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ABSTRACT Alzheimer’s disease (AD) is a disease that develops gradually, ultimately causing deterioration
of brain functions. Thus, early diagnosis is essential for treating and managing AD. Magnetic-resonance-
imaging (MRI)-based AD diagnosis classifies the stage of AD according to the extent of atrophy caused to a
patient’s hippocampal and entorhinal cortex. In this case, the shape of the patient’s brain serves as a crucial
feature. Therefore, in this paper, we propose an ensemble convolutional neural network (CNN) model that
can classify the AD stage according to the shape of a patient’s brain. The proposed model is structured by
combining a convolutional layer part of the visual geometry group network (VGGNet) model, with proven
performance in image classification, and a 1D CNNmodel into a pipeline. Here, the 1D CNN applies the line
segment feature analysis (LFA) algorithm to MRI images to transform the visual line segment information
of the images into vectors and record strong features indicating the shape of the brain. This is followed
by 1D CNN model training. Notably, the 1D CNN model can carefully observe the brain shape owing to
the parallel connection of ten 1D convolutional layers with LFA features. Subsequently, the brain shape
information is combined with features obtained from the original image through the VGGNet to improve
the model performance compared to that of existing methods. To evaluate the performance of the proposed
ensemble CNN model, MRI datasets collected from Kaggle are used to evaluate and compare the proposed
model with existing image classification methods and methods proposed in related studies. The experimental
results reveal that the proposed model demonstrates superior performance with an accuracy of 0.986 and a
loss of 0.0385.

INDEX TERMS Alzheimer’s disease, ensemble convolution neural network, VGGNet, 1D convolution
neural network, brain MRI, LFA algorithm.

I. INTRODUCTION
Alzheimer’s disease (AD) is a degenerative brain disease first
reported in 1907 by a German psychiatrist, Alois Alzheimer,
and it is characterized by an extremely slow onset and gradual
progression [1], [2], [3]. Related studies have discovered
that the onset of AD can be attributed to the deposition
of excessively produced beta-amyloid in the brain or brain
cell damage, such as hyperphosphorylation of tau proteins,

The associate editor coordinating the review of this manuscript and
approving it for publication was Alessandra Bertoldo.

inflammatory response, and oxidative damage [4], [5]. In the
early stages of AD, patients develop memory-related prob-
lems, and as the disease progresses, AD patients exhibit
abnormalities in various other cognitive functions, such as
language functions and decision-making capability, leading
to dementia. Hence, AD is among the most dangerous dis-
eases.

Dementia affects more than 55 million people globally,
with nearly 10 million new cases annually [6]. Predic-
tions indicate that the dementia patient count will rise to
152.8 million by 2050 [7]. China accounts for a quarter of
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the worldwide dementia population, with about 15.07 million
patients aged 60 and above [8]. Alzheimer’s disease (AD) and
other forms of dementia are becoming pressing public health
and societal concerns.

Different countries and regions display varying rates of
AD diagnosis, prevalence of dementia, and mortality due
to social, economic, and demographic factors. A system-
atic review in 2020 revealed higher dementia prevalence in
Europe and North America compared to South America,
Asia, and Africa [9]. Thanks to enhancements in educa-
tion, reduced vascular risk factors, and a decrease in stroke
incidence [10], [11], [12], [13], the prevalence of AD and
dementia has decreased in Europe and the U.S. [10], [14],
[15], [16], [17]. However, due to an aging population, mor-
tality rates for AD and dementia are expected to rise. In the
U.S., there were 121,499 recorded deaths related to AD
in 2019 [18]. CDC data shows an AD mortality rate of
37 per 100,000 individuals, ranking it as the 6th leading
cause of death. COVID-19 has increased dementia-related
deaths by 16% [19]. In theUK, the dementia-relatedmortality
rate in 2019 was 115.1 per 100,000 (66,424 deaths), lower
than 123.8 (69,478 deaths) in 2018. Nevertheless, COVID-
19 disproportionately affected dementia patients, leading
to death rates 8 times higher [20], [21]. Asia witnesses a
rapid rise in the elderly population. Japan, a super-aged
society, is expected to have 6.5 to 7 million AD patients
by 2025 and 8.5 to 11.5 million by 2060 [22]. Japan’s
dementia mortality rose from 15.3 per 100,000 in 1999 to
69.0 in 2016 [23]. South Korea faces increased prevalence
and mortality due to an aging population and low birth
rates. Dementia cases in Koreans aged 60+ were 135,630
in 2003 and 269,631 in 2015. Mortality increased 2.5 times
from 2009 to 2019, elevating it from 13th to 7th leading cause
of death [24]. China’s dementia prevalence rates for those
aged 60+ are 6.0% (total dementia), 3.9% (AD), 1.6% (vas-
cular dementia), and 0.5% (other dementias). China’s AD and
dementia mortality rates in 2019 were 22.5 per 100,000, ris-
ing since 1990 and moving from 10th to 5th leading cause of
death [25].

The World Health Organization (WHO) also anticipates
that 114 million people out of the global population will
be patients by 2050. Hence, the WHO has recommended
governments and policymakers to consider dementia as
a high-priority global public health problem [26], [27],
[28]. According to the 2021 cause-of-death statistics report
released by Statistics Korea in September 2022, the mortality
rate associated with AD has increased from 4.8% to 15.6%
in the dementia mortality trend from 2011 to 2021 in the
Republic of Korea [29]. Therefore, care management cost for
dementia patients is expected to increase by approximately
eight times to 106.5 trillion won (approximately 3.8% of the
GDP) by 2050 [29].
Because the cause and treatment of AD remain unclear to

date, detecting the onset of AD in early stages is crucial [30].
This is because early detection can prevent the worst case,
which is the progression of AD into dementia. Furthermore,

establishing a rapid treatment plan based on the progress of
the disease and continuous care management may be feasible.

Compared to magnetic resonance imaging (MRI) images
of normal brains, the hippocampal and entorhinal cortex
appear atrophied in the MRI brain images of AD patients.
In particular, a clear difference can be observed in the hip-
pocampal region [30]. These characteristics enable early
diagnosis of AD and can help in monitoring and tracking the
progress of the disease by detecting atrophy in the hippocam-
pal region of the MRI brain images of AD patients.

In this study, we classified the stage of AD into the
following four categories: ‘‘Non-Demented,’’ ‘‘Very Mild
Demented,’’ ‘‘Mild Demented,’’ and ‘‘Moderate Demented,’’
according to the extent of atrophy observed in the hip-
pocampal and entorhinal cortex in MRI images. To extract
the most important contour information from MRI images
when diagnosing AD, the line segment feature analysis (LFA)
algorithm [31], [32], [33] was used to analyze the features
of contour shapes. In addition, an ensemble convolutional
neural network (CNN) model was constructed by combining
a 1D CNN model with the visual geometry group network
(VGGNet) model. The ensemble CNN model was then used
to classify AD.

In a previous study on AD diagnosis, Hosseini-Asl et al.
constructed the upper layer of a 3D CNN with a 3D con-
volution autoencoder to detect the brain size, ventricle size,
and hippocampus biomarkers. The authors then classified
target domains [34]. This 3D CNN used parallel convolu-
tional layers to extract various biomarkers from a single input.
Consequently, a memory unit with high specifications was
required when working with high-resolution images, such as
MRI images. Furthermore, a high-performance server had to
be used for hierarchical MRI images. Venugopalan et al. con-
structed a deep learning model with connected shallow neural
structures for early diagnosis of AD. The authors integrated
and usedMRI, single nucleotide polymorphisms, and clinical
test data [35]. As a method for automatic classification of AD
stages and mild cognitive impairment, Basaia et al. diagnosed
AD by conducting experiments considering various classi-
fication criteria using an all-convolutional network model
trained on the Alzheimer’s Disease Neuroimaging Initiative
dataset and the Milan dataset collected by the authors [36].
Murugan et al. proposed a DEMentia NETwork (DEMNET)
model consisting of 14 layers using a block that grouped the
convolution, batch-norm, and max-pooling layers to identify
the stage of AD progression [37].
In this study, global biomarkers were extracted from MRI

images using the VGGnet model, which uses unprocessed
MRI image data. In addition, the LFA algorithm was used to
extract strong morphological features of the brain shape from
MRI images. Minute local biomarkers were then extracted
using a 1D CNN model to improve performance in AD diag-
nosis. Moreover, by utilizing the LFA algorithm to transform
the image data into vector signals, we developed a method
different from existing CNN-based diagnosis methods that
require additional structured or time-series data.
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II. RELATED RESEARCH
A. STRUCTURE OF VGGNet
The VGGNet is a model with a deep hierarchical structure
that presents superior performance, and it ranked second
in the ImageNet Large Scale Visual Recognition Challenge
2014 (ILSVRC 2014) [38]. This model uses consecutive 3 ×

3 filters and is classified as a VGG16 or VGG19 model
depending on the number of layers in the model. As the
number of layers in the model increases, the performance of
the model improves. However, problems such as overfitting
and gradient vanishing persist. Thus, the decision function
of input data is constructed in the VGGNet by overlapping
a small 3 × 3 convolution filter using the rectified linear
unit (ReLU) function. Furthermore, the extent of overfitting
is reduced by decreasing the number of parameters in the
learning process. Hence, the VGGNet maintains a stable
learning process, yielding superior performance.

In a medical imaging classification study using the
VGGNet, S. Lu [39] proposes a novel method for diagnosing
Cerebral Microbleeds (CMB). This method is based on VGG,
ELM (Extreme Learning Machine), and the Gaussian Map
Bat algorithm. VGG, a well-known Convolutional Neural
Network (CNN) model, is utilized to extract features from
brain MRI images. Instead of training VGG with the CMB
dataset, a pretrained VGG is directly employed to gener-
ate image features. These features are then fed into ELM
for training. ELM, a learning algorithm for Single Hidden
Layer Feedforward Networks (SLFN), trains the network in
just three steps without iterative backpropagation, offering
fast convergence and excellent classification performance
compared to traditional backpropagation. The generalization
ability of ELM is further enhanced using the Gaussian Map
Bat algorithm. By combining these successful components,
our CMB diagnosis method achieves results surpassing state-
of-the-art approaches. Hong et al. [40] proposed a method for
recognizing numerous genetic syndromes in children using
the VGG16 model. Anusri et al. [41] conducted a facial
emotion recognition study using the VGG16 model for early
diagnosis of Parkinson’s disease. Helaly et al. [42] have
developed an end-to-end framework for the early detection
of Alzheimer’s disease. This framework performs medical
image classification for various stages of Alzheimer’s disease
at its initial phases (referred to as AD), utilizing a CNN-based
approach to conduct multi-class classification for four AD
stages, and binary classification between two AD stages.
The proposed framework is composed of six stages: data
collection, preprocessing, data augmentation, medical image
classification, evaluation, and application. The dataset under-
goes resampling and preprocessing, including processes like
normalization, standardization, and resizing. Data augmen-
tation involves techniques such as rotation and flipping to
enhance the dataset, which is subsequently split into training,
validation, and test sets. Medical image classification is car-
ried out using a simple CNN architecture that handles both 2D
and 3D structural brain MRI scans, along with a pre-trained
VGG19 model. The performance of these two methods is

evaluated using nine performance metrics. Ebrahim et al. [43]
proposed an AD diagnosis method using magnetic resonance
imaging (MRI). In this study, they employed the relatively
simple yet well-knownVGG16 architecture. VGG16 consists
of 13 convolutional layers, 5 pooling layers, and two fully
connected layers – one with ReLU activation and the other
with Softmax activation. The input images have a fixed size of
64×64, with a kernel size of 3×3 andmax-pooling performed
over a 2 × 2 pixel window with a stride of 2. This enabled
them to distinguish between Alzheimer’s disease (AD) and
Cognitively Normal (CN), demonstrating that even with a
shallow architecture, effective results can be obtained for AD
diagnosis using image data.

Thus, the VGGNet model is widely used in the medical
imaging field owing to its superior performance. This study
also utilizes the VGGNet to classify AD images. As summa-
rized in Table 1, the VGGNet has a structure wherein one
or more convolution layers are grouped. The inclusion of
convolution layers indicated in bold in Table 1 determines
whether the structure of the VGGNetmodel is of typeVGG16
or VGG19. In this study, we use the VGGNet, which is
widely utilized in medical image analysis, to extract unique
biomarkers as the global features of AD images.

TABLE 1. Structure of VGG16&19; fsize: filter size, pad: padding, st: stride,
act: activation function.

B. STRUCTURE OF AlexNet
AlexNet is a CNN-based deep learning architecture that
won the ILSVRC (ImageNet Large Scale Visual Recognition
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TABLE 2. Line-segment type depending on the activated rank of the detection-filter.; N-A: non-activity, P: point, H: horizontality, V: verticality, C: curve, D:
diagonal, F: face, P-n: pattern-n.

Challenge) in 2012, surpassing VGGNet andmaking a signif-
icant impact on the field of image recognition [44]. AlexNet
was capable of learning from the ImageNet dataset, which
consists of over 1.2 million labeled images. It introduced the
use of GPUs for parallel computation, greatly enhancing the
training speed. In the 2012 ILSVRC, it secured first place
with an error rate difference of about 10% from the second
place, contributing significantly to the popularization and
advancement of deep learning.

• Input Layer:AlexNet takes color images of size 224 ×

224 as input.
• Convolutional Layer:AlexNet includes 5 convolutional
layers, each extracting features using filters. The first
convolutional layer uses 96 filters of size 11 × 11, while
the subsequent layers use smaller filters.

• Max-Pooling Layer:Max-Pooling layers follow the
convolutional layers, downsampling the image to reduce
its size.

• ReLUActivation:ReLU (Rectified Linear Unit) activa-
tion functions are used between all convolutional layers
and fully connected layers. ReLU adds non-linearity,
enhancing the model’s representational capacity.

• Fully Connected Layer:AlexNet has 3 fully connected
layers that learn features and perform classification
tasks.

• Softmax Layer: The output layer employs the Softmax
activation function to compute class probabilities.

C. PROCESS OF LINE-SEGMENT FEATURE ANALYSIS (LFA)
Notably, AD is characterized by progressive changes in the
shape of the brain owing to atrophy of the hippocampal and
entorhinal cortex. In this study, we classify the progressive
stages of AD by further emphasizing the characteristics of
changes in the brain shape.

The LFA algorithm [31], [32], [33] is an algorithm pro-
posed in our previous study. This algorithm can transform
visual data into structured data by analyzing contour features,

which are basic elements comprising the objects in images,
as line segments in pixel units.

FIGURE 1. Example of the line-segment analysis process of the LFA
algorithm.

Fig. 1 portrays a process whereby visual line segment data
is transformed into structured numerical data using the LFA
algorithm. In this process, all visual line segments within
the input image are converted into a series of numerical
patterns based on their contour type. The 3 × 3 detection
filter employed in this process has a coefficient value of 2n.
Table 2 provides an overview of the line segment types that
can be characterized using the detection filter. The detection
filter can condense visual features by representing visual line
segments with 256 unique numbers. By filtering the input
image with the detection filter, line segments from the input
image are portrayed through 256 distinct visual line segment
attributes, determined by the filter response values as detailed
in Table 2. These distinct identifiers are sorted by type and
aggregated to generate LFA data, which functions as input
for the 1D CNN.

The generated LFA data takes the form of a 256× 1 vector,
corresponding to the sum of the decision filter coefficients.
The original image is segmented, and the LFA algorithm
is applied to each segmented area to emphasize the overall
shape features of the objects. Hence, if the original image is
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FIGURE 2. Proposed ensemble CNN model connected VGGNet and 1D-CNN with LFA.

segmented into an N × M size, the resultant LFA data will
possess a size of N × M × 256 × 1.

The generated LFA data can emphasize line segments
with the highest frequency according to the type of line
segments contained in the image objects. For example, if a
circular object is present in the image, similar to the original
image displayed in Fig. 1, the values transformed through
the detection filter will possess several unique numbers of
line segment types representing curves and diagonal lines.
Moreover, if these values are plotted on a graph by type, the
curves and diagonal lines will have a high frequency.

This study aims to improve the performance of AD diagno-
sis by emphasizing detailed features of the brain shape, which
are the strongest, using MRI images processed using the LFA
algorithm.

D. 1D CONVOLUTIONAL NEURAL NETWORK
CNNs are typically designed to operate only on 2D or higher
dimensional data, such as images and videos, through 2D
or 3D convolutional layers in various computer vision and
machine learning tasks [45], [46], [47], [48], [49]. However,
as CNNs are used in wide-ranging applications, several stud-
ies are being conducted on learning methods for 1D data.

To learn time-series signal data, such as electrocardiogram
signals, a 1D CNN is trained on the signal data using a 2D or
higher dimensional kernel with a 1D form [50]. Therefore, 1D
CNNs are considerablymore efficient than 2DCNNs in terms
of computational complexity [51]. Furthermore, 1D CNNs
are advantageous in that they can be used effectively in hard-
ware environments, such as small devices [52], [53], [54].
The 1D CNN model used in this study was trained on 1D

data transformed through the LFA algorithm. Because the

transformed data were generated by reducing visual features,
comprehensively analyzing all data was meaningless. How-
ever, meaningful features could be obtained from the reduced
data if the changes in the coefficients for each line segment
type were analyzed. In particular, change relationships of
consecutive values, such as time-series data, are important in
the transformed data. Hence, these features were extracted
through the 1D CNN model.

III. PROPOSED ENSEMBLE CNN MODEL FOR EARLY
DIAGNOSIS OF ALZHEIMER’S DISEASE
In this paper, we propose an ensemble CNN model that
integrates the VGGNet (using MRI images as the input) and
1D CNN (using the LFA data as the input) into a pipeline,
as depicted in Fig. 2, for early AD diagnosis.
As indicated in Fig. 2, the proposed ensemble model is

connected in parallel with convolutional layers No. 1 through
No. 5, as in Table 1. The proposed ensemble model uses
ten 1D convolution layers with different kernel sizes. The
result value of each 1D convolution layer is combined with
the result value of the VGGNet in the concatenate layer and
integrated into a single input vector. The input vector is then
passed through two fully connected layers and a softmax
function to execute the final classification of the AD stage.

In general, 2D convolutional layers demonstrate excellent
performance when recording spatial and directional informa-
tion within an image. However, they present a drawback in
that they encounter difficulties in analyzing the segmentation
and contours of small regions. Therefore, the pipelines of two
different models are connected to emphasize the advantages
of the two models.

143008 VOLUME 11, 2023



C.-M. Kim, W. Lee: Classification of AD Using Ensemble CNN With LFA Algorithm

The LFA algorithm used to generate the input data of the
1D CNN cumulatively aggregates the visual line segment
information from the image by contour type to express weak
shape features as strong feature information. Furthermore, the
visual line segment information from the image can be used as
feature classification data through the 1D CNN connected in
parallel. In particular, strong features for space and direction
are collected through the 2D convolutional layers, and weak
features are strengthened through the LFA and 1D CNN and
transformed into strong features. This is followed by the
collection of features corresponding to change relationships.

The VGGNet model used in this study uses the existing
form defined in Table 1. In addition, the 1D CNN comprises
ten parallel layers, as depicted in Fig. 2. Moreover, the i-th
output neuron value, Zni,k , in the k feature map of the 1D
Conv-n, which is the n-th convolution layer of the 1D CNN,
is computed using Equation (1) below.

Zni.k = bnk +

f ns −1∑
u=0

f nm−1∑
k ′=0

xi′k ′ ·W n
u,k (1)

where, i′ = i× sn + u
sn : stride on 1D Conv− n
bnk : bias in 1D Conv− n
f ns : Filter size in 1D Conv− n
f nm : Number of feature map in 1D Conv− n

In Equation (1), xi′k ′ denotes the output value of the i′

position in the k feature map of the previous layer [50].
However, because the previous layer is not considered in this
study, xi′k ′ represents the i′ position in the LFA feature vector.
bnk and w

n
u,k denote the weight value and bias value of the u-

th position in the filter of the k feature map of 1D Conv-n,
respectively.

The 1D CNN used in this study consists of a single layer;
thus, the use of padding is meaningless. In addition, the global
max-pooling operation is applied to the value output obtained
through the 1D convolution layer to collect the strongest
features among the output features. The structure of each
layer of the 1D CNN used in this study—in which 10 layers
are connected in parallel—is configured as follows.

· 1D Conv-1: The size of the kernel is 1 × 10, and the
number of kernels is 32. The stride is set to one, ‘‘ReLU’’
is the activation function, and no padding is used.

· 1D Conv-2: This layer is the second 1D convolutional
layer connected in parallel, and it uses the same activa-
tion function, bias, and padding as 1DConv-1. However,
the kernel size is set to nine, and the stride is set to two.

· 1D Conv-3 ∼ Conv-10:Parallel layers 3 to 10 have the
same parameter settings as layers 1 and 2. Only the
kernel size and stride are set differently, as indicated in
Fig. 3. The kernel size is decreased by one, and the stride
value is increased by one.

The CNN layers connected in parallel at the 1DCNN layer,
which uses the LAF features as inputs, use different kernel
sizes and strides. Hence, extracting various shape features is

FIGURE 3. Differences in kernel size and stride for each layer of 1D-CNN
architecture.

possible. A general CNN generates a feature map in which
high-dimensional features are analyzed through deep pro-
cessing, following which these features are classified through
the fully connected layer. However, a high-dimensional anal-
ysis of visual features can be performed in the data generation
process of LFA data obtained through the LFA algorithm.
Specifically, because the LFA data are generated based on
line segment information of the objects in the input image,
they represent information with reinforced features of the
object’s shape. In addition, because the coefficients of the
LFA input vector correspond to one unique line segment
type, changes between the line segment types can be ana-
lyzed effectively. By designing the 1D CNN with a parallel
structure, creating a feature map that extracts various detailed
features using different parameters of each layer is possible.
Consequently, the loss and damage of the feature data pos-
sibly occurring during the LFA generation process can be
mitigated.

The output values processed in parallel by each 1D con-
volutional layer generate a single feature map through GMP
processing, and they are combined with the values obtained
from the VGGNet through the concatenate layer, as shown in
Fig. 4.

The ensemble CNN model proposed in this paper uses
two concatenate layers. To connect several feature maps
output by each 1D CNN in the parallel structure as one
feature map, the output of each layer is GMP processed. The
GMP-processed data are then integrated by the first concate-
nate layer. The second concatenate layer combines the feature
data obtained through the VGGNet and the data generated by
the first concatenate layer. Here, the VGGNet data subjected
to integration denote the data generated by converting the
feature map obtained from the final convolutional layer of the
VGGNet into 1D data via the flattened layer.

The data generated through the two concatenate layers are
connected to the dropout and fully connected layers. The
three dropout layers added between the layers of the networks
to prevent overfitting in the learning process are set to 0.2 for
A and 0.5 for both B and C, as depicted in Fig. 4. The
first fully connected layer (FCL) displayed in Fig. 4 consists

VOLUME 11, 2023 143009



C.-M. Kim, W. Lee: Classification of AD Using Ensemble CNN With LFA Algorithm

FIGURE 4. The structure of a neural network model for Alzheimer’s diagnosis, connecting two convolutional models.

of 4,096 nodes, and it uses the ReLU activation function.
The second FCL also uses 4,096 nodes but does not use
an activation function. This configuration indicates that the
first FCL optimizes non-linear classification using the ReLU
function, and the second FCL performs linear classification to
achieve an optimal learning effect. Finally, the data produced
through all layers of the ensemble CNN predict one of the
four AD stages for the output through the softmax() function.

The proposed ensemble CNN uses the adaptive gradient
(Adagrad) optimizer as the optimization algorithm for learn-
ing data.

Adagrad is an improved version of the stochastic gradient
descent optimizer and is a method capable of adjusting the
learning rate according to the number of weight changes.
When the weight changes frequently, this method assumes it
is close to the optimal value and adjusts learning with a small
learning rate to identify a fine optimal value. Conversely,
if the weight changes less frequently, this method increases
the learning rate rapidly to reduce the loss value and ensure
high accuracy [55]. Equation (2) presents the formula for
calculating the learning rate based on changes in the weight
of a general Adagrad optimizer [55].

Gt = Gt−1 +

(
∂

∂Wt
L(t)

)2

=

t∑
i=0

(
∂L(i)
∂Wi

)2

Wt+1 = Wt −
α

√
Gt + ε

·
∂

∂Wt
L (t) (2)

The variable Gt in Equation (2) denotes the Adagrad opti-
mizer at step t, and the square of the gradient (∂L/∂W) of
the weight Wt for the current loss function L (t) is added to
the previous Gt−1. This represents the sum of squares for all
gradients in each step. Wt denotes the weight vector at step
t, ϵ is a very small constant used to prevent division by zero,
and α is the learning rate.

IV. PERFORMANCE EVALUATION
A. MRI BRAIN DATASETS
MRI brain images collected from the open-source platform
Kaggle were used as the AD dataset to evaluate the perfor-
mance of the model proposed in this paper [56].
This dataset consisted of 6,400 MRI images with a res-

olution of 176 × 208 pixels that have been classified into
four classes—Mild (MID), Moderate Demented (MOD),
Non-Demented (ND), and Very Mild Demented (VMD)—as
indicated in Fig. 5. Fig. 5 (a) presents an ND image, Fig. 5 (b)
depicts a VMD image, Fig. 5 (c) presents an MID image, and
Fig. 5 (d) presents anMD image. Table 3 presents the number
of images for each class.

FIGURE 5. A class example of an MRI datasets for diagnosing Alzheimer’s
disease. (a) Non-Demented, (b) Very Mild Demented, (c) Mild Demented,
(d) Moderate Demented.

TABLE 3. MRI dataset distribution.

When examining each AD class image, image (a) reveals
that black areas are sparsely distributed throughout the
brain. As the AD stage progresses gradually, the black areas
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increase in number. In addition, the contours of the brain
appear gradually eroded inward.

As indicated in Table 3, the dataset consists of 3,200 ND
images, 2,240 VMD images, 896 MID images, and 64 MD
images. For each class, 80%of the data were used for training,
and 20% were used as test data.

B. EXPERIMENTAL ENVIRONMENT
All experiments in this study were conducted in the following
hardware environment:Windows 10 64-bit O/S, Intel Core i7-
6700 CPU, 16 GB RAM, and NVIDIA GeForce GTX 2080
11 GB. To facilitate the functioning of the proposed model,
the following software environment was used: Keras 2.3.1,
Tensorflow-gpu2.0.0, NumPy 1.18.1, OpenCV-Python 4.2,
and Scikit-image0.16.2. In addition, training was conducted
using the early stopping function in all experiments, and the
batch size was set to 32.

C. PERFORMANCE VERIFICATION BY COMPARISON WITH
PREVIOUS CNN MODEL
To verify the performance of the proposed ensemble CNN
model, we conducted comparative experiments with the fol-
lowing representative CNN models: VGGNet (16, 19) and
AlexNet models. Table 4 summarizes the performance ver-
ification results according to the input image size for the
proposed model.

TABLE 4. Performance verification results by input image size.

The following five different sizes of input images were
defined to conduct five experiments: 176 × 208, which is

the size of the original image; 224 × 224, which is the
default input size of the model; and three arbitrarily defined
sizes of 128 × 128, 256 × 256, and 512 × 512. The results
of the experiments revealed that the accuracy increased for
the VGG-16 and VGG-19 models as the input image size
increased. The AlexNet demonstrated the highest accuracy
when the smallest input image size (128 × 128) was used.
In the 176 × 208 image size experiment, the proposed

model achieved the highest accuracy of 0.980. The pro-
posed model also outperformed other comparison models in
terms of the precision (0.99) and recall (0.98). In the 224 ×

224 image size experiment, the proposed model again had
the highest accuracy of 0.963. This result indicates that the
accuracy of the proposed model in this case was 0.017 lower
than its accuracy in the original image size (176× 208) exper-
iment. Furthermore, the precision (0.03 lower) and recall
(0.01 lower) also presented slight performance degradation.

In the 128 × 128 image size experiment, the accuracy
performance results were as follows: the proposed model
(0.986), VGG-19 model (0.937), AlexNet model (0.904),
and VGG-16 model (0.891). Hence, the proposed model
achieved the best performance. This result is the same as
the result of the 256 × 256 image size experiment. In both
experiments, the proposed model had an accuracy of 0.986.
However, for the loss performance results, the proposed
model had a loss of 0.0518 in the 128 × 128 image size
experiment and a loss of 0.0385 in the 256 × 256 image
size experiment. Hence, the 256× 256 image size experiment
resulted in a lower loss.

In the 512 × 512 image size experiment, the proposed
model (0.980) achieved the highest accuracy; however, it only
presented a slight difference of 0.05 compared to the VGG-
16 model (0.975). The comparison experiments with existing
CNN models verified that the proposed model maintained
high accuracy, precision, and recall regardless of the size of
the image. Based on these experiments, we confirm that the
performance of the proposed model does not vary according
to the size of the image.

This result can be attributed to the fact that the experiments
used the data computed by the LFA algorithm. As stated,
LFA data can record strong features regarding the shape of an
object by analyzing the type of line segments and generating
reduced data. Hence, the proposed model can obtain fea-
tures that are stronger than the features collected by another
2D CNN model. Therefore, the proposed model can focus
on collecting more distinguishable features in the learning
process compared to the 2D CNN model. Furthermore, the
shape features can be carefully observed using the 1D CNN,
as in the proposed model; hence, the computed information
is combined to yield excellent performance. Moreover, the
performance of the proposed model does not vary according
to the size of the input image.

Fig. 6 presents confusion matrix results corresponding
to the validation experiment of the proposed model. The
proposed model achieved good performance in all matrix
results and presented stable performance in diagnosing early-
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FIGURE 6. Confusion matrix results of the proposed model by input image size; (a) 176 × 208, (b) 224 × 224, (c) 128 × 128, (d) 256 × 256, (e) 512 × 512.

FIGURE 7. Comparative model confusion matrix results; (a) VGG-16 (512 × 512), (b) VGG-19 (512 × 512), (c) AlexNet (128 × 128), (d) Our Model
(256 × 256).

stage AD. Fig. 7 presents confusion matrix results for the
experiment in which the proposed model achieved the best
performance in comparison with the other models. Even
for the accuracy of each class in the confusion matrix, our
proposed model outperformed the comparison models in
the early stages of AD. Furthermore, the proposed model
also achieved good performance at each AD stage. Hence,
we confirmed that the proposed model demonstrated superior
performance.

D. EXPERIMENTAL RESULTS AND DISCUSSION OF THE
PROPOSED MODEL
Through this experiment, it was observed that improving the
performance of existing single-image-based AD diagnostic
models (VGG-16/19, AlexNet) is challenging. However, the
potential to enhance the performance of AD diagnostic mod-
els by utilizing composite data has been demonstrated. In this
paper, the LFA algorithm was employed to generate com-
posite data. LFA data utilize only object shape information
and can extract strong features related to lines through simple
operations, making it suitable for utilizing additional data in
AD diagnosis related to changes in brain shape.

Various experimental environments were constructed by
adjusting the image size, and the obtained results are similar
to those shown in Table 4. While it was confirmed that the
proposed method outperforms in various conditions, perfor-
mance degradation and improvement were observed with
changes in image size. We believe that the reasons for perfor-
mance degradation can be attributed to fluctuations in image
size and the contour detection process of the LFA method.
In this study, image enlargement was performed, which
resulted in distortion of lines due to pixel rearrangement and
interpolation during the enlargement process. Inappropriate

changes in image size result in the loss of object proportions,
causing shapes of lines, such as diagonals, to be distorted
and recognized as curves. This distortion leads to changes in
LFA data, ultimately impacting performance. Furthermore,
while LFA data are created mainly based on types of lines,
allowing the model training process to focus more heavily
on features related to object shapes, this can also lead to a
tendency to disregard other feature information, potentially
causing performance degradation. To analyze this, further
experiments with varying image size and the design of a
method to preserve luminance and contrast features while
learning must be considered.

Additionally, the structure of the existing AlexNet was
designed with 10 parallel-connected 1D convolutional layers
to minimize training time and model complexity. However,
a comparison of performance and complexity with large-scale
neural models needs to be conducted.

E. PERFORMANCE EVALUATION BY COMPARISON WITH
PREVIOUS RELATED WORKS
The next experiment was conducted to compare the per-
formance of the model proposed in this paper with that of
models proposed in previous studies using the same dataset.
Table 5 summarizes the performance of the DEMNET model
proposed by Murugan et al. [37] and that of the KNN, SVC,
and Xboost models presented by Kamal et al. [57]. In Table 5,
AUG stands for image augmentation, ACC denotes accuracy,
PR denotes precision, REC denotes recall, and FS denotes
F1-score.

Notably, the dataset used in the experiment was imbal-
anced, as indicated in Table 3. The image augmentation
method was thus used to solve this problem. In [37], the
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TABLE 5. Results of performance comparison with prior literature.

authors used this image augmentation method to eliminate
the imbalance of datasets and quantified the performance
based on the DEMNET model. In this case, the ACC was
0.95 in the experiment with AUG, and this accuracy was
0.1 higher than that in the experiment with no AUG. The
PR, PRE, and FS values also presented improved results.
However, the ensemble model proposed in this paper pre-
sented an ACC of 0.98 even when the AUG was not applied,
and this performance result is superior to that of models
proposed in previous studies. The results of the experiment
indicated that the performance of the proposed ensemble
model remained almost unchanged with changes in the
input image size of the model. Moreover, the proposed
model outperformed other existing models. The proposed
model also demonstrated superior performance in terms
of the loss, precision, and recall categories and exhib-
ited stable classification performance even with imbalanced
input data.

Moreover, the observed results were obtained because the
proposed model was designed to analyze integrated infor-
mation through two models rather than collecting several
features using one model. The 1D CNN model, which uses
the LFA features, carefully observes the shapes of the objects,
and the VGGNet, which uses images, analyzes image features
besides the shapes. Hence, overfitting and bias in the training
data, which can occur when using one model, are prevented
to enable stable learning.

V. DISCUSSION AND CONCLUSION
In this paper, we propose an ensemble CNN model for
early diagnosis of AD by connecting a 2D CNN model
and a 1D CNN model. This model is used to classify var-
ious stages of AD. To obtain input data for the 1D CNN
model, the LFA algorithm is applied, transforming visual data
into vector-type signal data. This process involves analyzing
line segment types of objects within images and reducing
data based on shape-centered approach. The data generated
through this process captures strong features based on object
shapes, making it easy to classify.

Furthermore, by training the proposed parallel 1D CNN,
fine features corresponding to changes in line segments
can be recognized. Additionally, the proposed model inte-
grates features of the original image using the VGGNet

model, thereby outperforming existing models. Through per-
formance verification experiments using VGG-16/19 and
AlexNet models, as well as comparison experiments with
models proposed in previous studies on the same dataset,
the proposed ensemble model exhibited superior perfor-
mance with an accuracy of 0.986 and a loss of 0.0385.
Therefore, we expect the proposed ensemble CNN model
to yield excellent results in the field of MRI-based AD
diagnosis.

Moreover, the proposed ensemble CNN model could
introduce a new paradigm enhancing stability and relia-
bility in early AD diagnosis research. However, variations
in image size resulted in observed performance degrada-
tion and enhancement. Performance degradation arises from
changes in image size and the outline detection process of the
LFA method, and image enlargement introduced distortions.
While LFA data emphasizes features related to object shapes,
it may lead to performance degradation due to neglect of other
feature information. More experiments involving variations
in image size and considering methods to preserve luminance
characteristics during training are necessary for analysis.
Additionally, a comparison of performance and complex-
ity with large-scale neural models is needed to validate the
design of adding 10 parallel convolutional layers to the exist-
ing AlexNet architecture.
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