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ABSTRACT With the rapid advancement of the internet and online applications, traffic classification has
become an increasingly significant topic in computer networks. Managing network resources, improving
service quality, and enhancing cybersecurity are critical. Due to traffic encryption techniques, traditional
traffic classification approaches have become ineffective and inaccurate. Therefore, the scientific community
considers deep learning a high-performance approach for classifying encrypted traffic. This paper proposes
an encrypted traffic classification approach, CBS, based on a deep learning technique. CBS can classify
encrypted traffic at two levels using 1D-CNN, attention-based Bi-LSTM, and SAE deep network models.
The proposed model classifies traffic types and applications based on a comprehensive set of session and
packet-level features. CBS accurately distinguishes traffic classes using spatial, temporal, and statistical
features extracted from packet content relationships, temporal relationships between packets in a session,
and statistical characteristics of a work session. A traffic data augmentation technique based on a GAN
network is employed to mitigate the impact of data imbalance on traffic classes. The proposed platform’s
performance is evaluated on the public ISCX VPN-Non VPN 2016 dataset. The results demonstrate that
the platform accurately and efficiently identifies applications and classifies encrypted traffic. Compared to
state-of-the-art methods, the proposed traffic classification model improves precision by 21.3%, accuracy
by 13.1%, recall by 18.11%, and F1 score by 19.79%.

INDEX TERMS Deep learning, encrypted traffic, imbalanced data, packet features, traffic classification.

I. INTRODUCTION
Traffic classification is a technique that involves analyzing
the data received from a packet or flow to identify differ-
ent applications or types of traffic [1]. Traffic classification
plays a critical role in network management tasks such as
quality of service guarantee, optimal utilization of network
resources, anomaly detection, malware traffic detection, and
network intrusion detection. Accurate traffic classification
tools are necessary for these tasks [2], [3]. Due to increasing
privacy and security concerns for internet users, many appli-
cations use various types of traffic encryption [4]. Technology
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advancements necessitate the analysis of encrypted traffic
for multiple reasons. Encrypted traffic conceals malicious
activities, making detection and analysis more challenging.
It also optimizes network performance by ensuring criti-
cal applications receive sufficient bandwidth and priority.
Analyzing encrypted traffic is also crucial for regulatory
compliance, as sensitive data in industries like healthcare
and finance must be encrypted to comply with data privacy
regulations [2], [3], [4]. Traffic classification approaches gen-
erally fall into four categories: port-based, payload-based,
machine learning-based, and deep learning-based [5]. The
first and most straightforward approach, port-based classi-
fication, identifies the type of traffic by extracting the port
number from the packet header. Payload-based analysis,
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known as Deep Packet Inspection (DPI), examines packet
payloads against predefined patterns and signatures for vari-
ous protocols [5], [6].

Both port-based and DPI approaches have certain lim-
itations. The port-based approach could be more efficient
at classifying traffic due to port obfuscation, random port
number assignment, using dynamic ports, and the network
address translation (NAT) technique [7], [8]. Furthermore,
encryption techniques are widely employed in internet traffic
to preserve privacy. Consequently, extracting useful informa-
tion from the packet payload is less effective, which results
in less accurate classification [9]. The primary issue with the
DPI method is its high computing overhead, which makes it
unsuitable for real-time or encrypted traffic classification [7],
[10]. Therefore, statistical flow analysis andmachine learning
approaches have been investigated to overcome the limita-
tions of the two previous methods.

Machine learning algorithms utilize time series and statis-
tical information to learn distinguishing features and patterns
in the traffic data [11], [12], [13]. Machine learning-based
methods address issues with traditional approaches but intro-
duce new challenges, such as capturing handcrafted packets
and session features, which require domain specialists and
can be time-consuming [14]. In other words, machine learn-
ing techniques are highly dependent on human-engineered
features, which limits accuracy and generalizability [15],
[16], [17]. A novel traffic classification method is required to
address machine learning issues. Deep learning approaches
have been proposed to handle machine learning chal-
lenges [8], [18], [19]. Unlike classical machine learning
algorithms, deep learning algorithms perform feature extrac-
tion automatically, making them attractive for encrypted
traffic classification.

Another advantage of deep learning methods is that they
capture more complex patterns, resulting in more accurate
classifications than machine learning methods [20], [21].
Deep learning has recently been widely applied in various
fields, including speech recognition, computer vision (CV),
image processing, and natural language processing (NLP)
[22], [23], [24], [25]. Deep learning is a practical method
for classifying encrypted traffic, often using Convolutional
Neural Networks (CNNs) to extract features from traffic
flow data. However, CNNs may not always be the best
choice for extracting features from dynamic traffic flow data,
which changes over time. These data often include statistics
from work sessions, which CNNs often overlook. LSTM and
Bi-LSTM models can extract features from traffic flow data.
It is crucial to consider the temporal characteristics of the data
and use a suitable technique for the traffic classification task.
Despite the limitations of CNNs, they can still be used to
extract features from traffic flow data [1], [12], [17], [18],
[21]. Even though deep learning extracts features without
human intervention, imbalanced learning data can result in
poor results in this approach [26]. Semi-supervised sampling
techniques are used to generate synthetic samples for datasets

with limited sample sizes in specific classes to address data
imbalance [27].

Feature engineering is a critical aspect of traffic classifica-
tion, involving feature extraction and selection techniques [5],
[7]. Selecting the most effective traffic features for the clas-
sifier is essential to achieving high classification accuracy,
which depends on several factors [10]. The features directly
influence the input structure and dimensions, which affect
both computational complexity and the required number of
packets for classification (memory complexity) [8], [10],
[17]. Additionally, an appropriate model must be chosen
based on the selected features. Various studies have classified
encrypted traffic using spatial-temporal, statistical, or hybrid
methods. However, due to the unique nature of encrypted
traffic data, focusing on one feature type can lead to low
classification accuracy. Deep learning networks offer precise
traffic classification based on high-level features extracted
from encrypted traffic flows or sessions. To understand the
advantages of integrating temporal, spatial, and statistical
features, they must first be defined as follows [9], [13], [22].

• Temporal features: Temporal features, such as
packet frequency, size, and session duration, are
time-dependent characteristics of encrypted traffic that
help identify patterns and classify them accordingly.

• Spatial features: Spatial features are crucial in identi-
fying the location of network packet bytes in encrypted
traffic within a work session. These features capture the
spatial relationships between bytes.

• Statistical features: Statistical features, such as average
packet size, standard deviation, and inter-arrival time,
are used to classify encrypted traffic and identify pat-
terns, enabling efficient classification and analysis.

Combining temporal, spatial, and statistical features in
encrypted traffic classification improves precision, effi-
ciency, and robustness against various encrypted traffic types.
This method provides deeper insight into traffic, enabling
comprehensive analysis and identification of potential secu-
rity threats [22]. Identifying encrypted traffic accurately is
challenging due to its diversity. However, using multiple
features can capture a broader range of traffic characteristics,
making it more resilient to variations in encryption methods.
This approach improves the interpretability of classification
results and allows for a comprehensive understanding of
traffic structure and behavior. It has flexible spatial, tem-
poral, and statistical features [13], [14], [15], [22], [24].
Flexible features in encrypted traffic classification allow
for classification regardless of the application or protocol,
ensuring a comprehensive understanding of the nature of the
traffic [10], [19].
This paper addresses the challenges of classifying

encrypted traffic, which is often used by cybercriminals
to conceal their activities. Data fragmentation and net-
work congestion can also hinder precise classification. Each
encryption algorithm and protocol have unique character-
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istics, making identifying and classifying encrypted traffic
challenging. As encryption algorithms and protocols evolve,
new methods may emerge, making it crucial for traffic clas-
sification models to adapt. This research aims to improve
classification accuracy by using multiple spatial, tempo-
ral, and statistical features and enhancing adaptability to
new forms of encrypted traffic. The paper discusses the
importance of using various features in encrypted traffic
classification, especially in environments with incomplete or
fragmented data.

Combining spatial, temporal, and statistical features can
improve accuracy, especially when network congestion or
other issues may result in fragmented traffic. By utilizing all
three types of features, the proposed method can extract rel-
evant information from partial or fragmented data, leading to
more precise and reliable classification results. Adaptability
is also crucial in determining and classifying new types of
encrypted traffic. The model’s ability to adapt is improved by
using simultaneous spatial, temporal, and statistical features,
enabling it to adjust to dynamic network conditions and
respond to growing security threats. Classifying traffic based
on traffic data’s statistical, temporal, and spatial features is
crucial for distinguishing traffic classes and application types.

This paper introduces a hybrid learning approach called
CBS, which employs a comprehensive set of features to
distinguish between different traffic classes effectively. CBS
is a novel approach to classifying encrypted network traffic,
leveraging an extensive array of features at both session and
packet levels to support the classification of various traffic
types and applications. The proposed method employs a traf-
fic data augmentation technique based on a GAN network to
generate synthetic samples for classes with limited samples,
improving accuracy. CBS uses 1D-CNN, attention Bi-LSTM,
SAE, and GAN as deep learning network models for fea-
ture extraction and data balancing. The extracted features
are combined to represent the input data comprehensively.
The proposed method uses 1D-CNN to learn spatial features
from packet bytes. It uses attention-based Bi-LSTM to extract
temporal sequence features between packets and SAE to com-
press extracted session statistics. Due to its comprehensive
structure, CBS can classify encrypted and unencrypted traffic
within a single platform.

CBS overcomes the limitations faced by existing methods,
such as ineffective classification due to encryption tech-
niques. By leveraging its unique feature selection approach,
CBS provides an advanced solution for encrypted traffic
classification. It automatically extracts features without hand-
crafted features, eliminating domain specialists’ need to
capture them manually. CBS adapts to new traffic patterns
and encryption algorithms, making it a valuable tool for
various applications, such as network security, traffic man-
agement, and quality of service monitoring. Our proposed
method’s main contributions can be summarized as follows:

• The CBS platform has been proposed to detect traffic at
both levels: application identification and traffic charac-
teristics.

• Traffic feature extraction and encrypted traffic clas-
sification have been combined into a single unified
platform.

• The architecture of the proposed model includes three
neural networks that extract local traffic features via 1D-
CNN, temporal traffic features via Bi-LSTM, and traffic
statistics features via SAE. Finally, these extracted fea-
tures have been fused to form a comprehensive feature
set.

• A GAN network has been employed to produce syn-
thetic samples for classes with few instances. GAN net-
work mitigates imbalanced data before feature extrac-
tion.

• The efficacy of the proposed model has been evaluated
on a publicly available dataset. The results demonstrate
that the proposed model performs well regarding preci-
sion, recall, F1 score, and accuracy.

The rest of the paper is organized as follows. Section II
provides an overview of traffic classification research and
related literature. Section III reviews the background of deep
neural networks used in the proposed model. Section IV
presents the proposed method for an encrypted traffic classi-
fication system. Section V describes the experimental setup.
The results of traffic classification for traffic characterization
and application identification are presented and analyzed in
Section VI. Section VII discusses the results and advantages
of the proposed CBS platform. Finally, the conclusion and
future work are presented in Section VIII. The code and
implementations are publicly available on GitHub.1

II. RELATED WORK
In recent years, the academic and industrial communi-
ties have paid much attention to traffic classification [12],
[28], [29], [30], [31], [32]. Traditional techniques for traffic
classification, like port-based and deep packet inspection
(DPI), are no longer adequate due to the exponential growth
in encrypted traffic [33], [34], [35]. Therefore, machine
learning-based methods have been proposed to resolve the
limitations of port-based and DPI approaches in identify-
ing and classifying encrypted network traffic [36]. In recent
years, deep learning for traffic classification has gained atten-
tion due to the limitations of traditional machine learning-
based, such as manual feature extraction [8]. This section
categorizes the most prevalent traffic classification methods
into port-based, deep packet inspection, machine learning,
and deep learning approaches.

A. PORT-BASED APPROACHES
In the past, port-based approaches were widely employed
for traffic classification. This approach uses fixed and
well-known port numbers assigned by the Internet Assigned
Numbers Authority (IANA) for most communication pro-
tocols [37], [38], [39]. Further, this method extracts the
TCP or UDP port number from the application traffic

1https://github.com/mehdiseydali/CBS.git
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packet header. Subsequently, the port number is checked
against the IANA-registered port numbers to classify the traf-
fic [40]. Despite being the most straightforward approach for
traffic classification, it has limitations, such as port obfusca-
tion, dynamic ports, and network address translation (NAT).
Therefore, this approach has low efficiency and accuracy.

B. DEEP PACKET INSPECTION (DPI) APPROACHES
The DPI approach, which is signature-based, analyzes the
payload of the application layer. This approach aims to obtain
predetermined patterns as signatures for every protocol and
application. Subsequently, it classifies traffic by comparing
the data in the packet’s payload to the predefined signa-
tures [6], [12], [41]. Although this method has high accuracy
in classifying unencrypted traffic, it is computationally inten-
sive. Moreover, this approach cannot identify and classify
encrypted traffic and requires updating the signature library
when a new protocol is developed [42], [43].

C. MACHINE LEARNING-BASED APPROACHES
This approach relies on statistical characteristics of traf-
fic instead of packet payloads. These features include the
minimum, maximum, and average packet sizes, the number
of packets per flow, and the number of packet bytes per
flow. This method analyzes these statistical features to gain
insight into the nature and patterns of network communica-
tions without examining the specific data transmitted [44].
Using various feature extraction and selection methods to
identify the optimal feature subset significantly affects the
ability of machine learning algorithms to learn and classify
traffic [45]. Numerous studies have been published on traf-
fic classification using machine learning techniques. Dong
et al. developed a Naïve Bayes-based algorithm to identify
and categorize Skype network traffic, addressing insufficient
labeling in real-time [46]. Additionally, an incremental sup-
port vector machine (ISVM) was utilized in [47] to reduce
memory and CPU utilization during execution. This approach
updates the classifier in response to newly acquired data.
In [48], the authors utilized Principal Component Analysis
(PCA) and the Genetic Algorithm (GA) to select signifi-
cant features for the classification of SDN traffic. Gil et al.
proposed the k-nearest neighbor (K-NN) and C4.5 decision
tree algorithms to classify traffic based on time-related flow
features [49]. An application-level traffic classifier was pro-
posed in [50]. This study utilizes each application’s unique
payload size sequence signatures to identify its traffic. Zhai
et al. used a random forest technique to classify SDN traffic.
Using a random forest algorithm to generate random features
leads to an optimal classification [51]. In [52], k-nearest
neighbor (KNN) and k-means classification are combined to
provide real-time encrypted traffic classification. This classi-
fication method relies on statistical features of the flow, and
calculating such features in short-length flows is difficult.
Therefore, flows containing less than 15 payload packets
were excluded from the dataset. Five supervised machine

learning algorithms that use statistical features to identify
peer-to-peer traffic are proposed in [53]. This study applies
supervised machine learning algorithms to classify flows
based on statistical features extracted from packet streams,
including packet headers [54]. classifies internet traffic flow
using both supervised and unsupervised algorithms. This
study employs an unsupervised learning approach to extract
unidirectional and bidirectional flows from captured traffic,
identifying statistically significant features and clustering
flows based on their similarities. Finally, it utilizes these
features as training data for a supervised learning engine
to classify new and unforeseen traffic flows accurately. The
main drawback of the machine learning approach is the need
for expert assistance during the time-consuming and error-
prone feature extraction and feature selection phases.

D. DEEP LEARNING-BASED APPROACHES
This approach is typically used for the classification of
encrypted traffic. These networks can accept raw packets
after preprocessing as input data. Although encrypted traffic
contains hidden patterns, deep neural networks can extract
significant features, enhancing the model’s generalizabil-
ity [10], [55]. Deep learningmodels, like convolutional neural
networks (CNNs) and recurrent neural networks (RNNs), can
effectively learn and extract complex patterns from network
data. Automated network traffic categorization makes them
useful for network management, cybersecurity, and quality of
service planning [56]. In the following, we review deep learn-
ing applications in intrusion detection, malware detection,
and encrypted traffic classification. In [57], an end-to-end
platform based on one-dimensional convolution neural net-
works combines feature extraction and selection to classify
encrypted traffic. This approach learns the spatial features of
network traffic and proposes a session-based traffic classifi-
cation. Cui et al. proposed a method for session-based traffic
classification that utilizes a deep neural network to learn the
spatial features of network traffic [58]. This study introduces
a novel approach for classifying encrypted network traffic
using CapsNet and session packets. The SPCaps technique
is applied to reduce the weight of interference traffic and
increase theweight of valuable traffic. CapsNet is then used to
learn the spatial features of the encrypted traffic [58]. Accord-
ing to [59], Flowpic is a new method for classifying internet
traffic that uses all time- and size-related information in a net-
work flow instead of manually extracting features. Flowpic
proposed a unique approach for identifying and classifying
encrypted internet traffic and applications by transforming
essential flow data into an intuitive image. The flow category
is then determined using a CNNmodel based on the obtained
images. Zeng et al. proposed TEST, a lightweight approach
for traffic classification that extracts temporal and spatial
features to classify encrypted traffic using a combination of
CNN and LSTM networks. TEST employs a three-layer hier-
archical framework to improve classification accuracy [60].
Wang et al. utilized 1D-CNN to classify malicious traffic.
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This method presented an end-to-end system for classifying
malicious traffic using a 1D-CNN network. It automatically
extracts and selects features for classification purposes. The
raw traffic is divided into session and flow levels and con-
verted into a set of images before being classified by a
1D-CNN network [61]. Lotfollahi et al. proposed the classi-
fication of encrypted traffic using a combination of CNN and
StackedAutoEncoder (SAE). The proposedmodels in [8] aim
to characterize traffic and identify applications. It generates a
feature vector based on raw traffic and feeds it into SAE and
1D-CNN networks. The 1D-CNN model outperformed the
SAE model based on the results [8]. In [62], a model called
CLD-NET was introduced to detect unknown VPN network
traffic flow accurately. This technique extracts features for
classifying encrypted traffic by integrating packet payload
and packet interval features. CNN and LSTM models were
utilized to learn traffic statistical and sequence features. Bei
et al. proposed a hybrid CNN-LSTM approach that extracts
a session’s temporal and spatial features using LSTM and
CNN, respectively [63]. The features are merged and fed
into a fully connected network for classification. ICLSTM
resolves the data imbalance issue by assigning weights to var-
ious categories to enhance the data’s symmetry [63]. In [64],
a distinct feature called Sequential Message Characterization
(SMC) is constructed from all flows associatedwith a specific
application. Encrypted traffic is classified utilizing an LSTM
and a multi-classifier. A Long Short-Term Memory (LSTM)
neural network is established to learn features for classifica-
tion.Message size sequences are fed into the LSTM, and deep
LSTMmodels assign probability profiles to traffic types [64].
FlowGAN is a GAN-based method for classifying encrypted
traffic that addresses the problem of data imbalance [65].
FlowGAN employs a GAN network to generate synthetic
traffic samples for classes with a small number of samples
and an MLP network to evaluate the effectiveness of traffic
classification. FlowGAN utilizes a fully connected model to
train the generator and discriminator of the GAN model. Pan
et al. introduced the PacketCGAN approach, which uses a
conditional GAN named CGAN to produce traffic data to
address imbalanced classes [66]. PacketCGAN combines the
synthetic data generated by the generator with the original
data to create a new traffic dataset that maintains the balance
between the major and minor classes in the dataset. A CNN-
based semi-supervised method called DCGAN is introduced
in [67]. Thismethod employs a CNNnetwork as the generator
and discriminator to mitigate the impact of data imbalance on
specific classes. In this study, the DCGAN model uses net-
work packet time-series features, such as inter-arrival time,
packet length, and packet direction, as input features. Table 1
provides an overview of the four reviewed approaches, while
Table 2 summarizes the deep learning methods based on the
proposed methodology, the dataset utilized, and the accuracy
achieved.

The methods reviewed in this section have not comprehen-
sively used all traffic features. Classifying encrypted traffic
based only on spatial, temporal, or statistical features may not

TABLE 1. Overview of traffic classification.

TABLE 2. Overview of deep learning traffic classification approaches.

capture the complex patterns and characteristics of various
types of traffic. Due to the lack of feature diversity, it is
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difficult to distinguish between similar types of traffic. Deter-
mining similar traffic types can be challenging due to limited
feature diversity. The accuracy and effectiveness of encrypted
traffic classification can be impeded by several limitations
when classification is based only on spatial, temporal, or sta-
tistical features. By considering combined features and using
various deep learning classification techniques, it is possible
to improve the accuracy and effectiveness of encrypted traffic
classification.

III. BACKGROUND ON DEEP NEURAL NETWORKS
Neural networks (NNs) are computational systems com-
prising numerous interconnected processing elements [68].
Typically, these networks consist of multiple building blocks
known as neurons, which are connected through a series of
links, each having its own weight [69]. Many data samples
are utilized to train the neural network to produce the desired
output during the learning process. Deep neural networks
are a specific variant of neural networks with many hidden
layers. Deep neural network learning platforms have gained
popularity and attracted researchers’ attention from diverse
fields due to significant advances in computing power and the
widespread availability of graphics processing units (GPUs)
and tensor processing units (TPUs) [70], [71]. In the follow-
ing sections, we will discuss the four deep neural network
models, namely SAE, CNN, Bi-LSTM, and GAN, employed
in our proposed method for encrypted traffic classification.

A. STACKED AUTOENCODER
AutoEncoders (AE) are unsupervised learning techniques
that employ a feedforward neural network to reduce the
dimensionality of input or extract features. This model aims
to reconstruct the input data at the output with the least
amount of reconstruction error possible between the input
and output data [68], [72]. An autoencoder is composed of
two parts: an encoder and a decoder. The encoder maps
the input data to a lower-dimensional code, and the decoder
transforms the lower-dimensional code back to the original
data. Consider a learning dataset where xjϵRn. The objective
of the autoencoder is defined as yj = xj for j = {1, 2, 3,
. . . , m}. Autoencoder tries to learn an objective function such
that Fw, b(x) ≈ x where w represents the set of weights of
the whole neural network, and b represents the biases vector.
Equation (1) illustrates the generic form of the autoencoder
error function, which aims to minimize the L error.

L(W , b) = min||x − Fw, b(x)||2 (1)

Three layers compose the autoencoder architecture: the input,
hidden, and output layers. The hidden layer has considerably
smaller dimensions than the input layer, and the output of
the hidden layer, referred to as code, can be employed as a
set of discriminative features for encrypted traffic classifi-
cation tasks. The SAE architecture is proposed in order to
improve performance and results [73]. This is accomplished
by stacking many AEs into hidden layers, with one AE’s

FIGURE 1. The autoencoder architecture.

output connected to the successive AE’s input. Fig. 1 shows
an AE with input, output, and a hidden layer.

B. CONVOLUTIONAL NEURAL NETWORK
Convolution neural networks (CNN) are essential deep neural
networks that automatically extract input data features using
the convolution operation [69], [72]. The convolution layer
is the most significant component in a CNN network, as it
receives an input of a square building block X of size N ∗ N
and a convolution kernel W of size m ∗ m. The convolution
operation produces an output layer Z of size (N-m + 1) ∗

(N-m + 1). Equation 2 shows the function for computing Z,
where f is a nonlinear activation function such as a rectified
linear activation unit (ReLU) or a Leaky ReLU applied to
the convolution output to learn more complex features of the
input data.

Zij =f (
∑m−1

k=0

∑m−1

l=0
WklX(i+k)(j+l)) (2)

The pooling layer, an essential block of CNN, is crucial in
reducing output size and computational complexity, typically
through max pooling or average pooling. CNNs have been
used in various applications, including image processing,
machine vision, and natural language processing [69]. Due to
the sequential nature of network traffic, the 1D-CNN model
was employed to classify encrypted network traffic. Wang et
al. also demonstrated the superiority of the 1D-CNN model
over the 2D-CNN model for classifying encrypted traffic in
an experiment [57]. Using 1D-CNN, distinguishing features
can be extracted for each traffic class and application based
on spatial dependencies between adjacent bytes in network
packets.

C. ATTENTION Bi-LSTM
As network traffic is a continuous stream of sequential data
in packet bytes, deep neural networks, like LSTM and Bi-
LSTM, have been proposed to extract temporal features
between network packets [74]. As a particular type of RNN,
LSTM networks address gradient vanishing and gradient
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FIGURE 2. The LSTM cell structure.

explosion as the two significant limitations of RNNs. Com-
pared to RNNs, LSTM networks are much more efficient in
identifying long-term dependencies within sequential data,
making them the optimal option for extracting temporal fea-
tures from network traffic data [72]. The LSTM structure
consists of three gates: forget, input, and output, which are
discussed below. Fig. 2 shows the fundamental components
of an LSTM cell.

A forget gate controls the amount of information that
should be discarded or retained. In a forget gate, data from the
previous hidden state and the current input are passed through
a sigmoid function, which generates a value between zero and
one. As the value approaches zero, it is more likely to forget;
as the value approaches 1, it is more likely to remember.
Equation 3 calculates the forget vector, where Wf and bf are
the parameters of the forget gates, xt is the input vector in step
t, and ht−1 is the hidden state vector in step t − 1.

ft = σ
(
Wf . [ht−1, xt ] + bf

)
(3)

The input gate acts as a value evaluator for data added to
long-term memory as new information. This gate controls
the amount of xt input data added to Ct . In other words,
it determines which data should be retained or forgotten for
the cell state. The closer the input vector values are to one, the
more data is kept in long-term memory; the closer the values
are to zero, the more data is ignored. Equation 4 calculates the
input vector, whereWi and bi are the input gate parameters.

it = σ (Wi. [ht−1, xt ] + bi) (4)

After calculating the input gate, the forgot gate vector ft is
multiplied by Ct−1 (the previous step’s cell state vector);
then, the input gate vector is multiplied using C̃t pointwise
multiplication, where C̃t represents the information contained
in the hidden layer vector. Equation (5)-(6) gives the cell
state Ct .

C̃t = tanh (WC . [ht−1, xt ]+bC ) (5)

Ct = ft ∗ Ct−1 + it ∗ C̃t (6)

FIGURE 3. The GAN structure.

The output gate in LSTM determines how much long-term
memory should be transferred to the output. Equation (7)-(8)
states how to calculate ht , where Wo and bo are the output
gate parameters.

ot = σ (Wo. [ht−1, xt ] + bo) (7)

ht = ot ∗ tanh (Ct) (8)

Bi-LSTM networks are a variant of sequential processing
models that consist of two LSTMs [75]. While one LSTM’s
input is in the forward direction, the other LSTM’s is in the
reverse direction. LSTM networks were developed to address
long-term dependency. Because of its structure, LSTMs can
memorize information over time and learn distant informa-
tion exceptionally well. This study uses the Bi-LSTM model
because of its higher prediction accuracy than the LSTM. The
attention mechanism focuses on the information produced by
the hidden layers of Bi-LSTM. Attention is a neural network
mechanism that mimics cognitive attention by enhancing
some input parts while disregarding others.

D. GAN ARCHITECTURE
In recent years, generative adversarial networks (GANs) have
attracted attention as a form of deep learning. GANs consist
of two primary neural network components: A Generator
G(x) and a Discriminator D(x). The two components engage
in an adversarial game against each other [26], [27]. The
generator is a neural network that produces fake data to train
the discriminator. The generator generates a sample using
a random-length noise vector [76]. The generator’s primary
objective is to make realistic and sufficiently similar samples
to the original. The discriminator is a neural network that
distinguishes between real and fake data produced by the
generator. The discriminator trains with data derived from
two distinct sources. Real data samples are used as positive
samples during the training process, while the generator’s
fake samples serve as negative samples. The generator, G,
must transmit its generated output samples to the discrimina-
tor, D, for training. The discriminator distinguishes between
authentic samples from the dataset and synthetic samples cre-
ated by the generator. Simultaneously, the generator attempts
to generate more realistic samples that could deceive D. The
generator aims to minimize the discriminator’s output while
the discriminator strives to maximize it. Both components
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FIGURE 4. The architecture diagram of CBS’s proposed method.

engage in a competitive maximum-minimum game, which
forms the fundamental basis for the adversarial nature of
GAN. Fig. 3 depicts the structure of a GAN network and its
two essential components.

IV. THE PROPOSED METHOD
This paper introduces a novel platform called CBS, as shown
in Fig. 4. CBS consists of three components: traffic pre-
processing, feature extraction, and classification. The traffic
classification component uses deep learning models like 1D-
CNN, Bi-LSTM, and SAE to classify traffic at application
identification and characterization levels. The dataset’s tem-
poral, spatial, and statistical features are analyzed to identify
packet dependency. Raw traffic is preprocessed based on
session, which provides more information than flow-based
separation, as shown in Fig. 5. A 1500-byte vector is pro-
duced after removing the MAC address, anonymizing the IP
address, and normalizing the packet byte length. Twenty-five
session-dependent statistical features are extracted from the
traffic session. These 25 features are used as input to the SAE
network.

Due to the original traffic format’s hierarchical structure,
1D-CNN is chosen to extract the high-order spatial features
of network sessions. Network packets are bytes transmitted
through network channels, containing various forms of data
such as headers, payloads, and control information. Through
the dependency between adjacent bytes, a 1D-CNN can
detect and extract meaningful patterns from a byte sequence:
structures, characteristics, or behaviors relevant to a specific
sequence. By analyzing these dependencies among contigu-
ous bytes in packet data, 1D-CNNs can distinguish local
relationships within packets. 1D-CNNs operate through con-
volution filters on input data, which are small weight matrices
applied to a sliding input data window. Designing convolution
filters with varying widths and depths allows capturing pat-
terns of byte positions within packets. 1D-CNN can identify
patterns at various levels of granularity, which are challenging
to detect using conventional machine learning or rule-based
methodologies. 1D-CNN can detect all packets with a TCP
header with a specific sequence number, which is valuable
for identifying all packets associated with a particular TCP
connection. Further, 1D-CNN can recognize all packets asso-
ciated with a specific application or service and all packets
containing particular data types. For example, the follow-
ing patterns could be learned from network packets by a
1D-CNN:

• TCP headers always begin with the same sequence of
bytes.

• The payload always follows TCP headers.
• A TCP packet’s sequence number is always more signif-
icant than the previous packet’s sequence number.

• A TCP packet’s acknowledgment number equals the
next packet’s sequence number.

Once 1D-CNN learns these patterns, it can recognize similar
patterns in other sequences, as illustrated in Fig. 6. This infor-
mation can classify packets or identify traffic flow patterns.

Bi-LSTM is a sequence processing model that ana-
lyzes network behavioral data and enhances the information
available to the CBS model. It can extract temporal fea-
tures from traffic sessions and predict application classes.
Bi-LSTM is suitable for handling time series data, addressing
dependency issues, and improving classification accuracy.
Different packet classes, like chat and voice, have differ-
ent inter-arrival time stamps. An attention-based mechanism
assigns more weight to certain parts of the packet data while
decreasing others. As illustrated in Fig. 6, Bi-LSTM is the
primary model for learning the temporal characteristics of
network traffic during traffic sessions. Bi-LSTM incorpo-
rates an attention mechanism to enhance long-term memory
functions.

This study examines the unique characteristics of specific
application classes based on session-level statistical features
in network traffic. Network traffic is classified based on sta-
tistical features such as mean, standard deviation, minimum
andmaximum values, packet lengths, inter-arrival times, TCP
flag counts, flow durations, and number of packets. Table 3
presents a list of statistical features employed in the SAE
model. The proposed method assumes that each application’s
network layer traffic has unique statistical characteristics.
In this paper, coding characteristics are used to extract fea-
tures using SAE, which determines the application type but
not the client type. Autoencoders are employed for dimen-
sionality reduction and feature extraction. An autoencoder
may not reduce the dimensionality of the input features due
to complex relationships between the features in the dataset.
Therefore, multiple autoencoders are employed to construct
a stacked autoencoder. As illustrated in Fig. 6, the SAE
network was employed to determine the relationships among
the statistical features extracted from the session. Manag-
ing multiple developed applications presents challenges in
network management, including acquiring sufficient training
samples within a limited timeframe. Traffic samples suffer
from class imbalances due to the varying popularity of dif-
ferent applications, leading to misclassification problems and
performance decline. Deep learning-based algorithms can
automatically extract traffic features but require massive data
to learn traffic categories. To address this issue, CBS uses
the GAN model to augment traffic data and generate targeted
traffic, as shown in Fig. 5. Imbalanced datasets negatively
impact deep learning models. Classes with more samples
have higher accuracy, while minority classes have lower
accuracy. The CBS platform deploys a GAN model before
learning to mitigate the impact of data imbalance. This model
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FIGURE 5. The architecture diagram of preprocessing step in the CBS
model.

synthesizes samples like the original samples for classes with
fewer samples (minority classes).

The 1D-CNN model is designed for extracting spatial
features from packet bytes. Although it can improve traffic
classification accuracy, it cannot extract statistical and tempo-
ral features among packets within a work session. In contrast,
Bi-LSTM models can extract only temporal features from
network traffic packets and cannot extract statistical or spatial
features. Combining these three features is crucial for creat-
ing a comprehensive set of features for traffic classification.
CBS’s primary strength lies in integrating these features to
accurately distinguish and classify network traffic packets.
The traffic classification process combines extracted features
to create a comprehensive set of features. As illustrated in
Fig. 6 these features are fed into a fully connected network for
traffic classification. Due to their structure-invariant nature,
fully connected networks can classify traffic without requir-
ing knowledge of the network structure. The softmax function
converts a vector of N real numbers into a probability distri-
bution of N possible classes. Figs 7 to 9 show the architectures
of 1D-CNN,Attention Bi-LSTM, SAE,GAN, and FCmodels
used in CBS. More details about datasets and traffic data
preprocessing are provided in the following sections.

A. DATASET
This study evaluates the efficacy of the proposed methodol-
ogy by utilizing the ‘‘ISCX VPN-Non VPN 2016’’ dataset.
This dataset includes traffic from encrypted and unen-
crypted applications and provides two data levels for traffic
classification. The first level involves identifying the type

TABLE 3. List of the statistical features used in the SAE model of CBS.

of application, such as Facebook or Skype. The second
level involves identifying the protocol type, such as chat
or email. Applications’ traffic is divided into PCAP file
formats and categorized by the application that generated
it [49]. The ISCX VPN-Non VPN 2016 dataset comprises
six classes of encrypted traffic and six classes of unen-
crypted traffic. Table 4 displays the various types of traffic
and application-labeled content in the ISCX VPN-Non VPN
2016 dataset.

B. DATA PREPROCESSING
Data preprocessing is crucial for a deep learning model to
interpret input packets effectively, as shown in Fig. 10. Pre-
processing raw data traffic at both packet and session levels
provides a comprehensive understanding of network traffic.
Packet-level preprocessing is essential for feature extraction
from individual packets, providing granular insights into spe-
cific patterns. Preprocessing at the session level is crucial for
extracting session-specific features because encrypted traffic
conceals its content at the packet level, making packet-level
analysis challenging. Both preprocessing approaches enable
a better understanding of network traffic, allowing more
accurate traffic classification and valuable insights into net-
work behavior. Preprocessing data at both levels enables the
extraction of a broader spectrum of features and the detection
of more complex traffic patterns. This contributes to more
precise and reliable traffic classification results. As outlined
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FIGURE 6. The architecture diagram of the feature extraction and classification step in the CBS model.

TABLE 4. Classes of ISCX VPN-Non VPN 2016 dataset.

below, packet and session-level preprocessing involve five
and three steps. The steps performed in the packet-level pre-
processing phase are as follows:

(1) Non-Usable Packet Removal: Real-world datasets
may contain packets that do not provide helpful informa-
tion for deep learning. At the packet level, packets lacking

valuable information are eliminated to ensure effective traffic
classification. For instance, TCP connection segments with
SYN, ACK, or FIN flag sets are excluded, as they don’t
provide valuable application information.Moreover, TLS and
DNS key exchange segments that are not useful for identify-
ing applications or classifying traffic should be removed.
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FIGURE 7. The architecture diagram of the 1D-CNN, the attention Bi-LSTM, and the SAE models for feature extraction in the CBS model.
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FIGURE 8. The architecture diagram of the GAN model for data imbalance in the CBS model.
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FIGURE 9. The architecture diagram of the FC model for traffic classification in the CBS model.
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(2) Data Link Header Removal: Data link layer headers,
which include MAC addresses, do not provide any relevant
information for traffic classification. Therefore, this informa-
tion is eliminated from the packet.

(3) IP Header Anonymization: In a DNN network, pack-
ets may be classified based on IP addresses, so packet IP
headers must be anonymized through masking to prevent
overfitting. Anonymization ensures that the DNN network
does not classify traffic based on irrelevant features.

(4) Normalization and Unifying: In data normalization,
each byte is converted into an individual number and fed
into a Deep Neural Network (DNN). Unification converts
data into a common representation for encrypted traffic,
facilitating the design and implementation of deep learning
algorithms for traffic classification. Data scaling helps to
reduce overfitting and improves generalization performance,
making algorithms more effective on unseen data. Data nor-
malization can be achieved by transforming data into a range
of values, such as [0-1]. Scaling packets from [0-255] to [0-
1] will ensure equal impact on the learning model, optimizing
performance. This prevents one byte from disproportionately
affecting the model. For example, a packet containing bytes
[214, 76, 87, 95] would assign a higher weight to the first
byte (214) due to its greater value. When scaled to [0-1], the
packet would have [0.839, 0.298, 0.341, 0.372], resulting in
all three bytes affecting the learning model equally, ensuring
optimal performance.

(5) Truncating – Zero Padding: A DNN cannot calculate
gradient descent efficiently if the input data does not follow a
fixed size, making it difficult or impossible to compute. This
ensures consistency in the network architecture and batch
data processing. However, network traffic and packet-level
data pose significant challenges when dealing with variable
data lengths, making input of such data directly into the
DNN impractical. Data truncation and zero-padding are tech-
niques used to achieve fixed-size inputs for DNN networks.
Data truncation reduces packet lengths to a fixed size, while
zero-padding is usedwhen the original length falls short of the
desired size. Zero padding ensures uniform inputs for packets
of varying lengths, facilitating compatibility with the DNN
architecture.

In Fig. 11, the raw input data to the figure’s left exceeds
the desired input size, so truncation is required. In contrast,
the raw input data on the right side of Fig. 11 must exceed the
expected input size, necessitating zero padding. Packet length
statistics were analyzed to determine the ideal fixed trunca-
tion length. Studies indicate that most packets carry a payload
of no more than 1500 bytes, also known as Maximum Trans-
mission Units (MTU) [8]. As an example of packet length
analysis, the Skype audio1a.pcap file was used. As shown
in Fig. 12, the probability mass function is displayed for
packet lengths ranging from 0 to 1500 bytes. The packet
length distribution function was derived for all PCAP files,
and the aggregate length distribution function is depicted
in Fig. 13. DNN networks are fed 1500 bytes of normal-
ized data as input vectors following steps 1-4. Preprocessing

traffic packets at the session level involves the following
steps:

(1) Split Session: A flow is a sequence of packets with
the same source, destination, port, and protocol, whereas a
session allows IP addresses to be exchanged between both
directions. PCAPfiles are divided into sessions since sessions
provide a better classification of traffic and statistical features
than flows.

(2) Extract Session Features: This step extracts statistical
features from raw traffic to differentiate traffic types and
applications. Statistical features like packet count, session
duration, and maximum payload size are included in these
features. Table 3 provides a summary of the statistical features
used in this paper.

3) Convert to Vector: Using the Min-Max method, the
collected data falls within the range of [0, 1] based on a
session’s statistical features. The output of a SAE network
is converted to feature vectors.

Fig. 14 shows an example of packet preprocessing.
As shown in Fig. 14, a packet is converted to a vector of
length 1∗1500 after preprocessing steps. Preprocessed pack-
ets are vectors of numbers, where each number represents a
packet feature. Preprocessed packets are then fed into a deep-
learning model. Raw session data is preprocessed to extract
relevant features before feeding the preprocessed features to
the deep learning model for classification. Fig. 15 shows an
example of session preprocessing. In Fig. 15, a single

session is converted to vectors of length 1∗25 after prepro-
cessing.

V. EXPERIMENT
This section demonstrates the experimental setup, evaluation
metrics, experiment types, proposed model parameters, and
hyperparameters used in the proposed method.

A. EXPERIMENTAL SETUP
This paper implements the proposed model using the Keras
library, with TensorFlow as its backend engine. The specific
software and hardware employed for implementing themodel
are summarized in Table 5 as environment parameters.

B. EVALUATION METRICS
This paper employed four performance metrics to evalu-
ate the experimental results: accuracy (Acc), precision (Pr),
recall (Re), and F1 score (F1). The definitions of these met-
rics are provided below. (1) True positives (TP) refer to the
number of instances that belong to a class and are predicted
to belong to the same class by the model; (2) False positives
(FP) denote the number of instances that do not belong to
a class but are predicted to belong to the same class by
the model; (3) True negatives (TN) indicate the number of
instances that do not belong to a class and are predicted not
to belong to that class by the model, and (4) False negatives
(FN) represent the number of instances that do belong to a
class but are misclassified by the model to belong to other
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FIGURE 10. The network traffic preprocessing diagram.

FIGURE 11. An example of truncation and zero padding.

classes. Consequently, the four aforementioned evaluation
metrics can be defined as follows.

• Accuracy (Acc) =
TP+TN

TP+TN+FP+FN
• Recall (Re) =

TP
TP+FN

• Precision (Pr) =
TP

TP+FP
• F1 Score =

2∗Pr∗Re
Pr+Re

C. EXPERIMENT TYPE CONFIGURATION
The performance of the proposed model was evaluated
through four experimental scenarios. The first experi-
ment aimed to classify encapsulation protocols commonly
employed to distinguish between VPN and Non-VPN traffic.
The second and third experiments focus on traffic classi-
fication for six classes in both encrypted and unencrypted
modes, respectively. The fourth experiment addressed a

FIGURE 12. The packet length distribution of skype_audio1a.pcap.

FIGURE 13. The packet length distribution of all files of the dataset.

FIGURE 14. An example of packet preprocessing.

twelve-category classification problem that classified regular
and encrypted traffic. Table 6 summarizes the experiments
mentioned above.

D. EXPERIMENT HYPERPARAMETERS OF THE PROPOSED
METHOD
In deep learning, a hyperparameter is a parameter set before
the learning process and is distinct from other model param-
eters specified during the learning process. Our model’s
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FIGURE 15. An example of session preprocessing.

TABLE 5. The experiment setup.

hyperparameters include the learning rate, loss function, and
optimizer function. We utilized the dropout operator to pre-
vent overfitting in deep neural network models. The dropout
probability value during the learning process was set to 0.4.
The initial learning rate value is a crucial factor that affects the
model’s performance. A low value results in a long training
time and overfitting, while a high value leads to a fast training
time but underfitting. For all our experiments, we set the
initial value of this parameter to 0.001. The batch size, epoch,
optimizer, and loss function were respectively set to 256,
50, Adam, categorical cross-entropy. The batch normalization
technique employed in CBS involves normalizing the data
so that the data points are adjusted to have a mean value of
zero and a standard deviation of one. The ReLU activation
function was applied in all CBS model layers. Table 7 sum-
marizes the hyperparameters used in this study. We divided
the dataset into two parts for each experiment, with 80% of
the data used for training and 20% for evaluating the proposed
model.We employed the ten-fold cross-validation method for
validation, with nine parts for learning and one for testing.

E. MAIN PARAMETERS OF THE PROPOSED MODEL
Our proposed method employs five deep neural network
models: the 1D-CNN network, the attention-based Bi-LSTM
network, the SAE network, the FC, and the GAN. The struc-
tures of these networks and their primary parameters are

TABLE 6. The description of experiments scenario.

TABLE 7. The values of hyperparameters in the CBS model.

presented in Table 8. The sequential nature of data packets
in network traffic flow necessitates using a 1D-CNN net-
work, which outperforms a 2D-CNN network [57], [78]. The
1D-CNN and Bi-LSTM networks have 1500 input features,
while the SAE network has only 25. 1D-CNN is used in
the construction of the generator and discriminator of GAN.
The SAE network’s latent layer yields ten extracted statisti-
cal features combined with 1D-CNN and Bi-LSTM network
features. Finally, 1300 features are extracted from the three
models and fed into a fully connected network to classify the
encrypted traffic type and identify the application. There are
12 traffic types and 17 applications in total.

VI. EXPERIMENT RESULTS ANALYSIS
This section presents the results of several experiments con-
ducted to assess the effectiveness of the proposed model. The
system’s performance is compared to other methods using the
evaluation metrics outlined in section V.

A. THE CBS VALIDATION
We individually assessed each model’s efficacy for traffic
classification to highlight the advantages of fusing themodels
depicted in Fig. 5 and Fig. 6. Nevertheless, the experiments
to evaluate the models’ effectiveness showed that they can-
not accurately classify encrypted traffic individually. Table 9
presents the results of these experiments conducted on the
dataset evaluated by each model. The input data length
required for attention-based Bi-LSTM and 1D-CNN mod-
els is 1500. In contrast, the SAE model feeds statistical
features extracted from traffic files and sessions into the
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TABLE 8. The main parameters of the CBS model.

encoder-decoder network. Each model extracts the features
and employs them as input for a DNN network and a softmax
function to classify traffic. Table 9 summarizes the results
of Experiments 2 and 3 conducted on the models included
in the proposed architecture. However, these models could
not accurately classify traffic based on the evaluation metrics
described in Section V.

Separated models can only extract specific temporal, spa-
tial, and statistical features. Utilizing only a subset of these
features may result in inadequate traffic classification. How-
ever, the efficiency of the proposed approach is demonstrated
by evaluating how integrating these models impacts the
results. Table 10 illustrates the effect of integrating themodels
employed in the proposed approach. As depicted in Table 10,
combining these models improves efficiency by simulta-
neously utilizing temporal, spatial, and statistical features.

Combining features has led to more effective traffic classi-
fication. Table 10 shows Experiment 4 results for integrating
spatial, temporal, and statistical features, which merge VPN
and Non-VPN modes.

B. APPLICATION IDENTIFICATION AND TRAFFIC
CHARACTERIZATION RESULTS
Table 11 shows CBS’ performance results. The results show
that each experiment’s accuracy, precision, recall, and F1
score are higher than 99.21%. The results indicate that our
model can extract essential and practical features for traffic
and application classification and demonstrate the effective-
ness of the proposed model. As shown in Table 11, the
two-category classes have accuracy, precision, and recall
higher than 99.67%, with an F1 score higher than the six-
and twelve-category classes. The F1 score for classifying
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TABLE 9. The performance of the separated models in the CBS platform.

TABLE 10. The performance of the combined models in the CBS platform.

traffic into six-class categories for regular and encrypted
traffic and 12-class traffic is 99.38%, 99.42%, and 99.3%,
respectively.

Furthermore, accuracy, precision, and recall values for
scenarios 2 through 4 demonstrate the model’s effective-
ness. As shown in Table 11, the weighted average of the
F1 score is higher than 99.29%, indicating that our model
extracts distinctive features from each class and performs
efficiently. Table 12 is related to scenario 4 of the experiment,
demonstrating that the proposed model excels at traffic clas-
sification. Table 12 displays CBS’s traffic characterization
performance as a weighted average. Additionally, as shown in
Table 13, CBS can accurately identify the type of application.
Despite the imbalance in the dataset, for example, email
and chat classes have fewer instances than other types of
traffic, CBS still performs well in categories with limited
sample sizes thanks to SAE’s ability to extract statistical fea-
tures. The GAN model balances minority classes, enhancing
the model’s performance. Table 14 displays the accuracy,
precision, recall, and F1 score values for the two-class clas-
sification scenario in Experiment 1, revealing that the CBS
model achieved a high score for all metrics. Table 15 shows
the accuracy, precision, recall, and F1 score values for Exper-
iments 2 and 3.

C. MODEL COMPARISON FOR TRAFFIC
CHARACTERIZATION RESULTS
This section compares the results obtained from the pro-
posed model with those from other research. The com-
parison uses several metrics: recall, accuracy, precision,
and the F1 score. However, since the studies presented in
this section may not encompass all the experiments dis-
cussed in section V-C, some specific comparisons may only
reflect some metrics. The effectiveness of the proposed
model is compared with state-of-the-art approaches such as
CSCNN [79], ICLSTM [63], C4.5 [49], and Deep Packet [8].

Table 16 presents the protocol-encapsulated traffic sce-
nario’s accuracy, recall, and F1 score metrics with two
categories. The results indicate that the proposed model out-
performs some of the compared approaches. According to
Table 16, the CBS model performs better in precision, recall,
and F1metrics for Non-VPN traffic than the C4.5model, with
improvements of 9.16%, 10.87%, and 10.03%, respectively,
confirming its superior efficiency. Similarly, in VPN traffic
mode, these metrics demonstrate enhancements of 10.74% in
precision, 7.69% in recall, and 9.22% in F1 score compared
to C4.5. Table 17 displays a comparison of the CBS model’s
accuracy with 1D-CNN [57], ICLSTM [63], CSCNN [79],
and attention-based LSTM (HAN) [78]. As reported in
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TABLE 11. The performance of the CBS model in four experimental
scenarios.

TABLE 12. Traffic characterization results of the CBS model in
Experiment 4.

Table 17, the proposed model accurately differentiates VPN
traffic from Non-VPN traffic. The results indicate that the
model presented in this paper is more precise than some state-
of-the-art compared methods. The accuracy reported by [63]
is 100%. In this work, overfitting may occur when the model
learns the training data too well and cannot generalize to new
data.

Consequently, the training data can be perfect, but the
test data can be poor. In Table 16, 1D-CNN achieved 100%
precision in the Non-VPN mode and 100% recall in the
VPN mode. In Table 17, 1D-CNN [57] achieved 100%
accuracy.

One possible explanation is overfitting, which occurs when
a model learns the training data too well and cannot gener-
alize to new data. Furthermore, the model may have been
overfitted due to a lack of regularization techniques. After
reviewing the evaluation metrics of all the compared models,
it is evident that all two-class categories are relatively similar.
Since there were only a few classes in the two-category
classification scenario, all models could correctly identify

TABLE 13. Application identification of the CBS model (Experiment 4).

the distinguishing features between the two classes and per-
formed similarly in evaluation metrics.

As shown in Table 18, the proposed CBS model compares
with other models regarding precision, recall, and F1 score
for both VPNs and Non-VPNs. In all of the tables in this
paper, NaN stands for Not a Number, meaning the value
of the compared metrics has yet to be stated. Experiments
2 and 3 of the proposed model correspond to regular and
encrypted VPN traffic classification. In Experiment 2, the
CBS model achieved precision, recall, and F1 score metrics
of 99.4%, 99.32%, and 99.38%, respectively. In Experi-
ment 3, these metrics values were 99.47%, 99.37%, and
99.42%, respectively. The high precision achieved by the
CBS model indicates the effectiveness and superior perfor-
mance of the proposed model in comparison to attention-
based LSTM [78], 1D-CNN [57], ICLSTM [63], and C4.5
[49] studies.

Experiments 2 and 3 demonstrate that CBS outperformed
1D-CNN [57], HAN [78], C4.5 [49], and ICLSTM [63].
In Experiment 2, CBS showed a 13.94% increase in precision
and a 13.52% increase in recall compared to 1D-CNN [57].
CBS also improved precision by 10.44% and recall by
13.82% compared to C4.5 [49]. Furthermore, in Experiment
3, the precision and recall of the proposed CBS model were
higher by 4.58% and 2.07% compared to 1D-CNN [57]
and by 15.47% and 11.77% compared to C4.5 [49]. Also,
in Experiment 2, the proposed model improved the F1 score
metric by 12.17% over C4.5 [49] and 13.73% over 1D-
CNN [57].

Unlike the machine-learning method utilized by C4.5
[49], CBS automatically extracts features, which explains
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TABLE 14. Protocol encapsulated traffic identification (Experiment 1).

why CBS outperforms the machine-learning method. Using
human-crafted features in C4.5 results in traffic classification
with low precision. On the other hand, 1D-CNN [57] employs
spatial feature, which considers the relationship between
packet bytes while disregarding the temporal features of the
flow packet. Because the model does not incorporate statis-
tical features to compensate for packet data trimmings, the
1D-CNN [57] model performs poorly in the six and 12-class
categories. As shown in Table 18, in Experiment 2, the CBS
model achieved higher accuracy than 1D-CNN [57] and C4.5
[49] by 17.65% and 10.45%, respectively. In Experiment 3,
the proposed model outperforms ICLSTM [63]. According
to Table 18, CBS accuracy in Experiment 3 is 12.38% better
than C4.5 [49]. Similarly, the proposed CBS model achieves
14.35% and 6.48% accuracy improvements over HAN [78]
in Experiments 2 and 3, respectively. Moreover, compared to
ICLSTM [63], the proposed framework improves accuracy in
Experiments 2 and 3.

The ICLSTM [63] model ignores essential statistical fea-
tures in traffic classification. ICLSTM [63] utilizes the LSTM
module to extract time-dependent packet features. However,
Bi-LSTMmodeling produces more accurate predictions than
LSTM-based models. As a result, incorporating an attention
layer into Bi-LSTM can improve the model performance and
help make precise packet sequence predictions. The attention
mechanism is more sensitive to packet bytes, significantly
impacting traffic classification. In other words, the attention
Bi-LSTM assigns a higher weight to the portion of the packet
utilized to classify traffic flow. The CBS model outperforms
ICLSTM because CBS incorporates the statistics feature
and employs a Bi-LSTM attention model instead of LSTM.
In [78], two models are used: Bi-LSTM and attention-based
Bi-LSTM. This model classifies traffic exclusively based on
the temporal relationship between packets. The models pro-
posed in [78] do not consider the spatial relationship between
packet bytes and session statistical features. Consequently,
it has a lower performance than the CBS model. As shown in
Table 19, the state-of-the-art compared models and the model
proposed in this study achieved similar precision, recall, and
F1 scores in Experiment 4. Since most papers on encrypted
traffic classification rely on Experiment 4 for comparisons,
this section compares the proposed CBS model with a more
comprehensive list of existing methods.

In Experiment 4, a 12-category traffic classification exper-
iment, our proposed approach achieved a performance of
99.38%, 99.22%, and 99.3% based on precision, recall, and
F1 score metrics, respectively. By comparing the precision,
recall, and F1 score metrics in Table 19, it is evident that the
proposed model improves the performance of 1D-CNN [57]

for Non-VPN classes by 13.45%, 13.21%, and 13.36%,
respectively.

As depicted in Table 19, the CBS model outperforms 1D-
CNN [57] in precision, recall, and F1 score metrics by 7.5%,

4.21%, and 5.94%, respectively, in VPN mode. Compared
to the models proposed in [80] and [81], the CBS model
performed exceptionally well. Compared to the C4.5 model
in VPN mode, the proposed CBS model improves preci-
sion, recall, and F1 score metrics by 21.3%, 18.11%, and
19.79%, respectively. CBS improves F1 score, precision, and
recall by 14.95%, 19.81%, and 17.49% in Non-VPN mode,
compared to C4.5. The CBS model also improves the SAE
model’s precision, recall, and F1 metrics presented in the
Deep Packet [8] by 12.56%, 10.31%, and 11.52% for Non-
VPN classes, respectively. Additionally, the proposed CBS
model outperformed the CNN model in the Deep Packet [8]
by 10.45%, 10.31%, and 10.41% for each precision, recall,
and F1 score metric in Non-VPN mode, respectively.

As shown in Table 19, we have achieved superior results
by comparing our proposed method for classifying encrypted
traffic with the methods presented in Experiment 4. Table 20
compares the CBS model’s accuracy with state-of-the-art
methods. As depicted in Table 20, the developed CBS model
achieved 99.7% accuracy in Experiment 4. However, the
models in ICLSTM [63], CSCNN [79], and [81] had 98.1%,
97.7%, and 98% accuracy, respectively. The accuracy of the
two models in HAN [78] is 91.2% and 89.8%. Furthermore,
1D-CNN [57], FlowPic [59], and C4.5 [49] achieved 86.6%,
88%, and 90% accuracy, respectively. This paper presents a
significantly more accurate model than all models evaluated
in Table 20, demonstrating its efficiency.
CSCNN [79] focused only on the spatial features of the

packets while disregarding statistical and temporal features.
Additionally, this approach utilized only a limited number of
CNN layers, which could hinder extracting complex features
from packet data. Deep Packet [8] uses only two distinct
models, CNN and SAE. It focused primarily on extracting the
spatial features of the packet’s bytes without considering the
statistical and temporal features. It is possible to mistakenly
classify several types of traffic without considering these
distinguishing characteristics. Compared to the CBS model,
Deep Packet’s effectiveness can be diminished due to missing
features (temporal and statistical).

In FlowPic [59], the CNN model prevented effective tem-
poral and statistical features from extracting distinguishable
features. This model exhibited inferior performance than
CBS, as these features were not considered. The Datanet [19]
employed three distinct networks, MLP, CNN, and SEA,
relying only on spatial features between flow packet bytes.
The Datanet MLP model performed notably poorly than
other Datanet models due to its limited number of layers and
neurons. These three models did not leverage statistical and
temporal features to improve traffic classifier performance.
These features are necessary to avoid significant information
loss for traffic classification. Datanet performed less effec-
tively due to these limitations.
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TABLE 15. Regular and protocol encapsulated traffic classification.

TABLE 16. The state-of-the-art methods comparison with the CBS model
in Experiment 1.

According to the proposed model in [80], the F1 score val-
ues for Non-VPN and VPN modes are 87.45% and 96.29%,
respectively. Due to the lack of statistical and temporal
features, this model does not perform as well as our pro-
posed model. This model only relies on spatial features.
Furthermore, [81] reported 97.66% and 98.66% F1 scores for
Non-VPN and VPN modes, respectively. The authors of [81]
ignored the importance of temporal features in traffic classifi-
cation, which significantly influences the diversity of traffic
types. Neglecting this feature can hurt traffic classification.
Due to its lack of temporal features, this approach is less
practical than CBS. An effective traffic classification relies
on consideration of temporal features, such as timing and
sequencing.

In SpCaps [58], the F1 score value is 93.3% when com-
bined with both Non-VPN and VPN modes. Statistics and
temporal features, essential for classifying traffic, are not
included in [58]. Consequently, it cannot accurately extract
significant features from input data and, hence, cannot out-
perform CBS. On the other hand, the model evaluated in [45]
reported an F1 score of 97.59% for theNon-VPNmode. How-
ever, [45] uses only spatial features to classify traffic using a
CNN model. Notably, a significant portion of distinguishing
information is lost by disregarding traffic data’s statistical and
temporal features. Therefore, this limitation makes the CBS
model less effective.

D. MODEL COMPARISON FOR APPLICATION
IDENTIFICATION RESULTS
The assessment of the proposed model’s performance
involves various criteria, including the application

TABLE 17. The state-of-the-art methods comparison with the CBS
accuracy in two-category scenario.

identification factor that considers the end user’s application,
such as Facebook and ICQ. The CBS application identifi-
cation results are compared to other studies in Table 21.
In Table 21, the proposed approach achieved outstanding
performances with accuracy, precision, recall, and F1 score
of 99.67%, 99.59%, 99.44%, and 99.51%, respectively. The
comparison with other models, such as Deep Packet [8],
Datanet [19], and CSCNN [79], showed that CBS outper-
formed them in all metrics. Furthermore, the application
identification results of the proposed CBS model indicated
that the features extracted from the training dataset were
comprehensive enough to capture each application’s distinc-
tive features. In comparison, the Deep Packet [8] model
with CNN and SAE models achieved F1 scores of 95%
and 98%, respectively, for application identification. Sim-
ilarly, CSCNN [79] reported an F1 score of 96.3%, while
Datanet [19] reached 94.1%.

E. COMPARISON OF ENCRYPTED TRAFFIC
CLASSIFICATION AND APPLICATION IDENTIFICATION
The CBS traffic characterization and application identifica-
tion confusion matrix are shown in Fig. 16 and Fig. 17.
Training CBS to precisely classify traffic sessions, such as
web browsing, email, file transfer, and video streaming,
is achievable by employing spatial, temporal, and statistical
features. The matrix rows correspond to each class’s actual
instances, while the columns represent the predicted label.
The matrix is normalized to ensure row-level normalization.
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TABLE 18. Non-VPN and VPN state-of-the-art methods were compared with the CBS model in Experiments 2 & 3.

TABLE 19. The state-of-the-art methods were compared with the CBS model in Experiment 4.

The main diagonal of the confusion matrix contains ele-
ments that represent correctly classified samples, while other
regions have values that correspond to incorrectly classified
samples. As illustrated in Fig. 16 and 17, the dark-colored
elements on the major diagonal of the confusion matrix
demonstrate CBS’s capability to effectively and accurately
classify traffic characterization and application identifica-
tion tasks. Invisible payloads pose a challenge to traditional
classification methods for encrypted traffic. However, pat-
terns can be identified by analyzing features such as packet
size and timing, session duration, and inter-packet timing to
classify traffic. For example, by analyzing the inter-packet
timings and session duration, it may be possible to distin-
guish between different types of encrypted traffic, such as
VPN or SSL traffic. Therefore, using spatial, temporal, and
statistical features can provide additional insights into the
types of traffic on the network and help identify applications.
Multiple features enable CBS to achieve a high accuracy rate
despite encrypted traffic. Employing multiple features can
reduce false positive and false negative rates, leading to more
accurate classification results.

The confusion matrix of application identification in
Fig. 16 and traffic characterization in Fig. 17 is light-colored
since the CBS model accurately distinguishes traffic types
and applications. The confusion matrix shows that the model
correctly classified most traffic, as indicated by the dark

diagonal elements. As can be seen in the confusion matrix,
the non-diagonal elements are incredibly light, meaning the
model rarely misclassifies traffic. The classification model
is trained using cross-validation. This technique prevents
the overfitting of the model to the training data. Therefore,
the model can be generalized well to new traffic samples.
Cross-validation can help achieve a light-colored confusion
matrix in encrypted traffic classification by ensuring the
model does not overfit the training data. In addition to pre-
venting overfitting, cross-validation can also help improve
the model’s accuracy. This is because cross-validation
allows the model to be trained in a wider variety of data,
which can help the model to learn more generalizable
features.

Analyzing the confusion matrix can provide insight into
the strengths and weaknesses of the CBS deep learningmodel
for encrypted traffic classification. For example, suppose the
model makes many false positives. In that case, the precision
will be low, indicating that the model incorrectly classified
numerous instances, and non-diagonal elements will have
a darker color. Similarly, if a model fails to identify many
positive instances correctly, its recall score will be low. Using
the GAN network to balance data allowed CBS to effectively
identify the type of email application traffic with a relatively
small sample size, as depicted by the confusion matrix in
Fig. 16.
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TABLE 20. The accuracy of state-of-the-art methods compared with the
CBS model in Experiment 4.

The non-diagonal elements of email application traffic are
represented by very light-colored elements, reflecting CBS’s
precise classification of email application traffic. Similarly,
the same analysis applies to the email traffic type depicted
in Fig. 17. According to Fig. 17, non-diagonal elements
demonstrate CBS’ accuracy in detecting this type of traffic
due to the simultaneous use of multiple spatial, temporal,
and statistical features and the GAN network. We mentioned
email application traffic and email traffic because both sam-
ples were imbalanced. The objective was to demonstrate how
CBS could effectively classify imbalanced traffic using a few
samples.

F. TRAINING ANALYSIS
Early convergence in the CBS model is achieved when the
model has learned all discriminative patterns in the data
and does not require additional training epochs. This is cru-
cial in encrypted traffic classification, as it stabilizes the
model’s performance without significantly improving accu-
racy. The number of epochs needed for convergence depends
on the model’s complexity, dataset size and quality, and
selected hyperparameters. Increasing the number of epochs
can improve model accuracy to a certain point, but beyond
this point, it can lead to overfitting. The number of epochs
can be adjusted during training to optimize accuracy and
prevent overfitting by monitoring the model’s performance
on the validation set. Data preprocessing techniques can sig-
nificantly impact the relationship between convergence and
epoch in deep-learning-based encrypted traffic classification.
The most significant reasons for CBS’s rapid convergence are
as follows.

• Preprocessing:The convergence of models depends
heavily on data preprocessing. The convergence speed
of a model can be enhanced with proper preprocessing
techniques, especially if those techniques are aligned
with the characteristics of the data. CBS considers com-
prehensive preprocessing before training.

• Feature Scaling and Normalization: Feature Scaling
can help the model converge faster by ensuring that
updates to the model’s parameters are more consistent
across features. CBS scales each byte in the packet

TABLE 21. The state-of-the-art methods compared with application
identification of the CBS model.

from [0-255] to [0-1]. CBS employs the normaliza-
tion method outlined in [77]. Using batch normalization
drastically reduces the epochs required to train deep
neural networks. Data normalization prevents overfitting
by eliminating outliers. Outliers are extreme values that
differ from most data samples in a dataset.

• Feature Selection: The model can converge faster and
prevent overfitting by reducing features. CBS simulta-
neously uses several spatial, temporal, and statistical
features as a complete feature set.

• Data Augmentation: CBS uses GAN networks for data
augmentation and balancing to increase the size of the
training dataset, enabling the model to learn and gen-
eralize patterns through diverse examples. This robust
training process stabilizes the learning process and may
lead to earlier convergence. A balanced dataset ensures
the model encounters various traffic patterns without
bias, resulting in successful learning of underlying rep-
resentations and patterns.

• Well-structure Dataset: Complex, noisy, or unstruc-
tured datasets can impede the early convergence of
encrypted traffic datasets, causing more training epochs
in the training process. The CBS model converges faster
due to its ability to identify discriminative features in
the well-structured ISCX VPN-Non VPN 2016 dataset.
Preprocessing techniques can enhance the training data
quality, making it easier for the model to learn underly-
ing patterns.

CBS has achieved higher model accuracy and faster conver-
gence for encrypted traffic classification through effective
preprocessing. Figs. 18(a)-(c) provide insight into the pro-
posed model’s convergence. By analyzing the proposed CBS
model more precisely, we explore the reasons for better
performance gains. Figs. 18(a) and 18(b) show the training
accuracy, validation accuracy, training loss, and validation
loss parameters at the end of each epoch. As illustrated in
Figs. 18(a) and 18(b), the proposed model’s average accuracy
for training and validation has converged well. CBS gains
valuable insights into the model’s learning process by feature
engineering and feature extraction. Additionally, the accu-
racy of the proposed model is compared with other models
based on the number of epochs. As shown in Fig. 18(a),
our proposed model allows the training model to converge
in minimal epochs. Fig. 18(a) shows that our model requires
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FIGURE 16. The confusion matrix for application identification.

FIGURE 17. The confusion matrix for traffic characterization.

only four converging epochs. Fig. 18(c) also reveals that our
proposed model achieved 95% accuracy in four epochs and
converged in fewer epochs than other studied models. For
all experiments, the initial epoch value equals 50; however,
in Fig. 18, it only shows up to 20. During training, a satu-
ration point occurs in CBS when loss and accuracy values
no longer improve significantly. Since training accuracy and
loss have stopped changing after epoch 20, we don’t consider

epochs after 20 to 50. For several reasons, using simultaneous
spatial, temporal, and statistical features in encrypted traffic
classification can improve CBS convergence.

• Combining multiple features can result in a broader
and more diverse range of inputs for the deep learn-
ing model, enabling it to discern complex patterns and
relationships in the data. This can facilitate rapid model
convergence.
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• The risk of overfitting can be reduced by combining spa-
tial, temporal, and statistical features. When the model
becomes too specialized for training data, it performs
poorly on new data. This forces the model to generalize
and acquire more robust data representations.

• Using multiple features in deep learning algorithms can
prevent the model from getting stuck in suboptimal solu-
tions, a common issue. This is because local minima
can cause poor convergence and performance. Using
multiple features reduces this risk.

• The deep learningmodel can detect nuanced distinctions
in traffic by combining multiple features. For instance,
different types of encrypted traffic may have similar
spatial features but differ significantly in temporal or
statistical aspects. Integrating these features allows the
model to understand traffic comprehensively and con-
verge rapidly.

The graphs in Fig. 18 have a steady slope. The following
explanations can justify this behavior. During the training of
the CBS model for encrypted traffic classification, a steady
decrease in training loss and an increase in training accuracy
can indicate a consistent and stable learning process. Training
loss and accuracy can be steadily sloped if the training dataset
is well-balanced and represents real-world encrypted traffic
distribution. As CBS’s architecture captures relevant features
and its model is expressive, training loss and accuracy will
likely follow a steady slope. A steady slope can also be
achieved by early stopping. Early stopping stops the training
process when the validation loss increases during training.
Classification tasks often use a cross-entropy loss function.
Training loss and accuracy can be affected by the choice
of loss function. Cross-entropy loss is helpful in training
because it encourages more accurate predictions. It guides the
optimization process during training, allowing the model to
converge towards superior results. A steady slope in training
can be achieved with an appropriate loss function aligned
with the model’s encrypted traffic classification objectives.
By processing the data appropriately, training loss and accu-
racy can be steadily reduced.

G. RUNTIME ANALYSIS
The runtime of 1D-CNN, Bi-LSTM, FC, and SAEmodels for
encrypted traffic classification based on the ISCX VPN-Non
VPN 2016 dataset depends on several factors, including:

• Configuration of the system’s hardware and software for
training and deploying the classification model.

• Classification model complexity and size.
• The quantity of traffic to be classified.

1D-CNN models are faster than Bi-LSTM and SAE mod-
els due to their more straightforward structure and parallel
processing capabilities. The runtime of 1D-CNN models
depends on the number and size of convolutional layers,
network architecture complexity, and input data size. Parallel
processing capabilities embedded in 1D-CNNs can reduce
computational costs, mainlywhen dealingwith large datasets.

The number of LSTM layers, network architecture complex-
ity, and input sequence length influence Bi-LSTM runtime.
Bi-LSTMs, due to their sequential nature, perform worse
computationally than 1D-CNNs, as they process the input
sequence one step at a time. Stacking autoencoders (SAEs)
are unsupervised deep learning models that can learn features
and reduce dimensionality without labeled data, making them
ideal for extracting meaningful representations from input
data. Their runtime depends on layer size, number of neurons,
and input and output vector size. The training algorithm also
plays a crucial role in SAE’s execution, as it requires multiple
forward and backward passes for representation learning,
making them train slower than 1D-CNNs. 1D-CNNs are
ideal for classification tasks due to their parallel process-
ing capabilities, particularly with GPUs. SAEs have a more
prolonged training phase due to iterative optimization, while
Bi-LSTM networks can be trained quickly using paralleliza-
tion techniques. Due to their simpler structure, 1D-CNNs and
FC networks are more straightforward to parallelize. Fully
connected networks (FC) are the fastest and most efficient
due to their simplicity, fewer parameters, and simultaneous
computations.

Generative adversarial networks (GANs) are slower than
other CBS models like 1D-CNNs, attention-based LSTMs,
stacked autoencoders (SAEs), and fully connected networks
(FCNs) due to the complexity of network architectures and
the need for convergence. GANs require multiple iterations
and complex computations to optimize two networks simulta-
neously, leading to higher computational demands and longer
training times than other CBS models. Memory requirements
for storing intermediate activations, gradients, and gener-
ated samples also affect GAN runtime. A limited amount of
memory may cause frequent data transfers between memory
and slower storage devices, further slowing down training.
Table 22 shows the average execution time for the GAN, FC,
1D-CNN, Attention Bi-LSTM, and SAEmodels based on the
ISCX VPN-Non VPN 2016 dataset. According to Table 22,
the FC model has the lowest average execution time due to
the abovementioned factors. The 1D-CNN model performs
better than other models except FC. The average execution
time is considered for each model in the feature extraction
phase. Since this step is very time-consuming, each model’s
performance should be evaluated regarding how long it takes
to complete.

H. MEMORY ANALYSIS
Training and inference processes require storing each param-
eter in memory, so the number of parameters can affect
memory usage for 1D-CNN model. In 1D-CNN architec-
tures, factors like filters, convolutional layer size, stride size,
pooling filter size, and fully connected layers influence mem-
ory usage. The total memory usage for each layer can be
calculated by summing up the memory requirements for each
layer. Bi-LSTM’s memory requirement depends on the size
and number of LSTM units in each direction. Autoencoders,
consisting of an encoder and decoder, have memory require-
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FIGURE 18. Accuracy-Loss changes during training of the CBS model and
compared models.

ments influenced by input and output vector sizes, layers, and
neurons. Due to complex architectures and multiple layers,
1D-CNNs and Bi-LSTMs have more parameters, requiring
higher memory requirements than SAEs. 1D-CNNs have
more layers and filters, requiring additional weights and
activation storage. Bi-LSTMs have a more straightforward
structure with fewer parameters, resulting in lower mem-
ory usage. SAE uses compact representations with a more
transparent structure, requiring less memory than 1D-CNNs.
1D-CNNs have more layers, larger filters, and fully con-

TABLE 22. Runtime execution time for used models in the CBS.

TABLE 23. Memory consumption for used models in the CBS.

nected layers, which need more memory for weights and
activations. Direct connections between neurons in a fully
connected network require more memory. As the number of
neurons increases, the number of parameters quadratically
increases, requiring a parameter for each connection between
two neurons.

1D-CNNs have sparse connectivity patterns, with each
neuron having only partial connections to the next layer.
1D-CNNs use local connectivity and shared weights in
convolutional layers, reducing memory usage. However, Bi-
LSTMs use recurrent connections and have a more complex
structure, requiring more memory than SAEs. They also learn
long-term dependencies using recurrent connections, mak-
ing them memory intensive. Unlike Bi-LSTMs, SAEs are
feedforward neural networks without recurrent connections,
making them less memory-intensive. They focus on learning
compact representations of input data using less memory than
fully connected networks. SAEs have fewer layers, weights,
and activations, allowing them to train efficient models from
input data.

GANs, which train both the generator and discriminator
simultaneously, have higher memory requirements due to
their simultaneous storage of intermediate activation values,
gradients, and generated samples. In contrast, 1D-CNNs,
attention Bi-LSTMs, SAEs, and Fully Connected Networks
have simpler architectures and require less memory storage.
GANs have many layers and parameters, which need more
memory for storing their weights, kernel filters, stride, and
gradients. Table 23 shows the memory used by GAN, FC,
1D-CNN, Attention Bi-LSTM, and SAEmodels based on the
ISCX VPN-Non VPN 2016 dataset. As shown in Table 23,
the FC model has the second-highest memory usage for
the abovementioned reasons. The SAE model outperforms
other models because it has fewer weights and neuron lay-
ers. Because feature extraction is a memory-intensive phase,
memory consumption is measured based on how much mem-
ory each model consumes during this phase.

VII. DISCUSSION
The proposed model was adapted to address the trimming
packet data during the preprocessing phase, which can lead
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to the loss of valuable information. Statistical features like
inter-arrival time and packet length were used to compensate
for this loss. The model was also implemented to capture the
spatial features of network traffic packets due to their sequen-
tial and time-series nature. According to [57], 2D-CNN
converts data packet bytes into a two-dimensional matrix,
but its sequential nature may reduce model efficiency. Bytes
from two distinct rows are independent, affecting feature
extraction. The proposed CBS model should address more
than just packet spatial and statistical features for efficient
performance. CBS uses attention-based Bi-LSTM to improve
performance evaluation metrics like recall, precision, and F1
score by identifying unique patterns between packets. This
approach overcomes the limitations of LSTM in learning long
sequence dependencies and enhances the model’s accuracy.
CBS discovers short-term and long-term packet dependen-
cies using attention-based Bi-LSTM, which assigns more
weight to packets with a higher impact on classifying various
application types or traffic classes. The attention mecha-
nism enhances detection efficiency. CBS aims to extract the
most efficient features in traffic classification from multiple
aspects and learns to extract a comprehensive feature set to
improve the model’s efficiency. The study found that the
dataset used in the analysis was imbalanced, with varying
sample numbers among classes, reducing efficiency in traf-
fic classification. The GAN network mitigated this issue,
improving traffic classification efficiency. The GAN model
added similar instances to minority classes and initiated fea-
ture extraction training. However, removing the GAN model
from the primary CBS platform could negatively impact
evaluation metrics and system performance. CBS is designed
for offline scenarios and not applicable to online scenar-
ios, making it unsuitable for real-time input data analysis
or classification. Therefore, alternative platforms are needed
for real-time data stream analysis. Modifying input data
before using the CBSmodel for real-time traffic classification
is necessary. While CBS utilizes pre-stored data, real-time
applications require streaming data. Statistical features in the
proposed model cannot be used in real-time because they are
based on a complete working session. In real-time scenarios,
the session’s beginning can be detected, but its end can only
be determined once it ends. Due to this uncertainty, many
statistical features cannot be extracted.

VIII. CONCLUSION AND FUTURE WORK
Traffic classification is crucial in network management,
especially with the increasing use of encrypted traffic. Spa-
tial or temporal feature extraction methods often fail to
detect certain statistical features, leading to information loss.
This paper proposes a comprehensive feature set platform
called CBS that combines all statistical, spatial, and tempo-
ral features extracted from traffic files for encrypted traffic
classification. The architecture employs 1D-CNN, attention-
based Bi-LSTM, and SAE models. Combining features
improves model performance by capturing different aspects
of input data and leveraging each feature’s potential for more

accurate predictions. The proposed model uses the GAN net-
work to generate synthetic samples for imbalanced classes to
address dataset imbalance. GANs can prevent overfitting by
increasing the dataset size and developing new data samples.
Experiments and comparisons show high accuracy, precision,
recall, and F1 score for the proposed traffic characterization
model. In the future, we will explore encrypted traffic clas-
sification in the real world. A solution for classifying stream
data in the real world will be developed.
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