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ABSTRACT Robots with a modular body permit a wide range of physical configurations, which can be
obtained by arranging the composing modules differently. While this freedommakes modular robots capable
of performing different tasks, finding the optimal physical configuration for a given task is not trivial. In fact,
practitioners attempt to jointly optimize the body and the controller of the robot for a given task, but the
result is not always satisfactory. More broadly, it is not clear what factors make a physical configuration
more or less successful. In this paper, we aim to fill this gap and verify if humans can be predictive with
respect to the performance of an optimized controller for a given robot body. We consider the case of
Voxel-based Soft Robots (VSRs), whose rich dynamic induced by the softness of the modules makes the
body particularly relevant for the robot ability to perform a task. We instantiate a number of (simulated)
VSR bodies, differing in shape and actuation mechanism, and let a panel of humans control them, by means
of online interaction with the simulator, while performing the task of locomotion. We use the same bodies
with controllers obtained with evolutionary optimization, for the same task. We compare the ranking of
human- and optimized AI-based VSRs, finding them very similar. We believe that our results strengthen the
hypothesis that intrinsic factors in the body of modular robots determine their success.

INDEX TERMS Control, voxel-based soft robots, evolutionary computation.

I. INTRODUCTION
Reconfigurability plays a key role in the road towards
robots that are more adaptable in terms of task [1] and
environment [2]. In this regard, modular robots [3] are a
relevant family of robots. Modularity allows rearranging
the composing modules to attain a wide range of physical
configurations. With this freedom, modular robots have been
capable of performing a wide array of tasks [4]. However, this
freedom, albeit an advantage, makes the joint optimization
of the morphology together with the controller a challeng-
ing problem [5]. As implied by the embodied cognition
paradigm, which posits a deep entanglement between the
brain, the body, and the environment of an agent [6], not
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every morphology is suitable for every controller; controllers
must adapt not only to the task but also the morphology they
are embodied within [7]. Additionally, the joint optimization
of morphology and control entails a larger search space
than when optimizing one of the two alone. Some works
tackle this issue by embedding an inner optimization loop
(e.g., for the controller) inside an outer loop (e.g., for the
morphology) [8], [9], to the cost of higher computational
requirements [4]. Shrinking the search space towards the
most promising dimensions would simplify and speed up the
optimization process.

Whereas the literature has delved into what factors make a
physical configuration more or less successful [9], [10], [11],
no work to date has considered how to augment the robot
optimization with knowledge from external sources, despite
it being common in other fields [12], like test [13] and content
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generation [14]. Just like most animal lifeforms, humans
evolved powerful mental ‘‘world models’’ for predicting the
future states of the world [15]. Here we consider humans
as sources of external knowledge and ask if they can be
predictive for the performance of a robot controller optimized
for a given body and task.

Involving humans in prediction (a human-in-the-loop
approach) may not be convenient for simple robots and
environments, since it incurs a cost in terms of time and
effort to implement human-machine interfaces. Yet, such a
cost dissipates when considering the optimization of robots
and environments that are burdensome to evaluate. Current
robotics benchmarks require several days of computing on
specialized equipment to be fully evaluated and solved,
resources that are not accessible to the majority of academic
labs [16]. Indeed, there is a widespread sentiment that current
artificial intelligence algorithms require too high a cost in
computing, data, and money [17], and the control of robots
is no less [18].

As robots, we consider Voxel-based Soft Robots (VSRs)
[19], [20]. They allow for a diverse set of morphologies
[21], which are assemblies of homogeneous modules of soft
material. Voxels contract or expand their volume following an
actuation signal dictated by the controller. It is the concerted
change of voxel volumes that allows for the emergence of the
high-level behavior of the robot. The softness of the modules
induces rich dynamics, making the VSR body particularly
relevant for the robot ability to perform a task [22], [23].
Moreover, softness confers VSRs the desirable property of
compliance, which could even enable their usage in direct
human-robot interaction [24].

We instantiate simulated VSRs differing in shape and
actuation mechanism, for a task of locomotion, and perform
two different sets of experiments. In the first set, human
participants control the VSRs by interacting online with the
simulator. In the second set, we optimize AI-based controllers
inspired by Talamini et al. [25] through Evolutionary
Computation (EC) [26], for the same VSRs and task. Finally,
we compare the rankings of human- and AI-based VSRs.

We find that, even though AI-based controllers perform
better than humans at controlling the VSRs, the relative
rankings are similar. This result suggests that humans can be
predictive of the performance of a robot controller optimized
for a given body and task. Looking forward, we believe
our work to be a stepping stone in the road toward more
adaptablemodular robots: in the future, we envision surrogate
models [27] built on top of human knowledge to predict
what re-configurations are better for different tasks and
environments.

II. RELATED WORKS
In this work, we explore human-robot interaction as a source
of external knowledge to reduce the optimization space
of the possible morphologies. The availability of reliable

predictions on the performance of autonomous robot systems
can help developers reduce the time needed to optimize the
design of robots [28].

Previous papers already explored human-soft-robot inter-
action. Some of these works consider the exploitation of
a joystick to control reconfigurable soft robots [29]. When
possible, interactive interfaces similar to the robot shape
are exploited. An example is given by [30], where a Rigid
Link Robot Controller is exploited. Others exploit the
resemblances with the human body, for example, in [31] a
soft manipulator is controlled through the usage of a wearable
glove.

More in general, human-robot interaction has been a
subject of research since some time, albeit usually with
different objectives than our study. Today autonomous
systems might not reach the required performances or human
supervision is required together with the possibility of
effectively operating in emergency actions. Remote control
continues to be relevant in applications such as operating
in hazardous environments [32] and medical applications
[33], [34]. Moreover, being humans good at performing
several tasks, they can be also exploited to teach robots
how to perform several tasks. This practice is studied in
several works and takes the name of ‘‘robot learning from
demonstration’’ [35], [36]. In this approach, robots leverage
humans’ expertise in specific tasks to acquire behaviors
through the analysis of human demonstration data [37], [38]
or by directly imitating the human motion [39]. In principle,
a similar approach may be used for making robots learn from
other robots [40].

However, few works exploit human interaction to make
robot optimization more efficient and effective. One of them
is by Matthews and Bongard [41], who proposed to use
non-expert humans for ‘‘grading’’ robots being optimized for
performing the actions described by humans themselves in
natural language. Focusing on the same family of robots,
Kafley [42] proposed a crowd-sourcing platform to allow the
collective creation of soft robots, with the ultimate goal of
scalability.

In other fields, such as text generation [12], computer
vision [14], [43], natural language processing [44], and others
[45], [46], [47], enhancing AI using external knowledge is
quite common. Moreover, the usage of human interaction
or human feedback is commonly included in the learning
or optimization phase of many models in several AI and
robotic fields [48]. Humans have also been successfully
included in the training loop of AI system synthesis [49],
[50], extensively exploited in Computation and Language
AI systems such as [51] and [52], and their feedback
has also been exploited in text-to-image systems [53].
A known example of how humans have been exploited
specifically in the evolutionary optimization loop is given by
Picbreeder [54], where humans and AI collaboratively evolve
images. If humans turn out to be reliable predictors of the
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performance of autonomous robotic systems, systems similar
to Picbreeder could be used to collaboratively evolve robot
morphologies.

Within the Artificial Life community, the notion of hybrid
life has recently been put forward, covering, among other
aspects, hybrid architectures, which combine living and artifi-
cial systems, and/or the hybrid interactions among them [55].
Among the former ones, motor augmentation is one of the
most relevant research areas, which is centered around the
realization of cyborgs, integrating biological and machine
parts. Although clearly not involving humans, this topic has
various links to our study: an interesting example comes from
the works of Kuwana et al. [56], [57], who were able to
augment a mobile robot by implanting insect antennae on it as
a pheromone sensor. Concerning hybrid interactions, instead,
one of the central goals is the understanding of collective
behaviors in biological systems by introducing virtual agents
among them. Examples include virtual plankton [58], robot
cockroaches [59], and many others. Interestingly, Shirado
and Christakis [60] have even experimented with hybrid
interactions with humans, including bots as players in a
coordination game.

III. VOXEL-BASED SOFT ROBOTS
In this study, we consider Voxel-based Soft Robots (VSRs),
a kind ofmodular soft robots composed of several deformable
cubes called voxels. Each voxel contracts or expands its
volume, allowing for the emergence of the high-level
behavior of the robot. Modular soft robots have been first
introduced by [19].

In particular, we focus on a simulated (in discrete time,
with a simulation frequency fsim = 60Hz, and continuous
space) 2D version of VSRs [20]. VSRs, due to their
inherent nature, present various computational and control
complexities. The softness of the modules induces rich
dynamics, making the body particularly relevant for the
robot ability to perform a task. Softness is also relevant for
several applications where human safety is of fundamental
importance such as in the medical field. Controlling these
robots is difficult for humans, and therefore, utilizing such a
2D model may be advantageous for this study, as it provides
an opportunity to conduct an initial investigation and,
hopefully, pave the way for future studies exploring different
objectives beyond those presented here. Indeed, working with
fewer dimensions allows us to consider simpler interfaces for
the interaction, both in terms of physical interface and video
shown to the user. This opens the possibility of involving
a diverse pool of individuals, including those not used to
playing video games and interacting with systems such
as simulators. Indeed, while one dimension makes these
simulated VSRs less realistic, it simplifies the human-robot
interaction.

In the following, we describe the characteristics of VSRs
relevant to this study. A VSR is defined by its body and its
brain, which we detail in the following subsections.

A. BODY
The body of a VSR consists of its structure and physical
properties together with the sensors on each voxel. The VSR
structure describes how the voxels are arranged in a 2D grid
topology—the shape—of size w × h where w is the width
and h is the height of the grid. We model each voxel as the
assembly of spring-damper systems, masses, and distance
constraints [20], and as being rigidly connected to its four
adjacent voxels, when present.

Over time, voxels change their area, according to (a) exter-
nal forces acting on the voxel (e.g., other bodies, including
other voxels and the ground) and (b) internal forces computed
by the controller. Contraction and expansion forces are
modeled in the simulation as an instantaneous change in the
resting length of the spring-damper systems of the voxel.
The length change is linearly dependent on a control value
residing in [−1, 1], −1 being the greatest possible expansion
and 1 being the greatest possible contraction.

Voxels can be equipped with zero or more sensors. Each
sensor produces, at each time step, a sensor reading s ∈ Rm.
In this work, we use four kinds of sensors. Touch sensors
(m = 1) perceive whether the voxel is touching the ground
(s = (1)) or not (s = (0)). Velocity sensors (m = 2) perceive
the velocity of the center of mass of the voxel along the x-
and y- axes of the voxel itself. Area sensors (m = 1) perceive
the ratio between the current area of the voxel and its rest
area. Sight sensors (m = 1) allow the voxel to perceive
its distance from the ground, by computing the Euclidean
distance between the center of the voxel and the ground.
We put area sensors in each voxel, velocity sensors in the
voxels of the top row of the body, and sight sensors in the
voxels of the bottom row. To ensure all sensor readings lie
in [−1, 1]m, we apply the tanh function to every reading and
then rescale it. After the normalization, to simulate real-world
sensor noise, we perturb every sensor reading with additive
Gaussian noise of mean 0 and deviation σnoise = 0.01.

B. ACTUATION
VSRs behavior results from changing the area of the
composing voxels over time: this depends directly on the
control values. How controllers influence the control values
depends on actuation mechanisms. Actuation mechanisms
map a discrete action space A to a way to set the individual
voxel control values after an action a ∈ A is taken. Since
controlling each voxel individually would be impractical for
humans (as there could be tens of voxels in a VSR), actuation
mechanisms are defined to not involve direct control of each
individual voxel.

We consider four different actuation mechanisms, three
of which are based on a partitioning of the shape voxels,
and one, that we used only on the worm-shaped robot (see
Section IV-A), induces a wave-like movement.
Partitioning-based actuation relies on partitions, i.e.,

disjoint sets of voxels that actuate altogether. There is one
action a for each partition: whenever a is taken, all and
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only the voxels of the corresponding partition immediately
contract for a short time (one time step). We use the following
partitionings: ↔ actuation, where the robot is divided into
|A| = 2 partitions along the y-axes; ↕ actuation, where the
robot is divided into |A| = 2 partitions along the x-axes; ↙↗↖↘

actuation, where the robot is divided into |A| = 4 partitions
along both the x- and y-axes.
Wave-based actuation mechanism is used only with the

worm shape and we will refer to this as the ↭ actuation;
for ↭, |A| = 2. Intuitively, the voxels are actuated in the
following way: whenever an action a is taken, a contraction
wave starts at the left or right side of the robot (depending
on the action), and goes on contracting subsequent columns
while the previous expands again. This gives rise to a
general contraction-expansion movement that resembles the
movement of a wave. We made the wave last 1 s.

C. CONTROLLER
The controller itself together with the physics of the
environment determines the whole movement of the VSRs.
The controller generates the actions a ∈ A that, depending on
the actuation mechanism, make the different voxels contract
or expand.

In this paper, we considered two types of controllers:
AI-based controllers and human-based controllers.

1) AI-BASED CONTROLLER
The AI-based controller is inspired by one of [25] and
consists of a Multi-Layer Perceptron (MLP)—other kinds
of neural networks could be used, yet we opted for MLPs
for their simplicity [61]. The MLP takes as inputs the
concatenation of the sensor readings from all the voxels,
s ∈ [−1, 1]q, with q the number of sensor readings, and
outputs |A| values: the taken action a is the one for each
there is the largest MLP output. We use one hidden layer with
0.65 q nodes and tanh as an activation function.
This controller may take one action at each time step,

i.e., one every 1
60 s, with a control frequency fc = 60Hz.

Human-based controllers would hardly be able to keep this
pace. Hence, we experimented also with a slower version
of the AI-based controller which takes an action every 1

5 s,
i.e., with fc = 5Hz. We opted for such a frequency after
conducting a few exploratory experiments. Indeed, during our
testing, we found that fc = 5Hz was the lowest frequency
that did not interfere with human control. We observed that
smaller values were uncomfortable for humans, making it
feel as though the simulator was lagging behind the given
commands. As a result, we concluded that a frequency of
fc = 5Hz closely approximates the rate at which a person
operates on the simulator.

2) HUMAN-BASED CONTROLLER
The human-based controller consists of a human who inter-
acts with the simulator using a keyboard. Taking inspiration
from other works, we performed preliminary experiments

FIGURE 1. A schematic of the workflow of our experimental procedure.
Rectangular boxes represent phases of the experiment. The dashed
enclosing boxes represent loops: the green one iterates over shapes
and actuation mechanisms, the red one over random seed for the ES
AI-based optimizer, the blue one over human subjects.

with other devices than the keyboard, such as gamepads,
however, we found no advantages.

During the tests, participants view a real-time video feed
of the robot that they need to control. Using this video
as a reference, individuals can press specific keyboard
buttons to trigger the expansion of different voxels, thereby
enabling the robot to perform the intended task. Each action
a ∈ A, is associated with a particular keyboard key:
whenever the human presses a key, the corresponding set
of voxels is expanded, while, when he releases the key, the
corresponding set of voxels return to their rest area. The
program continuously monitors key pressure with a high
frequency, ensuring that expansions occur immediately upon
key presses. Furthermore, users have the option to press
multiple keys simultaneously, allowing voxels from different
partitions to expand together.

To determine the key configuration, i.e., which keys to
associate with A actions, for each actuation mechanism we
conducted multiple user tests. Our objective was to obtain
the most intuitive configuration for the users. Since the
actuation mechanisms require at most 4 inputs, the keys in
the configurations are always selected from an original set of
4 keys. Therefore, the actuation mechanism with 4 possible
actions uses the entire set, while the other configurations
involve selecting keys to associate and excluding others. The
entire set is composed of W , A , S , and D . This set
of keys is common and widely used in modern PC video
games. A and D correspond to the left and right partitions
of ↔ and ↙↗↖↘ actuations. W and S correspond to the top
and bottom partitions of ↕ and ↙↗↖↘ actuations. In ↭, A

and D correspond to the wave starting from left and right.
We summarize these key-bindings in Table 1.

IV. EXPERIMENTS AND DISCUSSION
As a goal of this work, we set out to evaluate whether humans
could be predictive of the performance achieved by optimized
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TABLE 1. Key-bindings for the four actuation mechanisms (↔, ↙↗↖↘, ↕, ↭).
For the wave-based actuation, the binding shows in which direction the
contraction wave flows. For the partition-based actuation mechanisms,
the binding shows which voxels (in terms of colors, see Figure 2) contract.

controllers for VSRs. More in detail, we considered the
following two research questions:

RQ1 Is human-based control predictive of optimized
AI-based control for VSRs?

RQ2 Do humans need to try to actually control the VSRs
to express a prediction? In other words, do people have some
sort of innate knowledge with respect to which VSR can
perform better upon optimization?

To address these questions we performed a thorough
experimental evaluation, involving several VSRs of differ-
ent shapes and actuation mechanisms. Namely, we first
optimized the AI-based controller for all the VSRs and
compared their performance with that attained by humans
in the same setting. Then, we let another pool of people
predict the performance of the very same agents by simple
static observation and compared their forecast with the actual
performance measured upon optimization. For both phases,
we considered the task of locomotion as it is both widely
explored within the robot optimization community and is
intuitive enough for people to carry out without specific
training required. Figure 1 summarizes the workflow of our
experiments, which we describe in detail in the next sections.

A. RQ1: IS HUMAN CONTROL PREDICTIVE OF OPTIMIZED
CONTROL PERFORMANCE?
To tackle the first research question, we performed a two-
fold analysis: first, we relied on optimization, and then we
let participants control the same VSRs.

We considered two VSR shapes, a biped of size 12× 5 (by
size we mean the size of its enclosing grid) and a worm of
size 16×4, in combination with the aforementioned actuation
mechanisms. We report the chosen VSRs in Figure 2, where
we highlight with different colors the sections of the body
that can independently be controlled with the given actuation
mechanisms (with the exception of the ↭ actuation, for
which we use a gradient to give the impression of a ‘‘wave’’);
we summarize in Table 1 the key-bindings for the chosen
VSRs, i.e., the actuation-key associations. We selected these
VSR shapes as they have already been successfully employed
quite often for the considered task [62], [63], although
with a smaller scale. Here we opted for a larger scale to
ease the control for humans, and to give the impression
of faster movement, hence minimizing the frustration for
the participants. As a side note, these two shapes resemble

animals, making them more fun for people to control.
However, this might induce bias as people might attempt
to replicate the gait associated with these animals even if it
might be not the most effective one for the two shapes.

To test and compare both control methods—humans and
optimized controllers—we considered the task of locomotion,
where the goal is to move the VSR as fast as possible along
the positive x direction. Hence, we used the mean velocity of
the VSR, vx , to quantify the degree of accomplishment of said
task, i.e., to measure the performance of a controller. To ease
the task and arouse more engagement in the participants,
we employed a smooth and slightly sloping terrain, tilted by
10 degrees.

1) AI-BASED CONTROL
We started our experimental evaluation by considering the
AI-based controller for each of theVSRs of Figure 2. Namely,
we used an MLP, as explained above, and we optimized its
weights θ by the means of EC for the task of locomotion.
We experimented with two control frequencies, a fast one of
60Hz, and a slow one of 5Hz, which should be more akin
to the timing of humans and should also prevent vibrating
behaviors, as noted in [64].

For the optimization, we resorted to a simple form
of non-overlapping Evolutionary Strategy (ES) for the
optimization of the weights θ , as it has already been applied in
similar settings [65], [66] and has also achieved remarkable
results for continuous control tasks and game-playing [67].
The considered ES works by evolving a fixed-size population
of the size of npop = 36 individuals for a total of
ngen = 285 generations (totaling 10 000 fitness evaluations).
To initialize the population, we generate each individual by
sampling a p-dimensional uniform distribution over [−1, 1]p,
where p = |θ |. Then, at each iteration, we obtain a new
population by merging the offspring of size npop − 1 with
the current fittest individual. To compute each element of
the offspring, we take the element-wise mean µ of the
fittest quarter of the population, and we add a Gaussian
noise N (0, σ ), with σ = 0.35, to each of its components.
Given the stochasticity of the ES execution, we performed
10 independent optimizations for each controller, each based
on a different random seed. Clearly, given the locomotion
task, we considered vx as a fitness measure to drive the
optimization of θ , which we measured in a simulation of 30 s.

We display the progression of the velocity during the
optimization process for all the considered VSRs in Figure 3:
for each VSR configuration, i.e., for each combination
of shape, actuation mechanism, and control frequency fc,
we report the median and the inter-quartile range (across the
10 runs) of the velocity vx achieved by the best individual in
the population at each generation.

From the figure, we can make several observations. First,
we see all lines consistently increasing until they plateau,
which confirms that optimization is indeed occurring and
also suggests that prolonging it would result in negligible
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FIGURE 2. Combinations of shape and actuation mechanisms.

FIGURE 3. Fitness vx of the best controller during evolution. Optimization works for all shapes and actuation mechanisms, but some
combinations achieve higher vx .

improvements in almost all cases. What is more interesting
to note, is that the lines display some variability, not only
in the result achieved at the end of evolution but also in
how they reach it, i.e., in how fast they are optimized. This
means that the considered configurations differ both in how
‘‘optimizable’’ they are and in how ‘‘easily optimizable’’ they
are, and serves as a starting point for further reasoning also
on how the participants will perform.

Delving more into detail about the observed differences,
the most striking one is that between the two VSR shapes,
i.e., between the two columns of the figure. Such difference
is coherent across all actuation mechanisms and also for
both the slow and fast control frequencies: the biped appears
consistently faster and easier to optimize than the worm.
In fact, from a brief examination of the videos of the VSRs
performing locomotion, we see that the biped, thanks to its
shape, can achieve a horse-like gait, which makes it more
effective than the worm, which usually achieves motion
through crawling.

Another element of difference among the VSRs is the
actuation mechanism. Here we also expect to notice some
diversity, as the mechanisms differ in expressivity, i.e., how
wide of a behavior gamut they can generate, but also in search
space size, i.e., the size of p. Clearly, on one side we have
↙↗↖↘ with more freedom and larger p, whereas on the other
side, we have all other actuationmechanisms. However, in the

plots, we do not highlight much disparity related to these two
aspects. Instead, we notice that the main role is played by
the shape-actuation combination, although oftentimes some
combinations becomemore or less effective with the different
control frequencies employed. Indeed, B↔ and W↕ are
always the best-performing combinations, with both fast and
slow AI, while we notice some mismatch in the ordering of
the others.

Hence, another point of necessary reflection lies in the
control frequency employed. As already observed in other
studies, when working at full control frequency, optimization
might end up finding behaviors that are unintuitive and would
not be practicable in the real-world—the so called reality gap
problem [68], [69].

2) HUMAN-BASED CONTROL
Having observed these results upon optimization, that is,
having confirmed that all the considered shape-actuation
combinations can indeed perform locomotion, we moved
on to the user study with humans as controllers for the
VSRs. Namely, we involved 48 unpaid volunteer participants,
13 females and 35 males, of various ages, ranging from 18
to 60. Before starting the actual experiment, we surveyed
the participants on their video-games playing habits, as these
could have played some role in the final outcomes achieved.
We observed different habits, both with respect to the
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frequency of playing and with respect to the types of games
played, yet in the end we saw no particular dependency of the
results from these factors.

After the survey, each participant started the actual
experiment with a randomly chosen shape among the biped
and the worm and then proceeded with the other one.
We randomized the order of shapes to balance possible
advantages of getting more accustomed to the environment
or disadvantages of potential frustration and/or boredom.
Concerning the actuation mechanism, all participants started
with ↙↗↖↘ and then proceeded with all the others. To help
participants get used to the control of the VSR, we first let
them interact with the simulator for 60 s prior to recording
their performance. We allowed non-recorded interaction
time in between every session, yet we decreased it to 30 s
when we only changed the actuation and not the shape,
to prevent annoyance in the participants. Regarding the actual
experimental session, we let the participants control the
VSR for 33 s, from which we discarded the initial 3 s to
compute the mean velocity vx . We chose to discard the initial
transient to let participants properly focus and get settled
before measuring their performance.

We report the outcomes of the user study, together with
those obtained upon optimization in Figure 4. Namely, for
each VSR, we display the distribution of the mean velocity
vx , achieved either during the user study or at the end of
the evolutionary optimization. To order the x-axis in the
plots, we follow the ranking induced by the median of the
vx achieved by humans for each VSR, in decreasing order.

To answer to RQ1, i.e., to assess whether human control
is predictive of optimized control, we need to examine the
three rows of plots in a comparative manner. Clearly, we do
not aim at comparing the absolute values of vx , as there is
a myriad of factors making the two outcomes non-directly
comparable. What we are indeed interested in analyzing,
is whether the rankings among VSRs induced by human
control are similar—or even equal—to those induced by
optimization.

First, we notice that as in Figure 3, there is a rather
clear predominance of the biped with respect to the worm,
regardless of the actuation mechanisms employed. This hints
that humans are strong predictors of the VSR shape. In fact,
as in the optimized setting, humans would intuitively try to
achieve a horse-like motion for the biped, whichmade it more
effective than the worm.

Considering also the actuation mechanisms, we notice that
the human ranking is the same as that attained with the
optimized fast controller for the biped, whereas for the worm
it matches that of the optimized slow controller. By per-
forming the experiments, for different actuation mechanisms,
we noticed that the frequency at which controllers are able
to input the simulator might influence the final sequence
found, and therefore the performance obtained and the final
ranking. This result reminds us of the previously highlighted
dependency of the performance on the control frequency,
which derives from the deep entanglement of the controller

FIGURE 4. Distribution of the vx achieved by humans, slow AI, and fast
AI. The order in the x-axes is chosen to easily compare the resulting
rankings. Shape and actuation mechanism combinations rank very
similarly for humans and AI.

with the body dynamics. Hence, such intertwining makes it
hard to achieve full human predictivity for every actuation
mechanism considered.

Summarizing, from a high-level perspective, Figure 4 gives
a positive answer to RQ1, especially for what concerns
the VSR shape. Anyway, it is necessary to note that the
distribution of velocities achieved by humans is fairly spread.
This lack of consistency can descend from several aspects,
such as the different starting points for the user study,
the different individual capabilities, but also the different
individual attitudes toward the simulator. Thus, our findings
surely hold on average for an aggregation of the pool of
participants considered, yet it is not clear whether any
conclusion can be drawn at the single-participant level.
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To further analyze this aspect, we considered the per-
formance obtained by individual participants, rather than
aggregation. Namely, we assessed the individual global
rankings together with the individual shape rankings. For the
former, we employed Spearman’s Footrule [70], which is a
measure of disarray for rankings, and computed the pair-wise
comparisons among participants. Although we do not report
the results here, we observed fairly large values, which
indicate a general disagreement on the rankings obtained.
Hence, we can draw few conclusions at the individual
participant level.

For the shapes ranking, we computed, for each participant,
the mean velocity for each shape averaged across actuation
mechanisms, v̄x,B for the biped and v̄x,W for the worm. For
comparing the results with those of optimized controllers,
we repeated the same computation for the optimized
controllers, where we considered each optimization seed as
an ‘‘individual participant’’. We report the aforementioned
values in the scatter plot of Figure 5 (left), where each point
corresponds to a participant (or an optimization seed), and the
axes are the v̄x,B and v̄x,W, respectively. We also report the
bisector to ease the comparison: the points lying on the lower
right side of it rank the biped better than the worm. Observing
all the AI-based controllers, both slow and fast, we note that
they clearly lie on the lower right side, as expected from both
Figures 3 and 4. For what concerns the human participants,
we note that they are closer to the bisector and aremore spread
around, yet the vast majority (45 out of 48) achieved larger
v̄x,B than v̄x,W. This corroborates our previous finding, that
humans have strong predictive capability with respect to the
VSR shape.

3) IS WHAT WE FOUND IN RQ1 LIMITED TO THE TWO
CONSIDERED SHAPES?
Given the results achieved in RQ1, an additional question
arises on whether the findings are limited to the two
considered shapes. In particular, we wonder if these results
descend from the fact these shapes were chosen by humans—
namely, us, as authors. To address this, and thus provide
a more general answer to RQ1, we repeated the same
experimental procedure for 4 additional shapes, reported
in Figure 6. Namely, we let optimization ‘‘pick’’ the first
two shapes, i.e., we considered two shapes optimized
by EC for the locomotion task [71], [72], denoted by
EC1 and EC2, while we selected by hand the other two
shapes, a cross (X) and a table-like shape (T). As before,
we experimented with different actuation mechanisms, ↙↗↖↘,
↔, and ↕, in combination with each shape. We show all the
combinations for this supplementary analysis in Figure 6.

To scale down the effort required, we reduced the
participant sample to the 5 best performers, and we only
experimentedwith fast AI, which provedmore effective in the
previous experiments. We report the distribution of velocities
vx in Figure 7, where again we order the x-axis according to
the human ranking in decreasing order. We also summarize

TABLE 2. Average velocity vx achieved by humans and fast AI, for all
combinations of shape and actuation mechanisms. 1r represents the
difference between the ranking obtained in each combination between
humans and fast AI. The rank r of most combinations is similar for both
controllers: 1r ≤ 2 for 13 on 19 combinations.

in Table 2 the mean vx achieved by humans and fast AI with
all the VSRs.

Observing the two groups of box plots in a comparative
manner we can note some similarities with respect to
Figure 4. In particular, we observe some predictive power
for the shapes—X always ranks highest, EC2 always ranks
lowest—while the rankings for the actuation mechanisms are
mostly different. Hence, we can confirm the already noted
difficulty in predicting the behavior of different actuation
mechanisms.

Regarding the shapes, we delve into a deeper analysis
considering the mean velocity for each participant (or
optimization seed) averaged across actuation mechanisms
and evaluating the ranks induced by them. In this case,
as suggested by Figure 7, there is indeed predictivity. More
in detail, X is always the fastest, whereas EC2 is always
the slowest, for both human control and optimized control.
Concerning the two remaining shapes, T and EC1, we observe
some mismatch in the relative rankings, worth a deeper
investigation. Hence, to draw further conclusions, we rely
on the scatter plot visualization of Figure 5 (right), where
each point corresponds to an individual (or an optimization
seed) and the axes measure v̄x,T and v̄x,EC1, respectively.
Namely, we note that, as before, the optimized results are
extremely coherent, and lie all on the same side of the plane
(i.e., v̄x,T > v̄x,EC1), whereas the human ones are more
scattered, close but on both sides of the bisector. Therefore,
in this case, the human predictive power proves weaker, also
for the shapes only. We speculate this derives from the fact
that the new shapes considered are less intuitive for humans
to control, as there is less resemblance to real-world creatures.

Summarizing, for what concerns RQ1, we can conclude
that (1) for ‘‘familiar’’ shapes individual humans are strong
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FIGURE 5. Scatterplot of the vx achieved with the biped and the worm, on the left, and T and EC1, on the right, one point per participant or
optimization seed. The biped is faster than the worm for both humans and the AI; with T and EC1, humans agree less.

FIGURE 6. Combinations of shape and actuation mechanisms for the
supplementary analysis.

predictors of the performance achieved upon optimization,
and (2) such predictivity holds, though in a weaker way,
even for less familiar shapes. Moreover, (3) we find some
predictive power also for the actuation mechanisms when
aggregating the results over a large pool of participants.

B. RQ2: DO HUMANS HAVE INNATE PREDICTIVE POWER?
To address the second research question, we relied on a survey
where we asked people to rank some VSR shapes according
to their expected velocities. In light of the previous results,
this investigation becomes particularly relevant, as we noted

TABLE 3. Mean rank for the considered VSR shapes.

some dependency of the predictivity on the familiarity level
of the shapes.

Going more into detail about the evaluation performed,
we involved a different pool of participants, disjoint from
the previous experiment one, namely 31 university students
of around 23 years of age on average. Before the actual
survey, we provided a bit of context of VSRs to the
participants, to enable them to make more informed choices.
Namely, we briefly described VSRs, how they move, and
the locomotion task and we also showed a video of a
VSR of a different shape than those considered for the
survey, performing locomotion in the same setting considered
here. Then, we showed them the 6 shapes employed,
i.e., those of Figures 2 and 6, and asked participants to
rank them according to the expected velocity these VSRs
would have when performing locomotion with a properly
optimized controller. Differently from before, we did not
consider different actuation mechanisms, as we observed low
predictive power in that sense.

To assess whether the participants were coherent with
the previous findings, we considered the mean ranking
for each shape, reported in Table 3—we assigned score 1
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FIGURE 7. Distribution of the vx achieved by humans, slow AI, and fast
AI. The order in the x-axes is chosen to easily compare the resulting
rankings. Shapes rank similarly for humans and AI.

to the fastest VSR and score 6 to the slowest in the
ranking. To contextualize the results, we also report the
mean ranking of human and optimized control considering
the mean velocities for each participant (or optimization
seed) for each shape (resulting from the evaluation done for
RQ1). To compute these rankings we only considered the
participants who experimented with all the shapes, and only
the fast AI.

We start by examining the first row of the table, i.e., the
expected performance. From that, we can notice that only
two shapes stand out from the others, namely the biped
and the worm, whereas for the others the mean ranking is
approximately always the same, around 3.5. Conversely, the
biped is on average expected to be the fastest, while the worm
is the slowest. This relationship among the two shapes also
holds at the single participant level: 75.8% of participants
expected the biped to perform better than the worm.

It is also interesting to look at the table in a comparative
manner, evaluating the similarity between the rows. Namely,
we notice that sometimes the human expectations are closer
to the AI performance (which is, indeed, very consistent for
all shapes) than the actual human performance (which is
consistent only for three shapes).We believe this derives from
the fact that people express their judgment by association.
In particular, we see they rank the T right after the biped due
to their similarity, which also makes them similarly effective
upon optimization. Moreover, they express a comparable

preference for EC2 and EC1, which are both small and not
very familiar, and end up both performing poorly even with
an optimized controller.

Another point worth mentioning is the difficulty of humans
in predicting not immediately intuitive behaviors. That is
the case for the X-shaped VSR, which was in general the
fastest upon control, but not to people’s expectations. In fact,
such VSR achieved successful motion through rotation, yet
without interacting with it people were not able to guess it.

To summarize and conclude, we cannot give a totally
positive answer to RQ2. In fact, people’s expectations, and
hence their predictive power, appear to be strongly influenced
by experience. In other words, we found people to be biased
towards shapes they perceive as familiar: for those they
can usually correctly predict the performance ranking, even
without having to actually interact with the agents, whereas it
becomes more difficult for more unusual shapes or for VSRs
which achieve motion in unconventional ways. We believe
this potential bias might limit the practical usefulness of
humans’ ability to predict AI performance, in particular when
the shape of the robot is subjected to optimization, that is,
when unfamiliar shapes may arise in the design process.

V. CONCLUSION AND FUTURE WORK
We investigating whether humans can be used as indicators
of the performances achieved by AI-based controllers for
different VSRs, a kind of modular soft robots. To this aim
we performed several experiments: we first optimized and
evaluated controllers in performing the locomotion task over
VSRs differing for shapes and actuation mechanisms. Then,
we let a panel of 48 humans control the very same VSRs to
accomplish the very same task.

We found that VSR shapes rank very similarly, in terms
of achievable velocity, when controlled by humans and AI;
that is, humans are able, to some extent, to predict which
shapes would be better than others to perform a task when
controlled by AI-based controllers. This applies especially
when considering shapes that resemble animals, such as the
biped and the worm. On the other hand, when considering not
only shapes but also actuationmechanisms, full predictivity is
harder to achieve. Moreover, humans obtained results rather
different from each other, which probably is a consequence
of the different order in which the VSRs were proposed to
humans.

We believe that our results strengthen the idea that there
are intrinsic factors that make some shapes better than others
to perform tasks and encourage further research in this
direction [10].

While we experimented with a simple means of control,
the keyboard, we think that new possibilities exist for
future research where different physical interfaces are used
for greater control granularity, such as the brain-human
interface [73]. Moreover, our findings suggest that humans
could also be employed for human-in-the-loop evolutionary
robotics, similarly to other what is done in other domains
[50], [51], [52], [74].
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