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ABSTRACT Hydrogen refueling stations are pivotal for renewable energy and carbon neutrality; however,
they encounter challenges owing to equipment malfunctions. This study addresses the use of time-series
forecasting techniques to predict and diagnose critical equipment failure at these stations. An analysis
of the station equipment was conducted to create scenarios for potential malfunctions in compression
equipment. Techniques such as the Recurrent Neural Network (RNN), Long Short-Term Memory network
(LSTM), and Gated Recurrent Unit (GRU) have been employed to forecast the conditions of high-pressure
compression equipment. Deep neural networks were constructed to enhance prediction accuracy, typically
achieving an error margin of 0.01. Multi-step predictions using autoregression were utilized to bolster
equipment resilience against aging and progressive failures. Autoregressive prediction models, particularly
those using LSTMs and GRUs, outperform RNNs. However, predictions may be subject to errors due to
algorithmic limitations and environmental factors. This study introduces a stochastic forecasting approach
that, utilizes Gaussian distributions to predict probability distributions, not single-point estimates. This
method yielded a 95% prediction interval with a standard deviation of 1.96. The reliability of multi-time
step forecasts is significantly improved by adopting stochastic autoregressive forecasting and establishing
prediction intervals. The proposed model enhances not only the accuracy of equipment failure predictions
but also proactive maintenance, thus reducing downtime and boosting the efficiency of the hydrogen fuel
infrastructure, which contributes to the wider utilization of hydrogen as a clean energy source.

INDEX TERMS Autoregressive, hydrogen refueling station, probabilistic forecasting, recurrent neural
network, time series forecasting.

I. INTRODUCTION
Under the impetus of the Paris Climate Agreement, there has
been a marked increase in the interest in renewable energy.
South Korea is proactively investing in decarbonization by
establishing a new value chain within the hydrogen industry
to meet its carbon neutrality objectives. The rapid expansion

The associate editor coordinating the review of this manuscript and
approving it for publication was Claudio Zunino.

of hydrogen refueling stations has elicited significant public
safety concerns owing to abnormal operational conditions
and key equipment failures, causing inconvenience for facil-
ity operators [1], [2]. Failures in on-site hydrogen refueling
station facilities primarily occur in dispensers, high-pressure
compressors, hydrogen production devices, and raw-material
supply systems. Despite recent installations, high-pressure
compressors have experienced a significant number of issues
owing to maintenance and technical challenges. As hydrogen
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refueling stations continue to operate over time, the likeli-
hood of encountering equipment aging-related problems is
expected to rise [3], [4], [5].

To ensure the safe and efficient operation of hydrogen
refueling stations, real-time information was collected from
the Supervisory Control and Data Acquisition (SCADA)
system, which is a remote monitoring and data acquisition
system of the facilities. Intelligent maintenance activities,
such as predicting and diagnosing future states and equip-
ment failures based on date collected using time-series
prediction techniques, are essential. Equipment failure diag-
nosis methods include experience-based, data-driven, and
model-based approaches. To maintain health, periodic main-
tenance is based on regular observations or scheduled checks,
and condition-based maintenance is performed at specific
intervals [6], [7].

Recent studies have utilized deep learning techniques to
ascertain the occurrence of failures, evaluate the severity
of such failures, identify signs of anomalies, and estimate
the remaining service life of equipment [8], [9]. Addition-
ally, studies are actively ongoing to judge failures using
time-series data from various sensors, such as vibration sig-
nals, and predict and diagnose failures [10], [11].
In hydrogen refueling stations, myriad signals measured

throughout operational processes serve as data for failure
diagnosis and health management. The measured signals
form a history over time and suitable algorithms for such
data include Recurrent Neural Networks (RNNs). RNNs pro-
cess inputs and outputs at the sequence level and, possess
a recurrent structure in which the output feeds back into
the input. They perform well in processing sequential data,
such as time-dependent data such as stock prices, weather,
and sequential data such as natural language and audio [12].
To overcome the long-term dependency problem, LSTM was
proposed, designed to maintain long and short-term mem-
ories by adding a cell state to the hidden state, preserving
or discarding information from previous layers [13]. Sub-
sequently, GRU, a simplified version of a complex LSTM
cell, was proposed. It demonstrates relatively fast learning
speeds and comparable performance to LSTM owing to its
fewer parameters and simplified structure [14]. Furthermore,
research has been actively conducted using Attention-based
Seq2Seq and Transformers for time-series prediction and
fault diagnosis [15], [16].
In this study, we performed state prediction for future time

points using time-series forecasting algorithms to maintain
health and diagnose failures of key equipment at hydro-
gen refueling stations. In hydrogen refueling stations, the
prediction of equipment failure is complicated by the com-
plexity of the multivariate data and the dynamic nature of the
systems to be forecasted. For instance, the variability of pres-
sure and temperature within the stations is highly dynamic,
representing rapid fluctuations that are challenging to cap-
ture using simple time-series prediction models. The deep
learning-based multi-step forecasting method proposed in
this study is expected to better comprehend and predict these

complex data patterns, thereby enhancing the accuracy of
failure diagnostics.

The equipment data vary based on factors such as the
charging of vehicles and process conditions such as pressure
in each storage tank, and it does not follow trends, cycles,
or seasonal patterns. Therefore, for multivariate prediction of
major equipment, deep learning models in the RNN family,
including RNN, LSTM, and GRU, are effective, and, capable
of learning from discontinuous data compared to statistical
analysis-based techniques such as Autoregressive Integrated
Moving Average (ARIMA) or Exponential Smoothing (ES).

Time-series forecasting techniques are applied to predict
and diagnose failures of crucial equipment at hydrogen refu-
eling stations. Multivariate time-series prediction algorithms,
such as RNN, LSTM, and GRU, were employed and com-
pared to predict future states. To prepare for equipment aging
and progressive failures, a multi-step time-series forecast-
ing was conducted. To predict multiple future time points,
we use an autoregressive forecasting technique rather than
a single-shot prediction and perform a comparative analy-
sis for each algorithm. Time-series forecasting can exhibit
errors owing to the algorithmic accuracy and environmental
factors. Therefore, our model is designed to analyze predic-
tion intervals that are not merely based on predicted values
with incorporated uncertainty but also rather on probability
distributions. The prediction of these probability distributions
enhances robustness against noise and enables more informed
and optimal decision-making during fault diagnosis. Using an
autoregressive model for uncertainty prediction, we analyzed
the uncertainty of the model and set the upper and lower
bounds for the prediction intervals. We ensured the reliability
of the prediction algorithms for hydrogen refueling stations
through an uncertainty prediction.

Through this study, we contribute to the prediction and
diagnosis of major equipment failures at hydrogen refueling
stations using time-series prediction algorithms. By employ-
ing multivariate prediction, we can provide accurate pre-
dictions considering the complex temporal interactions of
the equipment. In addition, utilizing multi-step time-series
prediction allows us to forecast the long-term conditions of
the facilities. The use of probabilistic forecasting enhances
resilience to noise, improves the reliability of prediction
algorithms, and enables more effective equipment failure
diagnosis. It is anticipated that these dependable optimal
decision-making processes will contribute to enhancing the
stability and reliability of hydrogen refueling stations.

II. ANALYSIS OF HYDROGEN REFUELING STATAION
FACILITIES
A. P&ID (PIPING & INSTRUMENTATION DIAGRAM)
This study focused on an off-site hydrogen refueling sta-
tion located in Seosan, Chungnam Province, South Korea.
The station consists of a process and refueling equipment.
Off-site hydrogen refueling stations receive hydrogen from
external sources via tube trailers or pipelines, which are ideal
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FIGURE 1. P&ID diagram of hydrogen refueling station.

for short transportation distances from the hydrogen supply
source [2], [5].

Hydrogen refueling stations, despite handling high-
pressure gases, feature relatively simple operational systems.
The process facilities consisted of unit A and B. As both
units operate identically, Figure 1 schematically illustrates
only one unit. It includes compressors for low, medium,
and high pressures, as well as storage tanks. Hydrogen
at 20MPa is delivered to the refueling station in trailer
form and passes through a decant panel and, then through
low- and medium-pressure compressors, compressing it to
approximately 50MPa. Compressed hydrogen passes through
a priority panel and is stored in a medium-pressure tank.
The medium-pressure hydrogen was further compressed to
approximately 87MPa using a high-pressure compressor and
is stored in a high-pressure tank after passing through a con-
trol panel. Hydrogen is supplied to fuel-cell vehicles through
a dispenser. During this process, owing to the Joule-Thomson
effect, the temperature of the hydrogen vehicle container
increased. To avoid compromising the durability of the con-
tainer when the temperature exceeds 85 ◦C, the hydrogen
is cooled to −40 ◦C via a cooler before being supplied to
the fuel cell vehicle. The charging process is terminated
once the temperature and pressure of the hydrogen container
reach specific levels, ensuring a State of Charge(SOC) of
over 95% [17].

B. MULTIVARIATE DATA ANALYSIS OF HYDROGEN
REFUELING OPERATIONS
The data measured from the process and refueling equipment
consisted of over 450 variables. The data include tag data
representing various physical quantities, such as pressure and
temperature, status data indicating the state of the equipment,
and alarm data representing risk signals, such as gas leaks,
high pressure, and high temperature. The data at the refuel-
ing station were measured at a one-second interval over the
course of a year.

In this study, we performed an analysis of tag data, exclud-
ing status and alarm data, for time-series forecasting. The
data to be used for time-series prediction algorithms were
selected from high-pressure compressors and storage tanks,
as these are the components that experience the most failures,
along with the dispenser at the off-site refueling station [18].
Figure 2 illustrates the pressure data for the high-pressure
storage tank and inlet pressure of the high-pressure compres-
sor. Abnormal pressure-drop periods were observed for the
high-pressure compressor. We identified instances of pres-
sure removal for tank maintenance as outliers and removed
them because they did not represent normal system operation.
The measured data do not exhibit periodicity, seasonal-
ity, or trends, rendering statistical analysis-based time-series
prediction methods unsuitable. In the case of refueling equip-
ment, events such as receiving hydrogen from an external
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source or a hydrogen vehicle initiating charging can cause
data changes. Algorithms utilizing recurrent neural networks
learn the weights of the impact of preceding sequences on
the next sequence, thus predicting future time points. As data
changes occur owing to process variations accompanying
events, univariate prediction is not suitable because it relies
on a single variable. The facility’s conditions are affected by
different variables at different time points; hence, this study
employed multivariate analysis and prediction for time-series
using variables related to high-pressure compressors and stor-
age tanks, selected through P&ID analysis.

FIGURE 2. Hydrogen refueling station acquisition data.

III. TIME SERIES FORECASTING ALGORITHMS
A. THEORETICAL BACKGROUND OF RECURRENT NEURAL
NETWORK
An RNN is an artificial neural network that processes input
and output in sequence units, having a recurrent structure
where the output feeds back into the input. The fundamental
forward propagation structure of an RNN cell is shown in
Figure 3. The computational result of the cell receives the hid-
den state value from the previous cell, and the hidden state and
prediction at each time step are given by Eq. (1). RNN suffer
from the gradient vanishing problem during backpropagation,
leading to the issue of long-term dependencies [12], [19].

at = tanh
(
Waxx t +Waaat−1

+ ba
)

ŷt = softmax(Wyaat + ba) (1)

where, t is the timestamp, at represents the hidden layer at t .
x t is the input vector at t , and Wax is the weight between the

FIGURE 3. Forward propagation for RNN.

input vector and hidden layer. at−1 represents the hidden layer
at t−1 andWaa is the weight between the hidden layer at time
t−1 and hidden layer at time t . ba represent the bias. ŷt is the
output vector, and Wya and ba represent the weight and bias
of the hidden layer, respectively.

LSTM is a model that addresses the vanishing gradient
problem by incorporating a memory cell and has shown high
performance in predicting time-series data. The fundamental
forward propagation structure of an LSTM cell is shown in
Figure 4. It has a cell state for long-termmemory at each time
step, and operations are performed for the forget gate (0f),
update gate (0i), output gate (0o), and candidate value (c̄t ).
The equations for each gate are shown in Eqs. (2). The forget
gate operates on the previous result and the current input
and produces a value between 0 and 1 through an activation
function. The candidate value carries a tensor containing
information from the current step, and is influenced by the
update gate. The update gate determines candidate informa-
tion to be added to the cell state. The cell state determines the
memory passed to the next time step [13], [19], [20], [21].

0t
f = σ (Wf

[
at−1, x t

]
+ bf )

0t
i = σ (Wi

[
at−1, x t

]
+ bc)

0t
o = σ (Wo

[
at−1, x t

]
+ bo)

c̄t = tanh(Wc

[
at−1, x t

]
+ bc) (2)

where, Wnm represents the weight between the hidden layer
at time t-1 and the input vector for each gate and b denotes
the bias for each gate. σ represents the activation function.

FIGURE 4. Forward propagation for LSTM.

The GRU is a variation designed to address the vanishing
gradient problem more effectively than LSTM. This sim-
plifies the cell from LSTM, resulting in a faster learning
speed and similar performance. The fundamental forward
propagation structure of a GRU cell is depicted in Figure 5.
It consists of a Reset gate and an Update gate, as shown in
Eq. (3). The Reset gate determines the amount of the previous
state information retained from the current state. The Update
gate plays a role similar to that of LSTM’s forget gate and
input gate, determining the proportion of the previous infor-
mation and corresponding to the current information. In other
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words, it determines how much of the past information is
retained and how much of the current new information is
incorporated [20], [21], [22], [23], [24].

rt = σ (Wxrxt +Whrht−1)

zt = σ (Wxzxt +Whzht−1)

gt = tanh(Whg (tt ⊗ ht−1) +Wxgxt
ht = (1 − zt) ⊗ gt + zt ⊗ ht−1 (3)

where the weight matrices are denoted as W , and the bias
vectors are denoted as b in Eq. (3).

FIGURE 5. Forward propagation for GRU.

B. DATASET FOR APPLYING TIME SERIES FORECASTING
ALGORITHMS
The dataset for applying time-series forecasting algorithms is
related to equipment Unit A at the hydrogen refueling station.
It includes the inlet and outlet pressures, outlet temperature,
lubricant oil temperature of the high-pressure compressor,
and the pressure of the high-pressure storage tank. The input
data included the input and outlet pressures of the high-
pressure compressor, the outlet temperature, the lubricant
oil temperature, and the storage tank pressure. The output
data are the lubricant oil temperature of the compressor, with
time-series predictions made accordingly.

In the event of an issue with the storage tank, the com-
pressor will operate continuously to maintain the pressure of

FIGURE 6. High-pressure compressor equipment diagram.

the storage tank, causing an increase in the lubricant oil tem-
perature. Furthermore, if the compressor malfunctions, it will
operate longer to maintain the outlet pressure, resulting in an
increase in the lubricant oil temperature of the compressor.
If there is a problem with the input pressure, the incoming
hydrogenwill continuously escape through the vacuum valve,
and because the compressor is not operating, the temperature
of lubricant oil will steadily decrease. Because issues with
high-pressure equipment can lead to changes in the compres-
sor lubricant oil temperature, it was selected as the predicted
value for maintenance. A schematic of the high-pressure
compressor equipment is shown in Figure 6.

C. CORRELATION ANALYSIS OF APPLIED ALGORITHM
DATA
The correlation is considered stronger as it approaches 1,
as shown in Figure 7 [25]. The results of the correla-
tion analysis are shown in Figure 8. The outlet pressure
of the compressor exhibits strong correlations, being most
pronounced with the input pressure and significant with tem-
perature. The label data, lubricant oil temperature, show a
distinct correlation with both outlet pressure and temperature,
a weak correlation with the high-pressure tank, and a low cor-
relation with the input pressure. Predicting multivariate time
series achieves higher accuracy when the variables involved
have strong correlations. However, with equipment, correla-
tions can vary over time and variables may not correlate at
the same time points. Therefore, it is necessary to consider
various variables according to the process flow when pre-
dicting a multivariate time series for equipment, even if the
correlations are very weak.

FIGURE 7. Strength and direction of correlation coefficient.

The measurement data spans approximately one year.
To focus on the summer months, from June to August, which
have the most significant impact on hydrogen facilities oper-
ating at lower temperatures among the four seasons, the data
were narrowed down. Additionally, considering computer
resources, the data were up-sampled at 5-minute intervals.
The preprocessed dataset for the application of the algorithm
is shown in Figure 9.

The operational cycle of the high-pressure equipment is
illustrated in Figure 10. The pressure in the high-pressure
tank decreased when the vehicle was refueled with hydrogen.
As the tank pressure decreased, both the pressure and tem-
perature at the compressor outlet increased for compensation.
To achieve this, the input pressure rises to replenish hydrogen
from the intermediate pressure tank, and the compressor oper-
ates to compress from intermediate pressure to high pressure.
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FIGURE 8. Correlation coefficient high-pressure compressor.

FIGURE 9. High-pressure compressor equipment dataset.

FIGURE 10. Cycle of high-pressure compressor equipment.

The operation of the compressor resulted in an increase in
lubricant oil temperature.

The dataset for the algorithm application is Sequence to
Vector, where the input sequence consists of multivariate
variables. The window size for the input sequence was 12,
and the label size for the output sequence was 1, as illustrated
in Figure 11. The window and label data for a single training
data sample are shown in Figure 12. Normalization was per-
formed to prevent overfitting during training. The training,
validation, and test data were split at a ratio of 6:2:2, and the
data separation for the lubricant oil temperature correspond-
ing to the Label is shown in Figure 13.

FIGURE 11. Train and test for time forecasting algorithm diagram.

FIGURE 12. Train and test date for time forecasting algorithm.

Structural designs for the RNN, LSTM, and GRU were
developed to predict the lubricant oil temperature of a
high-pressure compressor at a hydrogen refueling station.
The hyperparameters were selected and optimized, as listed in
Table 1. The network architecture consists of an RNN layer
with depth, comprising two recurrent neural network layers
and two hidden layers. For a fair comparison and analysis of
the hyperparameters and algorithms, the seed was fixed, and
experiments were conducted.
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FIGURE 13. Split label data for time forecasting algorithm.

TABLE 1. Hyperparameters of various deep learning models.

D. EVALUATION METRICS
To evaluate the prediction performance of the time series
prediction algorithm, we employed the Root Mean Squared
Error (RMSE), Mean Absolute Error (MAE), and Mean
Absolute Percentage Error (MAPE) as shown in Eq. (4) to (6)
[26], [27].

RMSE =

√√√√ 1
N

N∑
i=1

(targeti − predictioni)2 (4)

MAE =
1
N

N∑
i=1

|targeti − predictioni| (5)

MAPE =
1
N

N∑
i=1

∣∣∣∣ targeti − predictioni
targeti

∣∣∣∣ (6)

IV. EXPERIMENTAL RESULTS AND DISCUSSION
A. SEQUENCE TO VECTOR MODEL
The hardware configuration used for the experiments
included an Intel(R) Core(TM) i9-9940X CPU @ 3.3 GHz,
and all models utilized GPU computation with an NVIDIA
GeForce RTX 3090 Ti for fast training and computation.
Deep learning models were constructed using TensorFlow,
version 3.10 as the algorithm framework.

The future data are unknown from the current state; there-
fore it is not appropriate to normalize the entire dataset,
including the test data, uniformly. First, normalization was
performed on the training dataset, and the validation and test
data were normalized based on the training data.

The hyperparameters for the normalized data were opti-
mized on the validation set. The performance evaluation
metrics for the validation datasets of the RNN, LSTM, and
GRU are listed in Table 2. All the results exhibited a high
accuracy below 0.01. Based on this, experiments were con-
ducted on the test data. The performance evaluation metrics
for the test data are listed in Table 3. A comparison of
the actual and predicted values for each model is shown in
Figure 14.

TABLE 2. Evaluation metrics of validation data for various deep learning
models.

TABLE 3. Evaluation metrics of test data for various deep learning
models.

For the test dataset, RNN, LSTM, and GRU showed high
accuracy below 0.01 in RMSE and MAE, and RNN also
showed a high accuracy of approximately 0.02 in MAPE.
As shown in Figure 14, the actual and predicted values tended
to closely match.

The Sequence to Vector model predicts single-step pre-
dictions. It uses multivariate and multiple input values as
sequences and outputs a vector of single-step predictions.
It demonstrates high accuracy using a basic structure that
connects the sequentially predicted results for single-step
predictions.

However, in actual processes, predicting only the immedi-
ate next step is insufficient to ensure Prognostics and Health
Management (PHM), which includes monitoring equipment
aging and progressive failures, predicting only the immediate
next step is insufficient. For PHM, predictions of multiple
steps are required. In this study, an autoregressive forecasting
model, in which the predicted output values are fed back as
inputs to predict multiple steps (i.e., sequences), was used to
predict multiple steps using the trained model.

B. AUTOREGRESSIVE FORECASTING
To facilitate multi-step forecasting, an autoregressive model-
ing approach was employed. Autoregressive models leverage
the previous output as the input for subsequent predictions,
a process graphically represented in Figure 15. We assessed
the model performance using RMSE, MAE, and MAPE, and
the results are tabulated in Table 4.
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FIGURE 14. Lubricant temperature forecasting for various deep learning
models.

RNN exhibits a relatively lower performance in terms of
RMSE, MAE, and MAPE compared with LSTM and GRU.
Figure 16(a) illustrates this discrepancy, showing that the
predicted values of the general trend, deviate significantly
from the actual measurements while following the general
trend.

Conversely, the LSTM model achieved a MAPE of 0.13,
indicating an enhanced predictive accuracy over the RNN.

TABLE 4. Evaluation metrics of autoregressive model for deep learning
models.

FIGURE 15. Visualization of autoregressive models.

Figure 16(b) shows how LSTM closely mirrors the fluc-
tuations in lubricant temperature, capturing the peaks with
precision. However, it exhibited discrepancies, particularly at
the extremities of the data series, suggesting a limitation in
capturing lower temperature values.

The GRU model outperformed LSTM in terms of MAE
and MAPE, demonstrating its superior predictive capability.
It accurately traced the lubricant temperature variations and
showed a marked improvement in early value predictions
compared to the LSTMmodel, which is also visually corrob-
orated by Figure 16(c).

C. PROBABILISTIC TIME SERIES FORECASTING
In time-series forecasting, point prediction shows the
expected future value, but depending on the accuracy of the
algorithm, there is uncertainty. The predicted value is not
always precise and errors can occur because of environmental
changes and random factors. This study aims to enhance the
reliability of forecasting information by applying prediction
intervals. The prediction intervals represent a range around
a specific predicted value, which accounts for the uncer-
tainty. They indicate the likelihood that the actual observed
value will fall within this range when, considering envi-
ronmental and random factors. This approach can enhance
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FIGURE 16. Lubricant temperature forecasting for various autoregressive
models.

prediction reliability and build an optimal decision-making
system [28], [29].

In the output layer of the time-series forecasting algorithm,
instead of a single point, a probability distribution of the
Gaussian distribution is used to measure the mean and stan-
dard deviation of the prediction. The Gaussian distribution

FIGURE 17. Single-step stochastic forecasting (95% prediction interval).

FIGURE 18. Autoregressive stochastic forecasting (95% prediction
interval).

indicates that 95% of the observations are within 1.96 stan-
dard deviations from the mean, and this information is used
to determine the upper and lower prediction intervals. The
probability loss function was optimized using a negative
log-likelihood loss function, focusing on the probability dis-
tribution. Recurrent Neural Networks (RNNs) were tested
based on the GRU, which showed the highest reliability
among autoregressive models.

For the sequence-to-vector model, Figure 17 shows the
probability forecasting using the basic structure that sequen-
tially connects the single-step prediction values. As with the
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previous model, because it is a structure that sequentially
connects the predicted results, the accuracy is high, and 95%
of the observed values are within the prediction interval.

The autoregressive model also performs forecasting using
a probability distribution. The predicted mean value of the
probability result was used again for prediction, and the
results are shown in Figure 18. Although the prediction accu-
racy was somewhat lower than that of single-step predictions,
95% of the observed values were within the prediction inter-
val. This indicates that even with a slightly lower accuracy
or existing uncertainty, the actual values fall within the 95%
confidence interval.

V. CONCLUSION
This study conducted a comparative investigation of various
Recurrent Neural Networks applied to hydrogen refueling
station equipment, encompassing low-pressure, medium-
pressure, and high-pressure compressors. Our focus was
primarily on high-pressure compressors, which are recog-
nized for their susceptibility to frequent malfunctions. The
operational parameters of this equipment, including inlet
pressure, compressor outlet pressure and temperature, lubri-
cant oil temperature, and high-pressure storage tank pressure,
were considered for multivariate time series forecasting uti-
lizing RNN(Recurrent Neural Network), LSTM(Long-Short
TermMemory), and GRU(Gated Recurrent Unit) algorithms.
Prior to algorithm implementation, outlier detection, normal-
ization, and data set division were rigorously performed.

Our findings reveal an effective analysis of connected
sequential data using the sequence-to-vector time series fore-
casting methodology. Employing performance metrics such
as RMSE, MAE, and MAPE, all algorithms demonstrated
high precision with accuracy levels at or below 0.01.

The autoregressive model extends the prediction scope
to multi-step forecasting and recycles the output for sub-
sequent predictions. Within this model, the RNN exhibited
trends consistent with the other algorithms but demonstrated
comparatively lower predictive performance. In contrast,
the LSTM and GRU algorithms exhibited higher effica-
cies, with MAPE values of approximately around 0.1. The
study’s proposed autoregressive algorithm model confirmed
the reliability in both single-step and multi-step forecasting
scenarios.

A principal contribution of this research is the incor-
poration of prediction uncertainty, employing a Gaussian
distribution for probabilistic forecasting, achieving over 95%
reliability, which corresponds to a prediction interval of
1.96 standard deviations. The stochastic sequence-to-vector
model, akin to single-point predictions, demonstrated a robust
predictive performance, with observed values falling within
the 95% prediction interval. For the stochastic autoregres-
sive model, although the probability distribution forecasting
showed reduced performance compared to single-step fore-
casting, the observed values remained within the 95%
forecasting prediction interval.

The study underscores the adaptability of recurrent neural
networks to equipment with event-driven time series changes,
moving beyond periodicity or trending behaviors. It ascer-
tains the dependability of multi-point predictions through
autoregression and, by extension, through probability distri-
bution prediction, validating a reliability of 95% or greater.
Such a framework reflects the model’s inherent uncertainty,
thereby improving the reliability of forecasts and establishing
an optimized decision-making system.

Future work should extend the proposed stochastic fore-
casting methods not only to high-pressure equipment but
also to medium and low-pressure apparatuses or dispensers.
Furthermore, robustness should be verified by applying
these methods to hydrogen refueling stations across differ-
ent regions beyond the Seosan station, the focus of this
forecast. The exploration of transfer learning for the appli-
cation of time series forecasting to a variety of equipment,
beyond hydrogen refueling stations, to ensure generality
is also warranted. We will continue to investigate the use
of ensemble techniques that combine various algorithms to
achieve more accurate predictions. This is anticipated to con-
tribute to increased accuracy and reduced computational time,
ultimately aiding the establishment of safety standards for
hydrogen refueling stations in terms of fault diagnosis and
condition prediction in the future.
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