUC and
recall methods. When using relief together with NB, LR
and SVM, it’s advantageous to perform FS first for AUC
and recall improvements. The sequence of these three feature
methods and sampling techniques also led to different results
in terms of accuracy, precision and F1.

In [72], the researchers introduced the concept of mul-
tifilter FS based on rank aggregation. They used three
different FS methods, including Chi-square, ReliefF and
information gain, to improve the accuracy of SDP models.
In this approach, individual ranked lists were created using
different filtering methods and then aggregated using an
aggregation function for the mean rank. The resulting
aggregated list was further refined by a geometric mean
function to select optimal features. The experimental results
showed that the proposed method has improved performance.
In [69], the researchers employed a FS method based on
ANOVA F-value. This method was used to identify the
best discriminative features for predicting faults in software
modules. The proposed method was compared with current
methods using precision, AUC and recall on 11 datasets. The
application of this method helped to overcome the challenges
of dealing with highly skewed data and to achieve more
accurate and efficient automatic prediction of software faults.
In [68], an improved CNN model called metric-based CNN
(MB-CNN) was proposed. In particular, the chi-square FS
method was implemented. The chi-square method evaluates
the statistical dependency between each metric and the target
variable, which in this case was the number of bugs in a
software module. Metrics that showed a higher degree of
dependency were considered more relevant and were selected
for training the MB-CNNmodel. The results indicate that the
proposed MB-CNN model is promising for fault prediction.

In [30], the researchers introduced a transformation and
FS method called TFSCPDP. In the transformation phase,
the features of the source project were used to transform the

145962 VOLUME 11, 2023



M. Ali et al.: Analysis of Feature Selection Methods in Software Defect Prediction Models

target project. In the feature selection phase, relevant features
were selected based on distances to the transformed source.
The results showed that TFSCPDP effectively reduced distri-
butional differences and high-dimensional feature problems
in CPDP and achieved a mean F-score of 0.8, the highest
among existing approaches. In [65], the researchers proposed
a model based on LASSO–SVM. In the preprocessing step,
a FS method, compression and minimum absolute value
selection, was implemented to reduce the dimensionality of
the original dataset and eliminate data that were not relevant
to the SDP. This technique contributed to a more focused and
accurate analysis of software errors, ultimately leading to a
more efficient and effective prediction process. In [74], the
researchers employed the least square support vector machine
(LSSVM) algorithm with ReliefF feature selection and the
SMOTE method to solve problems with imbalanced classes
in SDP datasets. The ReliefF FS method was implemented to
address the challenge of identifying relevant attributes. The
core principle of ReliefF was to evaluate whether a feature
is meaningful by analyzing how its values differ within and
between classes. If the values are similar within the same
class but differ between classes, the attribute was considered
valuable. The research showed the positive impact of the
ReliefF method on classification performance.

2) HYBRID METHOD
In [56], the researchers investigated how FS and ensemble
learning affect the accuracy of error prediction. They
introduced the average probability ensemble (APE) method
to classify errors. In the pre-processing phase, features
were selected using Greedy Forward Selection (GFS) and
Correlation-based FS (CFS). Seven base classifiers were
used to create the APE model: random forest (RF), Gra-
dient Boosting (GB), Stochastic Gradient Descent (SGD),
Weighted Support Vector Machine, Logistic Regression
(LR), Multinomial Naïve Bayes (MNB) and Bernoulli Naïve
Bayes (BNB). The model was tested on six data sets and
the results showed that GFS performed better than CFS.
In [7], the researchers analyzed the performance of SDP
models using FS methods, specifically focusing on whether
a subset of features improves prediction accuracy. They
conducted a comprehensive investigation of sixteen open-
source projects with ten popular FS algorithms, including the
Forward Greedy Algorithm, Backward Greedy Algorithm,
Gini Index, Information Gain, Relief-based Algorithm, CFS,
Logistic Regression-based Feature Selection (BLogReg),
Ranker Algorithm, OneR Algorithm, and Wrapper Subset
Algorithm. The experimental results showed that the FS
methods, especially the forward and backward greedy
algorithms, consistently delivered the best results across
projects.

In [4], the researchers introduced a comprehensive attribute
selection process consisting of five consecutive steps. First,
they calculated the balance of each attribute using a base
classifier and then ranked the attributes in a list based on

their respective balance values. Then, pairwise combinations
of all attributes were formed and the balance was calculated
for each combination. These combinations were accurately
filtered, selecting only the combinations with a high attribute
balance to create a catalog of potential combinations after
selecting the candidate attributes. The final step involved
determining the best attribute set. This involved determining
the set of attributes that provided the most favorable balance
result for the SDP model. The proposed approach showed
a performance improvement of up to 54% in predicting
software faults. In [9], the researchers proposed a novel
method using a feature space transformation process in
conjunction with a normalization technique. The feature
selection method involved transforming feature spaces and
then classifying instances using a Support Vector Machine
(SVM) with a Histogram Intersection (HI) kernel. The pro-
posed multi-step process began by calculating the balance of
each attribute using a base classifier and sorting accordingly.
Potential attribute pairs were then generated, their balance
calculated and those with a high balance selected. The
eligible attributes were then selected based on their frequency
and weighting, and the best attribute set was determined
by iteratively optimizing the balance. With this approach,
the most relevant attributes were systematically identified
and retained, improving the accuracy of fault prediction.
In [48], the researchers proposed a novel FS framework
called MICHAC (Maximal Information Coefficient with
Hierarchical Agglomerative Clustering), which consists of
two main steps: using MIC to rank and eliminate irrelevant
features and applying Hierarchical Agglomerative Clustering
(HAC) to group and remove redundant features. Experiments
on NASA and AEEEM datasets have shown the effectiveness
of MICHAC in improving defect prediction across different
classifiers and performance metrics.

In [63], the researchers developed a framework using
FS based on five classifiers including IBk, KStar, Locally
Weighted Learning (LWL), Random Tree (RT) and RF.
The FS method used chi-square attribute evaluation and
correlation attribute evaluation along with Best First, Greedy
Stepwise and HAC to optimize attribute subsets and remove
redundancy. The novel addition of MIC-valued attributes
resulted in improved accuracy of the system. In [51], the
researchers proposed a method that combines the Bat-based
search algorithm (BA) for feature selection and the RF
algorithm for prediction. The FS over BA aimed to eliminate
uncorrelated features and retain meaningful features. The
CFS algorithm was integrated into the feature selection
process. CFS evaluates subsets of features based on their
correlationwith the class labels and their intercorrelationwith
each other. The selected subset of features was the result of
the combination of BA and CFS. The proposed approach
led to a more accurate identification of faulty software
modules. In [49], the researchers combined an integrated
sampling method with FS that effectively addresses the
problems of class imbalance and attribute relevance in SDP.
Three attribute selection algorithms were used: chi-square

VOLUME 11, 2023 145963



M. Ali et al.: Analysis of Feature Selection Methods in Software Defect Prediction Models

(CS), information gain (IG), and relief (RLF). CS evaluated
the relevance of attributes; IG evaluated the importance of
attributes based on information gain, while RLF identified
relevant attributes by comparing nearest neighbors of the
same and different classes. The integration of the Synthetic
Minority Oversampling Technique (SMOTE) with the Relief
method was applied to the Naïve Bayes (NB) classifier. The
results of the study showed that the integrated approach
outperformed the other methods and achieved an improved
prediction accuracy of 82%.

In [38], the researchers designed a parallel hybrid frame-
work to efficiently process large software metrics datasets
in the cloud. The FS method used was a hybrid approach
that combined both filtering and wrapper methods. The
Fisher filter and the Maximum Relevance (MR) filter were
used to assign weights to the software metrics based on
their relevance to fault prediction. These filters evaluated
the discriminative power and correlation of each metric
with the class labels. The metrics selected from these
filtering methods were then integrated into an artificial
neural network (ANN)-basedwrapper that evaluated different
subsets of metrics by training and testing an ANN model
for fault prediction. This hybrid approach improved the
accuracy of fault prediction by selecting important software
metrics. In [14], researchers presented a hybrid method for
selecting important software features to improve automated
fault prediction. The proposed approach combined filter
and wrapper methods. The filtering method evaluated the
relevance of features without performance evaluation, while
the wrapper method incorporated induction algorithms to
evaluate the performance of selected subsets of features. The
hybrid framework used two wrapper approaches ANNIGMA
and SVM with MR filters. This fusion streamlined FS and
training and reduced measurement effort.

In [54], the researchers presented a novel FS algorithm that
operates in a two-step process within a hybrid framework of
wrapper and filter. In the first step, features were grouped
based on redundancy using a fast correlation-based filter
grouping algorithm. In the second step, a subset of features
was selected from each group using the particle swarm
optimization (PSO) algorithm to ensure that at least one
feature was selected from each group. The experiments
performed with different classifiers on NASA and PROMISE
datasets showed that the proposed method achieved up to
90% better results compared to using all features. In [33], the
researchers presented a cluster-based hybrid feature selection
(CHIFS) where relevant and non-redundant features are
selected. They defined a spectral cluster-based feature quality
coefficient (FQ) to evaluate the relevance and redundancy
of the features. The method iteratively selected the final
feature subset from the evaluated features based on the
FQ. Experimental results showed that CHIFS outperformed
other methods in terms of accuracy and efficiency, and
it was particularly effective when based on the Pearson
correlation coefficient. In [64], the researchers used a
combination of FS methods to improve the process of

predicting software faults. In the study, the FSmethod Simple
Majority Voting was used, which incorporated the results of
three different FS methods: Recursive Feature Elimination
with Cross-Validation (RFECV), CFS and Select-k-Best FS.
The final feature subset was determined by a majority
vote between the three methods. The proposed approach
contributed significantly to the prediction of software errors
and thus improved the performance of the prediction models.
In [60], the researchers proposed a new method, Rank
Aggregation-Based Hybrid Multi-Filter Wrapper Feature
Selection (RAHMFWFS), to overcome the challenges posed
by the high dimensionality of software features in SDP mod-
els. The RAHMFWFS method was divided into two stages.
The first stage involved a rank aggregation based multi-
filter feature selection (RMFFS) that aggregated individual
rankings from different filtering methods using a unique rank
aggregation mechanism. In the second stage, an Enhanced
Wrapper Feature Selection (EWFS) method was used, which
was guided by a dynamic reordering strategy based on the
aggregated ranked list. The proposed RAHMFWFS method
was evaluated using NB and decision tree (DT) classifiers on
benchmarking datasets for defects. The results showed the
effectiveness of the proposed approach in solving problems
related to filter rank selection and local stagnation within
hybrid feature selection, leading to an improvement in the
performance of SDP models.

In [34], the researchers proposed a FS algorithm known
as ReliefF-based clustering (RFC). The RFC algorithm
involved several steps, including initial relevance ranking,
clustering based on symmetric uncertainty, and representative
FS. The proposed algorithm was compared with classical
FS methods on NASA SDP datasets using metrics such as
AUC and F-score. The results showed that RFC improved
the performance of SDP by effectively handling irrelevant
features.

3) WRAPPER METHOD
In [6], the researchers integrated code metrics and process
metrics as indicators. They investigated the SDP process by
applying RF, Neural Networks (NN) and SVM algorithms
using the Eclipse environment for binary classification. The
selection of features was done by general linear model regres-
sion (GLM) to evaluate the importance of variables (VI)
for each feature. Of the 61 features, the 20 most important
features were captured based on the VI, which highlight the
most important features for predicting errors and lead to
improved accuracy. In [40], the researchers proposed a novel
approach called MOFES (Multi-Objective Feature Selection)
based on multi-objective optimization principles to strike a
balance between reducing the number of selected features and
optimizing the performance of the defect prediction model.
The researchers concluded that MOFES effectively selects
fewer features while achieving better prediction performance
compared to the baseline methods. In [55], a feature selection
approach was proposed by the researchers to improve the
performance of a layered recurrent neural network (L-RNN)

145964 VOLUME 11, 2023



M. Ali et al.: Analysis of Feature Selection Methods in Software Defect Prediction Models

for SDP. The proposed method used three wrapper FS
algorithms, including Binary Genetic Algorithm (BGA),
Binary Particle SwarmOptimization (BPSO), and Binary Ant
Colony Optimization (BACO). The approach was evaluated
on 19 real software projects and comparedwith othermethods
such as NB, ANN, LR using AUC as a performance measure.
The proposed approach showed better performance compared
to existing methods. The proposed approach showed better
performance compared to the current methods. In [52],
the researchers proposed a model called GFsSDAEsTSE,
which specifically deals with feature redundancy and class
imbalance. The method integrates FS, deep learning through
a stacked denoising autoencoder (SDAE) and ensemble
learning. The JRC method was used for iterative FS, where
features were added to the subset. The algorithm was stopped
when adding more features did not significantly improve
performance or when a tolerance threshold for variability was
reached, resulting in improved performance of the SDP.

In [57], the researchers introduced a new method called
MOFES (Multi-Objective Feature Selection), which selects
relevant features. Two optimization goals were considered:
Minimizing the number of selected features (in terms of cost)
and maximizing the performance of the prediction models (in
terms of utility). Pareto-based algorithms for multi-criteria
optimization were used to solve this problem. The study
analyzed different algorithms and compared MOFES with
existing FS methods, demonstrating the effectiveness of the
proposed method using real data sets. In [59] the researchers
proposed a FS method based on the firefly algorithm (FA) to
improve the accuracy of SDP. The natural blinking behavior
of fireflies inspired this optimization technique, in which
fireflies communicate through bioluminescence signals to
efficiently search the cost function space. The approach
considers both classification accuracy and size reduction as
fitness objectives. The experiments showed that the potential
of FA for FS in predicting software errors led to improved
prediction accuracy and thus quality. In [25], researchers
investigated two primary types of FS methods, including
filter-based feature selection (FFS) and wrapper feature
selection (WFS). Different search methods were explored,
including Best First Search (BFS) and Greedy Step-wise
Search (GSS).

The specific FS method used in the study was WFS,
in which the classifier was used to evaluate the performance
of each feature by measuring its interaction with the underly-
ing classifier. This approachwas comparedwith FFSmethods
in which the features derived from the features in the dataset
were evaluated and rankedwithout the direct involvement of a
classifier. The experimental results showed that metaheuristic
methodswithinWFS outperformed the conventional BFS and
GSS search methods. In [67], the researchers investigated the
combination of SMOTE for data equalization and PSO for FS.
The FS process involved representing each potential feature
subset as a ‘‘particle’’ in a high-dimensional search space.
The position of each particle was linked to a specific feature
combination; its movement was based on its own historical

best position and the global best position found by the entire
swarm. This study contributed to the improvement of SDP
models by enabling effective handling of imbalanced data
and the selection of optimal features. In [32], the researchers
investigated FSmethods such as recursive feature elimination
(RFE), correlation-based feature selection, Lasso, Ridge,
ElasticNet, and Boruta. The proposed model combined
Partial Least Square (PLS) regression and RFE for FS,
which was additionally combined with SMOTE due to
the unbalanced nature of the datasets used. The proposed
approach achieved significant improvements in error pre-
diction. In [71], the researchers presented an extended
metaheuristic search-based FS algorithm called EMWS. This
algorithm uses the whale optimization algorithm (WOA) and
simulated annealing (SA) to effectively select a subset of
relevant features. A unified defect prediction algorithm called
WSHCKE was developed, which combined a hybrid DNN
consisting of a convolutional neural network (CNN) and a
kernel extreme learning machine (KELM), which integrated
selected features into deep semantic features by CNN and
improved the prediction by the classification capacity of
KELM. The proposed algorithm was evaluated through
extensive experiments in 20 software projects with different
evaluation indicators. The results confirmed the effectiveness
of EMWS and WSHCKE compared to existing methods.

In [75], the researchers proposed a new framework
that integrates nested stacking and heterogeneous FS to
achieve more accurate prediction of software defects. In the
heterogeneous FS approach, different base models, including
AdaBoost and RF, were used to perform FS independently.
Each base model identified the most important features for
its prediction. The features selected by these models were
then considered for stacking in the nested-stacking classifier.
The results of the experiments showed that the proposed
nested-stacking system outperformed the baseline models.
In [15], the researchers proposed a framework based on
the Binary Whale Optimization Algorithm (BWOA) called
SBEWOA. The BWOA was used as an FS method that
utilized transfer functions to convert the original continuous
WOA into a binary version suitable for FS. In addition,
other optimization algorithms, in particular Gray Wolf
Optimizer (GWO) and Harris Hawks Optimization (HHO),
were integrated into the BWOA framework to improve its
efficiency in navigating the feature space. This improved
method, referred to as ‘‘SBEWOA’’,’’ showed promising
results for SDP by effectively selecting informative features
and minimizing irrelevant features.

4) EMBEDDED METHOD
In [16], researchers proposed a framework that investigated
the joint effects of FS and data resampling on unbalanced
two-class classification. The research compared two contrast-
ing approaches, i.e., one in which FS was applied before
resampling the data (FS+DS) and another in which FS
was applied after resampling the data (DS+FS). The FS
methods were individually selected from filter, wrapper and

VOLUME 11, 2023 145965



M. Ali et al.: Analysis of Feature Selection Methods in Software Defect Prediction Models

embedded methods. In the study, a comprehensive empirical
analysis was conducted on fifty-two benchmark datasets with
unbalanced distributions using different FS methods. The
study concluded that FS is a mandatory step to improve the
classification of unbalanced two-class datasets and should be
integrated either before or after resampling the data.

Year wise distribution of each FS method is depicted in
Figure 7 whereas, Figure 8 shows the FS method and the
corresponding number of year-wise primary studies. Table 8
summarizes the feature selection methods deliberated in the
chosen primary studies.

The choice of feature selection method depends on several
factors, such as the size of the dataset, the computational
resources available and the desired level of prediction
accuracy. In this context, an analysis was conducted to
highlight the strengths and limitations of different feature
selection methods based on their prevalence in the selected
primary studies. Table 9 gives an insight into the strengths and
limitations of filter, hybrid andwrappermethods and provides
a comprehensive overview of their utility in predicting
software faults.

From 2014 to 2023, numerous feature selection methods
were proposed. Researchers proposed several frameworks,
including FECAR, MICHAC, FeSCH, MOFES, EMWS,
CNN, and TFSCPDP, using filter, wrapper, hybrid, and
embedded feature selection methods, leading to improved
classification performance. In the primary studies, fil-
ter and hybrid FS methods were used most frequently,
while wrapper and embedded methods were used less
frequently.

B. RQ2: WHICH CLASSIFICATION APPROACH (I.E.
INDIVIDUAL, ENSEMBLE) IS IMPLEMENTED FOR
SOFTWARE DEFECT PREDICTION THROUGH FEATURE
SELECTION?
Classifiers are used to categorize data into different classes.
The main goal of a classifier is to learn a mapping from
input features to predefined output classes, which enables
the algorithm to predict the class of new unseen instances
based on their features [78], [79]. Many researchers have
implemented various single and ensemble classifiers to
improve the prediction accuracy of the proposed models for
SDP [31], [80], [81], [82]. In [2], researchers implemented
two individual classifiers, NB and C4.5, to predict the
probability of errors in new data. In [66], researchers selected
three individual classifiers belonging to different families,
including NB, Multilayer Perceptron (MLP), and SVM,
to apply to reduced datasets with subgroup features. In [56],
the researchers combined the predictive abilities of seven
base classifiers consisting of individual and ensemble types.
The approach included ensemble classifiers such as RF
and GB as well as individual classifiers such as SGD,
weighted SVMs (W-SVMs), LR, MNB and BNB. This
integration was achieved using a voting ensemble approach,
where the final decision was determined by averaging the

probabilities generated by the underlying classifiers. In [3],
[67], and [70], the researchers used SVM as an individual
classifier to effectively train and develop the proposed model,
thus utilizing the capabilities of SVM in the context of
their study. In [7], the researchers implemented a mixture
of individual and ensemble classifiers by considering NB
and LR as individual classifiers and RF as an ensemble
classifier to improve the predictive capabilities of the
proposed model. In [4], [25], [40], and [61], researchers
employed a conditional probability based classifier called NB
to analyze the impact of the proposed FS method. In [9],
researchers employed SVM with its HI kernel to evaluate the
effectiveness of the proposed model. In [8], the researchers
used two individual classifiers, DT and NB, to evaluate the
proposed model.

In [48], the researchers used a combination of classifiers,
including NB. They used Repeated Incremental Pruning
to Produce Error Reduction (RIPPER) as an individual
classifier and RF as an ensemble classifier to evaluate the
performance of the proposed MIC with the Hierarchical
Agglomerative Clustering (MICHAC) framework. Similarly,
in [63], researchers employed a mixture of individual and
base classifiers using Instance-Based k-nearest Neighbors
(IBK), Kstar, LWL and RT as individual classifiers and RF
as ensemble classifiers. In [6], researchers also employed a
combination of classifiers that included RF (ensemble) along
with the different capabilities of NB and neural network
classifiers (individual) to investigate the impact of individual
and ensemble algorithms on prediction accuracy. In [13]
and [50], researchers used LR as an individual classifier
to improve the prediction accuracy of CPDP models.
In [51], researchers implemented an ensemble approach
with an RF classifier to increase the performance of the
proposed framework. In [39], [40], and [73], researchers
employed KNN as an individual classifier to formulate
the prediction model. In [14], researchers employed the
prediction capabilities of two individual classifiers, including
SVM and ANN, to improve the accuracy of the proposed
framework. In [55], the researchers employed five individual
classifiers including NB, ANN, LR, KNN, and C4.5 decision
trees to compare the results obtained with L-RNN. In [52],
the researchers used a two-stage ensemble learning with
heterogeneous base classifiers, including Bagging, AdaBoost
and RF. These base classifiers were combined with a
voting ensemble method that considers weighted average
probabilities as a combination rule. In [53], the researchers
implemented DNN as an individual classifier to evaluate
the effectiveness of the proposed hybrid approach. In this
study a combination of classifiers was used, with KNN
and DT as individual classifiers and RF as an ensemble
classifier. In [57], four classifiers including J48, KNN,
LR and NB were implemented to build the proposed model.
In [58], two individual classifiers, namely KNN and NB,
were implemented to improve the prediction capabilities of
CPDP. In [59], three individual classifiers, including SVM,
NB andKNN, were implemented to investigate the prediction

145966 VOLUME 11, 2023



M. Ali et al.: Analysis of Feature Selection Methods in Software Defect Prediction Models

TABLE 8. Summary of FS methods.

accuracy of the proposed method. In [64], several classifiers
were used, including LR and SVM as individual classifiers
and ensemble classifiers such as RF and XGBoost. In [34],
[60], and [72], two individual classifiers, including DT and
NB, were used to evaluate the effectiveness of the proposed
method.

In [69], two classifiers were utilized. One was LR,
employed as an individual classifier while other was a

DT-based bagging classifier, used as an ensemble classifier,
with the aim of enhancing the predictive capability of
the proposed method. In [71], researchers employed two
individual classifiers including DNN and kernel extreme
learning machine to boost the predicting capabilities of
proposed mode. In [68], researchers implemented artificial
neural network-based classifier named CNN as an individual
classifier to enhance the performance of propped method.

VOLUME 11, 2023 145967



M. Ali et al.: Analysis of Feature Selection Methods in Software Defect Prediction Models

FIGURE 7. Year-wise distribution of FS methods.

TABLE 9. Strengths and limitations of FS methods.

FIGURE 8. Distribution of FS methods across primary studies.

In [32], researchers analyzed the result of proposed model
by combining several individual and ensemble classifiers.

Individual classifies were LR and SVM while ensemble
classifiers include AdaBoost, XGBoost, RF, GB, Stacking,
and Extra Trees. In [65], LASSO-SVM classifier was imple-
mented to access the performance of the proposed model.
In [74], LSSVM was implemented to assess the predictive
capabilities of a relief FS approach. In [75], The researchers
utilized a range of classifiers to enhance classification per-
formance through the Nested-Stacking Classifier approach.
In the first layer, boosting algorithms including LightGBM,
CatBoost, and AdaBoost were integrated, alongside a simple
stacking model featuring MLP and RF. A Gradient Boosting
DT served as the meta-classifier for this layer. The final layer
employed a LR meta-classifier. In [30], a combination of
classifiers was adopted including KNN, SVM, and LR as
individual classifiers while employing RF as the ensemble
classifier. In [15], seven classifiers were assessed, specifically

145968 VOLUME 11, 2023



M. Ali et al.: Analysis of Feature Selection Methods in Software Defect Prediction Models

FIGURE 9. Distribution of primary studies over individual classifiers.

FIGURE 10. Distribution of primary studies over ensemble classifiers.

KNN, NB, Linear Discriminant Analysis (LDA), Linear
Regression, DT, and SVM as individual classifiers while RF
was employed as an ensemble classifier. In [16], three distinct
classifiers from diverse families were utilized; including
C4.5, SVM, and MLP aiming to evaluate the effectiveness
of the proposed framework. A distribution of primary studies
over individual classifiers is shown in Figure 9 and distribu-
tion of primary studies over ensemble classifiers is presented
in Figure 10.
From 2014 to 2023, a range of classifiers were imple-

mented in the selected primary studies, encompassing
individual and ensemble classifiers. Individual classifiers that
were widely implemented include NB, SVM, DT, KNN,
and LR. On the other hand, the list of less commonly
utilized individual classifiers encompassed ANN, MLP,
SGD, LDA, LR, Kstar, LWL, RT, and RIPPER. In terms
of ensemble classifiers, the more frequently employed ones
consisted of RF, Bagging, AdaBoost, and GB. In contrast,
the ensemble classifier techniques that saw less frequent use
encompassed LightGBM, XGBoost, Stacking, Voting, and
CatBoost.

C. RQ3: WHICH MEASURES ARE IMPLEMENTED FOR THE
PERFORMANCE EVALUATION OF SOFTWARE DEFECT
PREDICTION MODELS USING FEATURE SELECTION
METHODS?
Many researchers have used several performance measures
to evaluate how FS methods affect the predictive ability of
SDP models [29]. These measures provide a quantitative
way to assess how well a particular technique accomplishes
its intended task. Using appropriate performance metrics,
researchers and practitioners can make informed decisions
about the feasibility and suitability of different techniques for
specific tasks. In [3], [8], [14], [38], [70], [73], researchers
evaluated the effectiveness of their proposed methods using
accuracy measures. In [1], [4], [9], both the probability of
detection (pd) and the likelihood of false alarm (pf) were
used to evaluate performance. The fusion of these twometrics
led to a further comprehensive performance measure, the
so-called balance. In [2], [7], [33], [39], [40], [49], [54],
[55], [56], [58], the AUC measure was included in the
power analysis. In [5], the researchers used the Macro-F1
performance measure, which calculates the average of the F1
measure. In [6], the researchers used sensitivity, specificity
and AUC to empirically investigate the performance of the
classifiers using the Eclipse bug dataset.

In [13], [30], [48], and [66], the researchers investigated
the results obtained by the classifiers using precision, recall,
f-measure and AUC. In [50], the performance of the proposed
FeSCH method was evaluated by using precision, recall and
f-measure. In [25], [51], and [63], researchers employed
precision and AUC measures to evaluate the performance
of classifiers when applied to datasets from the TERA-
PROMISE repository. In [52], researchers employed the F1
score, AUC, and Matthews correlation coefficient (MCC) to
determine the performance of the proposed GFsSDAEsTSE
method on twelve NASA datasets. In [53], the researchers
investigated the effects of the hybrid approach for FS using
precision, recall, specificity, F-score, and accuracy measures.
In [57] and [75], the researchers employed the F1 score and
AUC to indicate the performance of the proposed methods.
In [59], the researchers accessed the interpretation of FA
using accuracy, probability of detection, precision, false
alarm probability, and effort. Effort was measured using
the Lines of Code (LOC) metric. In [60], the researchers
used accuracy, F-measure and AUC measures to evaluate
the performance of the rank aggregation based multi-filter
wrapper FS (RAHMFWFS) method. In [32], [61], and [65],
the researchers employed accuracy, precision, recall, and F-
measure to analyze the performance of the proposed FS
method. In [62] and [64], the effectiveness of the proposed FS
and sampling methods was evaluated using precision, recall,
f-measure, accuracy, and AUC.

In [34], the predictive ability of the proposed FS algorithm
was analyzed using precision, TPR, F-measure, FPR, and
AUC. In [67], the researchers utilized recall, F1-measure,
TPR, specificity, and FPR to evaluate the performance

VOLUME 11, 2023 145969



M. Ali et al.: Analysis of Feature Selection Methods in Software Defect Prediction Models

FIGURE 11. Distribution of primary studies across performance measures.

of the proposed method when implemented on datasets
collected from Apache applications. In [67], the researchers
used mean absolute error (MAE) and mean squared error
(MSE) to evaluate the performance of the proposed CNN.
In [69], the researchers used precision, AUC, recall, mean
absolute error (MAE), root mean square error (RMSE),
precision, and F-measure to analyze the performance of
the proposed cost-sensitive approach. This evaluation was
performed on eleven datasets from the PROMISE repository.
In [71], the performance of the proposed hybrid DNN was
investigated using F-1, AUC, G-measure and MCC. In [72],
the researchers implemented accuracy, f-measure, recall and
AUC for evaluating the proposed multi-filer feature selection
method using NASA datasets. In [74], accuracy, f-measure,
recall, and AUC were used to investigate the predictive
ability of the Least Square Support VectorMachine (LSSVM)
classifier. In [15], the researchers used TPR, TNR and AUC
to investigate the efficiency of an ensemble learning based
classification system. In [10], accuracy, TPR, TNR, G-mean,
precision, F1 and Index of Balanced Accuracy (IBA) were
used to investigate the impact of the Whale Optimizer based
FS method on the proposed system. Figure 11 presents the
performance measures alongside the corresponding count of
primary studies.

Many performance measures were implemented during
2014-2023 to evaluate the performance of proposed tech-
niques. Among the selected primary studies, AUC, accuracy,
F-measure, recall, and precision are the most frequently used
measures. In contrast, less frequently used measures include
FP rate, specificity, G-mean, MAE, MCC, MSE, macro F1-
score, balance, effort and IBA.

D. RQ4: WHICH SOFTWARE DEFECT PREDICTION
DATASETS HAVE BEEN SELECTED FOR APPLYING FEATURE
SELECTION TECHNIQUES?
Machine learning datasets are collections of data used to
train, test and evaluate machine learning models. These

datasets contain a variety of examples that are used to
teach a machine learning classifier how to make predictions
based on patterns and relationships within the data [1], [2],
[3], [4], [5]. Researchers have used multiple datasets in
their experiments and have found that different accuracy is
achieved depending on the model proposed for each dataset.
Therefore, most researchers have included multiple data sets
in their studies [13], [54], [60].

The SDP datasets provided by NASA have gained much
importance in research. These datasets include a set of static
software metrics called features to determine the presence
of bugs in modules. Each dataset that comes from the
NASA repository corresponds to a NASA software system
or subsystem and includes static code metrics that capture
corresponding defect data for individual modules. Over the
past decade, these datasets have been used extensively in [1],
[4], [7], [9], [14], [34], [38], [39], [48], [49], [52], [56], [61],
[63], [65], [70], [72], and [74]. Publicly available datasets
from the PROMISE repository are used by the authors of [3],
[8], [15], [33], [40], [51], [53], [55], [59], [66], [68], [69],
and [73]. This repository contains datasets on object-oriented
metrics, Halstead/McCabe metrics for procedural code, and
some other static code metrics. In [2], the researchers imple-
mented their proposed framework using real projects from
the NASA and Eclipse repositories. In [5], the GRV dataset
was used, which contains code quality metrics as features
and comes from a JIRA software defect dataset. In [6],
the researchers used the Eclipse dataset to investigate the
process empirically. Eclipse datasets refer to data collections
related to the integrated development environment (IDE)
Eclipse, which supports various programming languages and
is widely used for software development. It supports various
programming languages and is widely used in software
development.

In [13], the researchers used two datasets, which were
from ReLink and AEEEM. The ReLink dataset was collected
using the Understand toolkit. The AEEEM dataset, short for
Appraisal, Estimation, and Emotion in Software Engineering
and Multimedia datasets, comprises a curated and diverse
collection of data specifically tailored for research and
analysis in the fields of software engineering and multimedia
studies. It included five different projects, namely EQ, JDT,
LC, ML, and PDE, and contained 61 metrics. In [32], [54],
[58], and [64], the researchers selected open-source datasets
from NASA and PROMISE for empirical analysis. In [57],
the researchers conducted experiments with the RELINK
and PROMISE datasets, which are from real open-source
projects. In [60], experiments were conducted with four
publicly available datasets that originated from PROMISE,
NASA, AEEEM, and ReLink. A collection of twenty-five
datasets with different levels of granularity was selected for
analysis.

In [62], two datasets from NASA and AEEEM were
selected for empirical analysis. The NASA datasets consisted
of five projects, including CM1, PC1, PC3, PC4, and MC2.
The AEEEM datasets consisted of four projects, including

145970 VOLUME 11, 2023



M. Ali et al.: Analysis of Feature Selection Methods in Software Defect Prediction Models

TABLE 10. Summary of commonly used software defect prediction datasets.

FIGURE 12. Distribution of datasets across primary studies.

EQ, JDT, LC and PDE. In [25], datasets were collected from
three different repositories: NASA, PROMISE and AEEEM.
In [30] and [50], researchers used these datasets to prove the
effectiveness of the proposed models. In [67], four datasets
written in JAVAwere used, whichwere obtained fromApache
applications, including Apache Beam, Apache Hive, Apache
Geode, and Apache Flink from Apache applications. Three
datasets were used in [71], which are from PROMISE,
ReLink and AEEEM. These datasets are easily accessible to
the public and are often used as benchmark datasets. In [75],
experiments were conducted using two software bug datasets,
namely Kamei and PROMISE. In [16], the researchers used a
collection of 52 datasets derived from real-world challenges,
all of which are publicly available through the UCI andKEEL
repositories. A distribution of datasets across primary studies
is shown in Figure 12.

In order to provide a comprehensive overview of the
data sets used to predict software failures, a summary table
(Table 10) has been created containing essential details
of the main data sets commonly used in this area. For
each dataset, information is provided on the source, the
features, the associated range and the maximum number of
features available. This tabular information can be useful
for researchers and practitioners conducting software failure
prediction studies, as it provides a clear overview of the
datasets under consideration.

E. RQ5: WHICH TOOLS ARE FREQUENTLY EMPLOYED TO
EXECUTE FEATURE SELECTION IN THE CONTEXT OF
SOFTWARE DEFECT PREDICTION?
Machine learning tools are essential resources that enable
researchers, data scientists and developers to explore, analyze

FIGURE 13. Distribution of primary studies across ML tools.

and model complex patterns in data. These tools include
various software frameworks, libraries and platforms that
facilitate the entire lifecycle of machine learning, from data
preprocessing to model training and deployment [40], [49],
[50]. They provide efficient implementations of algorithm
visualization functions and often simplify the coding process,
allowing practitioners to focus on extracting meaningful
insights from the data instead of dealing with complicated
technical details. In selected primary studies, researchers
have used various machine learning tools to perform the
proposed techniques. In [2], [4], [25], [34], [39], [40], [49],
[51], [54], [58], [60], [66], and [72], researchers chose
Waikato Environment for Knowledge Analysis (WEKA) for
classifier performance evaluation.

In [3], [7], [38], [48], [53], [55], and [65], the researchers
used MATLAB to analyze the predictive ability of the
proposed methods. In [15], [30], [52], [56], [69], [74], and
[75], the researchers executed the proposed method using
Python libraries. In [13], [48], and [50], the researchers used
theMaximum Information-basedNonparametric Exploration
Toolkit (MINE) for empirical analysis. In [6], the researchers
used the statistical tool R to empirically investigate the
proposed approach. The researchers in [3] used the spectral
clustering tool to identify and isolate error-prone modules.
However, the machine learning tool was not explicitly
specified in the studies [1], [5], [8], [9], [14], [16], [32],
[32], [33], [59], [61], [62], [63], [64], [67], [70], [71], and
[73]. A graphical representation of the distribution of primary
studies over machine learning tools is shown in Figure 13.
Various machine learning tools have been chosen to

analyze the performance of proposed approaches during
2014-2023. Among the selected primary studies, WEKA,
MATLAB, and Python were the most frequently used ML

VOLUME 11, 2023 145971



M. Ali et al.: Analysis of Feature Selection Methods in Software Defect Prediction Models

tools. The less commonly used tools include R statistics tool
and MINE.

IV. CONCLUSION AND FUTURE WORK
This systematic literature review provides valuable insights
into the pivotal role of feature selection methods in software
defect prediction based on the 49 primary studies selected
from IEEE Xplore, Science Direct, ACM Digital Library,
and Springer Link. It addresses key research questions,
highlighting prevalent trends such as the prominence of filter
and hybrid FS methods. It also examines the utilization
of individual classifiers, such as NB, SVM, and DT.
It also explores the application of ensemble classifiers like
RF and bagging. Additionally, the review delves into the
application of diverse performance evaluation metrics. The
study also underscores the preferred tools, including WEKA,
MATLAB, and Python. These findings offer a comprehensive
understanding of the current trends in feature selection
methods and lay the foundation for future research to improve
the accuracy and efficiency of software defect prediction
models. In the future, the impact of various feature selection
methods on the performance of ensemble models should be
investigated to enhance the effectiveness of software defect
prediction models.

REFERENCES
[1] J. I. Khan, A. U. Gias, M. S. Siddik, M. H. Rahman, S. M. Khaled,

and M. Shoyaib, ‘‘An attribute selection process for software defect
prediction,’’ in Proc. Int. Conf. Inform. Electron. Vis. (ICIEV), 2014,
pp. 1–4.

[2] S. Liu, X. Chen, W. Liu, J. Chen, Q. Gu, and D. Chen, ‘‘FECAR: A feature
selection framework for software defect prediction,’’ in Proc. IEEE 38th
Annu. Comput. Softw. Appl. Conf., Jul. 2014, pp. 426–435.

[3] S. Y. Kim, S. Gu, H.-H. Jeong, and K.-A. Sohn, ‘‘A network clustering
based software attribute selection for identifying fault-prone modules,’’ in
Proc. 5th Int. Conf. IT Converg. Secur. (ICITCS), Aug. 2015, pp. 1–5.

[4] P. Mandal and A. S. Ami, ‘‘Selecting best attributes for software defect
prediction,’’ in Proc. IEEE Int. WIE Conf. Electr. Comput. Eng. (WIECON-
ECE), Dec. 2015, pp. 110–113.

[5] K. Perera, J. Chan, and S. Karunasekera, ‘‘A framework for feature
selection to exploit feature group structures,’’ in Proc. Pacific–Asia Conf.
Knowl. Discovery Data Mining. Cham, Switzerland: Springer, 2020,
pp. 792–804.

[6] W. Han, C.-H. Lung, and S. A. Ajila, ‘‘Empirical investigation of code
and process metrics for defect prediction,’’ in Proc. IEEE 2nd Int. Conf.
Multimedia Big Data (BigMM), Apr. 2016, pp. 436–439.

[7] K. Muthukumaran, A. Rallapalli, and N. L. B. Murthy, ‘‘Impact of feature
selection techniques on bug prediction models,’’ in Proc. 8th India Softw.
Eng. Conf., Feb. 2015, pp. 120–129.

[8] J. Nanditha, K. N. Sruthi, S. Ashok, and M. V. Judy, ‘‘Optimized
defect prediction model using statistical process control and correlation-
based feature selection method,’’ in Intelligent Systems Technologies and
Applications, vol. 1. Berlin, Germany: Springer, 2016, pp. 355–366.

[9] M. H. Rahman, S. Sharmin, S. M. Sarwar, and M. Shoyaib, ‘‘Software
defect prediction using feature space transformation,’’ in Proc. Int. Conf.
Internet Things Cloud Comput., Mar. 2016, pp. 1–6.

[10] B. Venkatesh and J. Anuradha, ‘‘A review of feature selection and its
methods,’’ Cybern. Inf. Technol., vol. 19, no. 1, pp. 3–26, Mar. 2019.

[11] P. Grohs and L. Herrmann, ‘‘Deep neural network approximation for high-
dimensional elliptic PDEs with boundary conditions,’’ IMA J. Numer.
Anal., vol. 42, no. 3, pp. 2055–2082, Jul. 2022.

[12] R. Bellman and R. Kalaba, ‘‘Dynamic programming and statistical
communication theory,’’ Proc. Nat. Acad. Sci. USA, vol. 43, no. 8,
pp. 749–751, Aug. 1957.

[13] C. Ni, W.-S. Liu, X. Chen, Q. Gu, D.-X. Chen, and Q.-G. Huang, ‘‘A
cluster based feature selection method for cross-project software defect
prediction,’’ J. Comput. Sci. Technol., vol. 32, no. 6, pp. 1090–1107,
Nov. 2017.

[14] S. Huda, S. Alyahya,M.MohsinAli, S. Ahmad, J. Abawajy, H. Al-Dossari,
and J. Yearwood, ‘‘A framework for software defect prediction and metric
selection,’’ IEEE Access, vol. 6, pp. 2844–2858, 2018.

[15] M. Mafarja, T. Thaher, M. A. Al-Betar, J. Too, M. A. Awadallah,
I. A. Doush, and H. Turabieh, ‘‘Classification framework for faulty-
software using enhanced exploratory whale optimizer-based feature
selection scheme and random forest ensemble learning,’’ Int. J. Speech
Technol., vol. 53, no. 15, pp. 18715–18757, Aug. 2023.

[16] C. Zhang, P. Soda, J. Bi, G. Fan, G. Almpanidis, S. García, and W. Ding,
‘‘An empirical study on the joint impact of feature selection and data
resampling on imbalance classification,’’ Appl. Intell., vol. 53, no. 5,
pp. 5449–5461, 2023.

[17] J. B. Awotunde, S. Misra, A. E. Adeniyi, M. K. Abiodun, M. Kaushik,
and M. O. Lawrence, ‘‘A feature selection-based K-NN model for fast
software defect prediction,’’ in Proc. Int. Conf. Comput. Sci. Appl. Cham,
Switzerland: Springer, 2022, pp. 49–61.

[18] S. C. Rathi, S. Misra, R. Colomo-Palacios, R. Adarsh, L. B. M. Neti, and
L. Kumar, ‘‘Empirical evaluation of the performance of data sampling and
feature selection techniques for software fault prediction,’’Exp. Syst. Appl.,
vol. 223, Aug. 2023, Art. no. 119806.

[19] V.Mishra, S. Rath, and S. K. Rath, ‘‘Feature analysis for detection of breast
cancer thermograms using dimensionality reduction techniques,’’ in Proc.
Int. Health Inform. Conf. Singapore: Springer, 2023, pp. 311–321.

[20] A. Madasu and S. Elango, ‘‘Efficient feature selection techniques
for sentiment analysis,’’ Multimedia Tools Appl., vol. 79, nos. 9–10,
pp. 6313–6335, Mar. 2020.

[21] K. L. Chiew, C. L. Tan, K. Wong, K. S. C. Yong, and W. K. Tiong, ‘‘A new
hybrid ensemble feature selection framework for machine learning-based
phishing detection system,’’ Inf. Sci., vol. 484, pp. 153–166, May 2019.

[22] P. Ghosh, S. Azam, M. Jonkman, A. Karim, F. M. J. M. Shamrat,
E. Ignatious, S. Shultana, A. R. Beeravolu, and F. De Boer, ‘‘Efficient
prediction of cardiovascular disease using machine learning algorithms
with relief and LASSO feature selection techniques,’’ IEEE Access, vol. 9,
pp. 19304–19326, 2021.

[23] H. Zhao, Z. Liu, X. Yao, and Q. Yang, ‘‘A machine learning-based
sentiment analysis of online product reviews with a novel term weighting
and feature selection approach,’’ Inf. Process. Manag., vol. 58, no. 5,
Sep. 2021, Art. no. 102656.

[24] Z. Xu, J. Liu, X. Luo, Z. Yang, Y. Zhang, P. Yuan, Y. Tang, and T. Zhang,
‘‘Software defect prediction based on kernel PCA and weighted extreme
learning machine,’’ Inf. Softw. Technol., vol. 106, pp. 182–200, Feb. 2019.

[25] A. O. Balogun, S. Basri, S. A. Jadid, S. Mahamad, M. A. Al-momani,
A. O. Bajeh, and A. K. Alazzawi, ‘‘Search-based wrapper feature selection
methods in software defect prediction: An empirical analysis,’’ in Proc.
Intell. Algorithms Softw. Eng., 9th Comput. Sci. Line Conf., vol. 19. Cham,
Switzerland: Springer, 2020, pp. 492–503.

[26] R. Zebari, A. Abdulazeez, D. Zeebaree, D. Zebari, and J. Saeed,
‘‘A comprehensive review of dimensionality reduction techniques for
feature selection and feature extraction,’’ J. Appl. Sci. Technol. Trends,
vol. 1, no. 2, pp. 56–70, May 2020.

[27] P. Jindal and D. Kumar, ‘‘A review on dimensionality reduction
techniques,’’ Int. J. Comput. Appl., vol. 173, no. 2, pp. 42–46, Sep. 2017.

[28] U. M. Khaire and R. Dhanalakshmi, ‘‘Stability of feature selection
algorithm: A review,’’ J. King Saud Univ.-Comput. Inf. Sci., vol. 34, no.
4, pp. 1060–1073, 2019.

[29] U. StaÅczyk and L. C. Jain, Feature Selection for Data and Pattern
Recognition: An Introduction. Berlin, Germany: Springer, 2015, pp. 1–7.

[30] Y. Z. Bala, P. Abdul Samat, K. Y. Sharif, and N. Manshor, ‘‘Improv-
ing cross-project software defect prediction method through trans-
formation and feature selection approach,’’ IEEE Access, vol. 11,
pp. 2318–2326, 2023.

[31] D. Q. Zeebaree, H. Haron, A. M. Abdulazeez, and D. A. Zebari, ‘‘Machine
learning and region growing for breast cancer segmentation,’’ in Proc. Int.
Conf. Adv. Sci. Eng. (ICOASE), Apr. 2019, pp. 88–93.

[32] S.Mehta andK. S. Patnaik, ‘‘Improved prediction of software defects using
ensemble machine learning techniques,’’ Neural Comput. Appl., vol. 33,
no. 16, pp. 10551–10562, Aug. 2021.

145972 VOLUME 11, 2023



M. Ali et al.: Analysis of Feature Selection Methods in Software Defect Prediction Models

[33] F. Wang, J. Ai, and Z. Zou, ‘‘A cluster-based hybrid feature selection
method for defect prediction,’’ in Proc. IEEE 19th Int. Conf. Softw. Qual.,
Rel. Secur. (QRS), Jul. 2019, pp. 1–9.

[34] X. Xiaolong, C. Wen, and W. Xinheng, ‘‘RFC: A feature selection
algorithm for software defect prediction,’’ J. Syst. Eng. Electron., vol. 32,
no. 2, pp. 389–398, Apr. 2021.

[35] M. J. Hernndez-Molinos, A. J. Snchez-Garca, R. E. Barrientos-Martnez,
J. C. Pz-Arriaga, and J. O. Ocharn-Hernndez, ‘‘Software defect prediction
with Bayesian approaches,’’Mathematics, vol. 11, no. 11, p. 2524, 2023.

[36] C. L. Prabha and N. Shivakumar, ‘‘Software defect prediction using
machine learning techniques,’’ in Proc. 4th Int. Conf. Trends Electron.
Informat. (ICOEI), Jun. 2020, pp. 728–733.

[37] L. Qiao, X. Li, Q. Umer, and P. Guo, ‘‘Deep learning based software defect
prediction,’’ Neurocomputing, vol. 385, pp. 100–110, Apr. 2020.

[38] M. M. Ali, S. Huda, J. Abawajy, S. Alyahya, H. Al-Dossari, and
J. Yearwood, ‘‘A parallel framework for software defect detection and
metric selection on cloud computing,’’ Cluster Comput., vol. 20, no. 3,
pp. 2267–2281, Sep. 2017.

[39] Q. Yu, S.-J. Jiang, R.-C. Wang, and H.-Y. Wang, ‘‘A feature selection
approach based on a similarity measure for software defect prediction,’’
Frontiers Inf. Technol. Electron. Eng., vol. 18, no. 11, pp. 1744–1753,
Nov. 2017.

[40] X. Chen, Y. Shen, Z. Cui, and X. Ju, ‘‘Applying feature selection to
software defect prediction using multi-objective optimization,’’ in Proc.
IEEE 41st Annu. Comput. Softw. Appl. Conf. (COMPSAC), vol. 2,
Jul. 2017, pp. 54–59.

[41] H. Alsolai and M. Roper, ‘‘A systematic review of feature selection
techniques in software quality prediction,’’ in Proc. Int. Conf. Electr.
Comput. Technol. Appl. (ICECTA), Nov. 2019, pp. 1–5.

[42] S. Keele, ‘‘Guidelines for performing systematic literature reviews in
software engineering,’’ Software Eng. Group School Comput. Sci., Dept.
Comput. Sci., Math. Keele Univ., Durham Univ., Durham, U.K., Keele,
U.K., Tech. Rep. EBSE-2007-01, 2007.

[43] B. Kitchenham, O. Pearl Brereton, D. Budgen, M. Turner, J. Bailey, and
S. Linkman, ‘‘Systematic literature reviews in software engineering—
A systematic literature review,’’ Inf. Softw. Technol., vol. 51, no. 1,
pp. 7–15, 2009.

[44] F. Matloob, T. M. Ghazal, N. Taleb, S. Aftab, M. Ahmad, M. A. Khan,
S. Abbas, and T. R. Soomro, ‘‘Software defect prediction using
ensemble learning: A systematic literature review,’’ IEEE Access, vol. 9,
pp. 98754–98771, 2021.

[45] H. Snyder, ‘‘Literature review as a researchmethodology: An overview and
guidelines,’’ J. Bus. Res., vol. 104, pp. 333–339, Nov. 2019.

[46] C. Okoli, ‘‘A guide to conducting a standalone systematic literature
review,’’ Commun. Assoc. Inf. Syst., vol. 37, pp. 879–910, 2015.

[47] W. Afzal, R. Torkar, and R. Feldt, ‘‘A systematic review of search-based
testing for non-functional system properties,’’ Inf. Softw. Technol., vol. 51,
no. 6, pp. 957–976, Jun. 2009.

[48] Z. Xu, J. Xuan, J. Liu, andX. Cui, ‘‘MICHAC:Defect prediction via feature
selection based on maximal information coefficient with hierarchical
agglomerative clustering,’’ in Proc. IEEE 23rd Int. Conf. Softw. Anal.,
Evol., Reengineering (SANER), vol. 1, Mar. 2016, pp. 370–381.

[49] S. A. Putri, ‘‘Combining integreted sampling technique with feature
selection for software defect prediction,’’ in Proc. 5th Int. Conf. Cyber IT
Service Manag. (CITSM), Aug. 2017, pp. 1–6.

[50] C. Ni, W. Liu, Q. Gu, X. Chen, and D. Chen, ‘‘FeSCH: A feature selection
method using clusters of hybrid-data for cross-project defect prediction,’’
in Proc. IEEE 41st Annu. Comput. Softw. Appl. Conf. (COMPSAC), vol. 1,
Jul. 2017, pp. 51–56.

[51] D. R. Ibrahim, R. Ghnemat, and A. Hudaib, ‘‘Software defect prediction
using feature selection and random forest algorithm,’’ in Proc. Int. Conf.
New Trends Comput. Sci. (ICTCS), Oct. 2017, pp. 252–257.

[52] H. D. Tran, L. T. M. Hanh, and N. T. Binh, ‘‘Combining feature selection,
feature learning and ensemble learning for software fault prediction,’’ in
Proc. 11th Int. Conf. Knowl. Syst. Eng. (KSE), Oct. 2019, pp. 1–8.

[53] C. Manjula and L. Florence, ‘‘Deep neural network based hybrid approach
for software defect prediction using software metrics,’’ Cluster Comput.,
vol. 22, no. S4, pp. 9847–9863, Jul. 2019.

[54] Y. Du, L. Zhang, J. Shi, J. Tang, and Y. Yin, ‘‘Feature-grouping-based two
steps feature selection algorithm in software defect prediction,’’ in Proc.
2nd Int. Conf. Adv. Image Process., Jun. 2018, pp. 173–178.

[55] H. Turabieh, M. Mafarja, and X. Li, ‘‘Iterated feature selection algorithms
with layered recurrent neural network for software fault prediction,’’ Exp.
Syst. Appl., 122, pp. 27–42, May 2019.

[56] I. H. Laradji, M. Alshayeb, and L. Ghouti, ‘‘Software defect prediction
using ensemble learning on selected features,’’ Inf. Softw. Technol., vol. 58,
pp. 388–402, Feb. 2015.

[57] C. Ni, X. Chen, F. Wu, Y. Shen, and Q. Gu, ‘‘An empirical study on Pareto
based multi-objective feature selection for software defect prediction,’’
J. Syst. Softw., vol. 152, pp. 215–238, Jun. 2019.

[58] Q. Yu, J. Qian, S. Jiang, Z. Wu, and G. Zhang, ‘‘An empirical study on
the effectiveness of feature selection for cross-project defect prediction,’’
IEEE Access, vol. 7, pp. 35710–35718, 2019.

[59] M. Anbu and G. S. Anandha Mala, ‘‘Feature selection using firefly
algorithm in software defect prediction,’’ Cluster Comput., vol. 22, no. 5,
pp. 10925–10934, Sep. 2019.

[60] A. O. Balogun, S. Basri, S. Mahamad, L. F. Capretz, A. A. Imam,
M. A. Almomani, V. E. Adeyemo, and G. Kumar, ‘‘A novel rank
aggregation-based hybrid multifilter wrapper feature selection method in
software defect prediction,’’Comput. Intell. Neurosci., vol. 2021, pp. 1–19,
Nov. 2021.

[61] F. M. Tua and W. Danar Sunindyo, ‘‘Software defect prediction using
software metrics with Naïve Bayes and rule mining association methods,’’
in Proc. 5th Int. Conf. Sci. Technol. (ICST), Jul. 2019, pp. 1–5.

[62] S. Fan, C. Liu, and Z. Li, ‘‘An empirical study on the impact of the
interaction between feature selection and sampling in defect prediction,’’
in Proc. 7th Int. Conf. Dependable Syst. Their Appl. (DSA), Nov. 2020,
pp. 131–140.

[63] M. Kakkar and S. Jain, ‘‘Feature selection in software defect prediction:
A comparative study,’’ in Proc. 6th Int. Conf.-Cloud Syst. Big Data Eng.,
Jan. 2016, pp. 658–663.

[64] A. Joon, R. Kumar Tyagi, and K. Kumar, ‘‘Noise filtering and imbalance
class distribution removal for optimizing software fault prediction using
best software metrics suite,’’ in Proc. 5th Int. Conf. Commun. Electron.
Syst. (ICCES), Jun. 2020, pp. 1381–1389.

[65] K. Wang, L. Liu, C. Yuan, and Z. Wang, ‘‘Software defect prediction
model based on LASSO–SVM,’’ Neural Comput. Appl., vol. 33, no. 14,
pp. 8249–8259, Jul. 2021.

[66] Y. Xia, G. Yan, X. Jiang, and Y. Yang, ‘‘A new metrics selection method
for software defect prediction,’’ in Proc. IEEE Int. Conf. Prog. Informat.
Comput., May 2014, pp. 433–436.

[67] R. Malhotra, N. Nishant, S. Gurha, and V. Rathi, ‘‘Application of particle
swarm optimization for software defect prediction using object oriented
metrics,’’ inProc. 11th Int. Conf. CloudComput., Data Sci. Eng., Jan. 2021,
pp. 88–93.

[68] M. Nevendra and P. Singh, ‘‘Defect count prediction via metric-based
convolutional neural network,’’ Neural Comput. Appl., vol. 33, no. 22,
pp. 15319–15344, 2021.

[69] A. Ali, N. Khan, M. Abu-Tair, J. Noppen, S. McClean, and I. McChesney,
‘‘Discriminating features-based cost-sensitive approach for software defect
prediction,’’ Automated Softw. Eng., vol. 28, no. 2, pp. 1–18, Nov. 2021.

[70] R. Kumar and K. P. Singh, ‘‘SVM with feature selection and extraction
techniques for defect-prone software module prediction,’’ in Proc. 6th Int.
Conf. Soft Comput. Problem Solving, vol. 2. Singapore: Springer, 2017,
pp. 279–289.

[71] K. Zhu, S. Ying, N. Zhang, and D. Zhu, ‘‘Software defect prediction based
on enhancedmetaheuristic feature selection optimization and a hybrid deep
neural network,’’ J. Syst. Softw., vol. 180, Oct. 2021, Art. no. 111026.

[72] A. O. Balogun, S. Basri, S. J. Abdulkadir, S. Mahamad,
M. A. Al-momamni, A. A. Imam, and G. M. Kumar, ‘‘Rank aggregation
based multi-filter feature selection method for software defect prediction,’’
in Advances in Cyber Security. Singapore: Springer, 2021, pp. 371–383.

[73] G. N. V. R. Rao, V. V. S. S. Balaram, and B. Vishnuvardhan, ‘‘Attribute
reduction for defect prediction using random subset feature selection
method,’’ in Information Systems Design and Intelligent Applications,
vol. 1. Singapore: Springer, 2019, pp. 551–558.

[74] T. F. Husin and M. R. Pribadi, ‘‘Implementation of LSSVM in
classification of software defect prediction data with feature selection,’’
in Proc. 9th Int. Conf. Electr. Eng., Comput. Sci. Informat. (EECSI),
Oct. 2022, pp. 126–131.

[75] L.-Q. Chen, C. Wang, and S.-L. Song, ‘‘Software defect prediction based
on nested-stacking and heterogeneous feature selection,’’ Complex Intell.
Syst., vol. 8, no. 4, pp. 3333–3348, Aug. 2022.

VOLUME 11, 2023 145973



M. Ali et al.: Analysis of Feature Selection Methods in Software Defect Prediction Models

[76] L. Kumar, S. K. Sripada, A. Sureka, and S. K. Rath, ‘‘Effective fault
prediction model developed using least square support vector machine
(LSSVM),’’ J. Syst. Softw., vol. 137, pp. 686–712, Mar. 2018.

[77] H. Alsghaier and M. Akour, ‘‘Software fault prediction using particle
swarm algorithm with genetic algorithm and support vector machine
classifier,’’ Softw., Pract. Exper., vol. 50, no. 4, pp. 407–427, Apr. 2020.

[78] T. O. Olaleye, O. T. Arogundade, S. Misra, A. Abayomi-Alli, and U. Kose,
‘‘Predictive analytics and software defect severity: A systematic review and
future directions,’’ Sci. Program., vol. 2023, pp. 1–18, Feb. 2023.

[79] R. Panigrahi, S. K. Kuanar, L. Kumar, N. Padhy, and S. C. Satapathy,
‘‘Software reusability metrics prediction and cost estimation by using
machine learning algorithms,’’ Int. J. Knowl.-based Intell. Eng. Syst.,
vol. 23, no. 4, pp. 317–328, Feb. 2020.

[80] S. S. Rathore and S. Kumar, ‘‘An empirical study of some software fault
prediction techniques for the number of faults prediction,’’ Soft Comput.,
vol. 21, no. 24, pp. 7417–7434, Dec. 2017.

[81] S. S. Rathore and S. Kumar, ‘‘A study on software fault prediction
techniques,’’ Artif. Intell. Rev., vol. 51, no. 2, pp. 255–327, Feb. 2019.

[82] S. S. Rathore and S. Kumar, ‘‘Towards an ensemble based system for
predicting the number of software faults,’’ Exp. Syst. Appl., vol. 82,
pp. 357–382, Oct. 2017.

MISBAH ALI received the bachelor’s degree in
computer science from the Punjab University Col-
lege of Information Technology (PUCIT), Lahore,
Pakistan, and the master’s degree in computer
science from Virtual University of Pakistan. She
has contributed significantly to the international
software industry for three years by working with
software houses, such as Systems Ltd., and TRG.
She also has six years of teaching experience.
Her research interests include machine learning,

natural language processing, and software process improvement.

TEHSEEN MAZHAR received the B.Sc. degree
in computer science from Bahaudin Zakaria Uni-
versity, Multan, Pakistan, the M.Sc. degree in
computer science from Qauid-e-Azam University
Islamabad, Pakistan, and theM.S.C.S. degree from
the Virtual University of Pakistan, where he is
currently pursuing the Ph.D. degree. He is also
with SED and a Lecturer with GCUF. He has
more than 21 publications in reputed journals, such
as Electronics, Health, Applied Sciences, Brain

Sciences, Symmetry, Future Internet, PeerJ, and CMC. His research interests
include machine learning, the Internet of Things, and computer networks.

TARIQ SHAHZAD received the B.E. and M.S.
degrees from COMSATS University Islamabad,
Pakistan, in 2006 and 2014, respectively, and the
Ph.D. degree from the University of Johannesburg,
South Africa, in 2021. He is currently an Assistant
Professor with COMSATS University Islamabad,
Sahiwal Campus, Pakistan. His research work
has published in top-tier IEEE conferences and
well-reputed peer-reviewed journals. His research
interests include the Internet of Things, machine

learning, and AI in healthcare. He has also served as a technical program
committee member and a paper reviewer for international conferences and
journals.

YAZEED YASIN GHADI received the Ph.D.
degree in electrical and computer engineering
from Queensland University. He is currently
an Assistant Professor of software engineering
with Al Ain University. He was a Postdoctoral
Researcher with Queensland University, before
joining Al Ain University. His current research is
on developing novel electro-acousto-optic neural
interfaces for large scale high resolution electro-
physiology and distributed optogenetic stimula-

tion. He has published more than 80 peer-reviewed journal and conference
papers and holds three pending patents. He was a recipient of several awards.
His dissertation on developing novel hybrid plasmonicphotonic on chip
biochemical sensors received the Sigma Xi Best Ph.D. Thesis Award.

SYED MUHAMMAD MOHSIN received the
B.S. and M.S. degrees in computer science from
the Virtual University of Pakistan, in 2011 and
2016, respectively. He is currently a Ph.D. Scholar
with COMSATS University Islamabad, Pakistan.
He has 14 years of experience in system/network
administration, teaching, and research and devel-
opment. He was a recipient of the Merit Schol-
arship from the Higher Education Commission
(HEC), Pakistan, for his Ph.D. study. He has

presented his research work in national and international conferences.
He has published numerous research articles in conferences and journals.
His research interests include smart grids, the Internet of Things, cloud
computing, green energy, machine learning, cyber security, and related
areas. He has been a TPC member and an invited reviewer of international
conferences and journals.

SYED MUHAMMAD ABRAR AKBER received
the B.S. and M.S. degrees in computer sci-
ence from the Virtual University of Pakistan,
in 2010 and 2015, respectively. He is currently
pursuing the Ph.D. degree with the Silesian
University of Technology, Gliwice, Poland. He has
published numerous research articles in high
level conferences and peer-reviewed journals.
He has also presented his research work at
prestigious national and international conferences.

His research interests include artificial intelligence, big data processing,
wireless networks, computer graphics, and related areas.

MOHAMMED ALI received the Ph.D. degree in
computer science from Swansea University, U.K.
He is currently an Assistant Professor with the
Department of Computer Science, King Khalid
University, Saudi Arabia. He is also the Vice Dean
of the Applied College, King Khalid University.
His research interests include data mining and
knowledge discovery, artificial intelligence, infor-
mation visualization, machine learning, and visual
analytics.

145974 VOLUME 11, 2023


