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ABSTRACT Among ultrasound images, the acoustic radiation force impulse (ARFI) image can provide
information about the stiffness of the tissue using both a pushing beam and a detection beam. However,
there is a problem in that the impulse noise is generated in the process of generating the ARFI image by
calculating the displacement of the target. The impulse noise appearing in the ARFI image can be caused by
various factors related to ultrasound image processing and the characteristics of the target tissue, and it can
degrade image quality and the accuracy of stiffness measurements. The commonly used fixed median filter
in the ARFI image can effectively eliminate the impulse noise but may introduce a blurring effect, depending
on the kernel size. The adaptive median filter has the advantage of minimizing the impulse noise level while
preserving the original information as much as possible, but the adaptive median filter has been generally
used to remove the unipolar or bipolar type noise from the image. As a result, the effectiveness of removing
the impulse noise with various amplitudes from the ARFI image is not sufficient. To figure out this problem,
in this study, we propose the adaptive median filter method combined with probability mass function. In this
method, in order to limit the various amplitudes of impulse noise as much as possible, the threshold cut-off
level of impulse noise is determined by a probability mass function, and then adaptive median filter is used
to effectively remove impulse noise with limited amplitude. The performance of the proposed method was
evaluated by using a tissue mimicking phantom and a bovine eye. Therefore, the proposed technique is
expected to be one of the useful methods to improve the overall quality and reliability of the ARFI images
for clinical diagnosis and evaluation.

INDEX TERMS Acoustic radiation force impulse image, probability mass function, fixed median filter,
adaptive median filter, impulse noise.

I. INTRODUCTION
The acoustic radiation force impulse (ARFI) imaging has
demonstrated its usefulness in diagnosing benign and malig-
nant tumors in various human organs such as liver, prostate,
kidney, thyroid, and breast [1], [2], [3], [4], [5], [6]. The
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ARFI can estimate tissue displacement used for local strain
calculation based on the cross-correlation between pre- and
post-compressed echo signals generated by the external
force [6], [7]. It is well known that decorrelation error
occurs during the displacement estimation when using the
cross-correlation process [8], [9], [10], [11]. In other words,
it is not possible to accurately estimate the time delay between
echo signals before compression and after compression due
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to physical issues such as tissue scattering shift, tissue com-
pression, non-rigid tissue deformation, slide-slippage, and
out-of-plane motion. This artifact reduces the signal-to-noise
ratio (SNR) and the dynamic range of the image [12], [13].
One of the critical noises caused by the decorrelation error
is the false peak noise called impulse noise, and it affects
the precise estimation of the displacement [14]. Additionally,
the impulse noise in the form of the relatively large spike in
displacement estimation is discontinuous in the displacement
vector. This ultimately results in noisy images and poor esti-
mation performance of displacement in the ARFI image [15],
[16], [17].

A fixed median filter (FMF) has been widely used to
remove the impulse noise artifacts. The main drawback of
the FMF is that it removes fine image details by correcting
all elements, including those that are not noisy [14], [15],
[18]. Also, if the noise density is large, the noise cannot
be sufficiently removed. Using a larger kernel size of the
FMF will improve performance but make the image blurrier.
An adaptive median filter (AMF) can solve these problems.
Unlike the FMF, whose performance is determined by noise
density, the performance of the AMF can be improved com-
pared to the FMF because the kernel size of the AMF varies
depending on the condition during the filtering process [16],
[17], [18]. Also, AMF preserves the edges and fine details of
the image by conditionally preserving all pixel values instead
of replacing them all with their median values. However, the
typical AMF has been shown to be effective against mainly
unipolar or bipolar impulse noise. The AMF does not work
well if the impulse noise has various amplitudes [19], [20],
[21], [22], [23], [24], [25].

In order to figure out this issue, in this study, we propose
the probability mass function based adaptive median filter
(PMF_AMF). In this method, the optimal cut-off threshold
level to separate the impulse noise from the true displace-
ment of the target was derived from the probability mass
function (PMF), and this process makes most impulse noise
has unipolar or bipolar type amplitude. In other words, the
amplitude of the impulse noise can be limited by using PMF.
Then AMF was used to effectively remove the impulse noise.
Also, unlike previous researches, all signal processing was
conducted based on the radio frequency (RF) data rather than
image files. The performance of the proposed method was
evaluated by using a tissue mimicking phantom and a bovine
eye. In Section II, the principle of the ARFI, the proposed
PMF_AMF, and the experimental setup were illustrated, and
Section III explained the experimental results. Discussion
and Conclusion on the proposed technique were described in
Section IV and Section V, respectively.

II. METHODS
A. PRINCIPLE OF ACOUSTIC RADIATION FORCE
IMPULSE IMAGE
Among the several elastography techniques, the acoustic radi-
ation force impulse (ARFI) imaging provides mechanical
properties of the local tissue using the acoustic radiation

FIGURE 1. Schematic diagram of the beam sequence composed of a
reference beam, a pushing beam, and a tracking beam for the ARFI
imaging.

FIGURE 2. Flow chart of the proposed PMF_AMF technique composed of
the pre-processing and the AMF processes. The AMF process consists of
Level-A and Level-B steps.

force [26], [27], [28], [29], [30], [31], [32]. To implement
ARFI imaging, as shown in Fig. 1, the tissue motion is
generated by applying the pushing beam consisting of the
high-intensity pulses with a long duration after sending the
reference beam for motion detection. The tracking beam
is then transmitted to obtain information about the local
tissue displacement, which depends on the stiffness of the
target. The displacement is quantitatively calculated using
the received reference beam and the tracking beams, and the
correlation-based method.

B. PROBABILITY MASS FUNCTION BASED ADAPTIVE
MEDIAN FILTERING
In general, the amplitude of the impulse noise occurring in
the ARFI image is large and non-uniform, and thus using the
typical AMF as is does not work well in the ARFI image.
To solve this issue, in this study, we propose PMF_AMF.
In this method, the optimal cut-off threshold level to separate
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the impulse noise from the true displacement of the target was
derived from the PMF, and this process makes most impulse
noise has limited amplitude. Subsequently, AMF was used to
effectively remove the impulse noise.

Fig. 2 shows the flow chart of the proposed PMF_AMF
technique, which consists of the pre-processing and the AMF
processes. Also, the AMF process is composed of Level-A
and Level-B steps. In the pre-processing process, the acquired
ARFI RF echo data containing the target’s displacement
information is normalized to facilitate comparison of differ-
ent displacement data sets. After deriving the PMF of the
normalized data, the level of the sparse data is regarded as
a noise and designated as a threshold. Choosing an appropri-
ate threshold value is important for effective noise removal.
Setting the threshold too aggressively can result in loss of
important signal information, while too lenient can result in
persistent noise.

After the pre-processing process, the modified RF data
goes through the AMF process. In general, the AMF pro-
cess operates separately as Level-A and Level-B steps. The
Level-A step performs the spatial analysis of element inten-
sities to detect an impulsive noise, while the Level-B step
adjusts the filtering strategy based on the information pro-
vided by the Level-A step.

In the Level-A step, a kernel is generated around the center
element (Ixy). The entered RF data within the kernel is sorted
in ascending order by intensity value, identifying the largest
value as Imax, the smallest value as Imin, and the median value
as Imed. When the modified RF data enters, it checks if the
condition Imin < Imed < Imax is satisfied. If the value of Imed is
same as to Imin or Imax, this condition is not met. In this case,
the kernel size (Wxy) is increased to recheck the condition.
If the kernel size is increased and becomes larger than the
predefined maximum kernel size (Wmax), the filter outputs
Imed. In this case, it can be determined that more than half of
the kernel is filled with Imax or Imin, and since Imax or Imin is
determined to be the target information rather than impulse
noise, Ixy is replaced with Imed. In other words, if Ixy has the
same value as Imed, the data can be said to be maintained,
and if Ixy has a specific value other than Imax or Imin, it is
replaced by Imed. Thus, it eventually has a value similar to
the surrounding elements.

Next, if the condition Imin < Imed < Imax in the Level-A
stage is satisfied, it indicates that Imed is within a reasonable
range compared to the values of the surrounding elements,
that is, there is a high probability that it is target information.
Afterwards, in Level-B, you can determine whether the Ixy
value is noise or information about the target through the
condition Imin < Ixy < Imax. If this condition is met, it means
that Ixy is within a reasonable range of the values of other
nearby elements and is therefore likely to be the target’s infor-
mation. In this case, the filter concludes that Ixy is most likely
not noise, and outputs Ixy. If Ixy does not meet the condition
Imin < Ixy < Imax, there is a high possibility that Ixy is noise
that is not within the reasonable value range of its neighbors,
and Imed replaces Ixy to remove the noise. Subsequently, the

FIGURE 3. Photographs of targets and corresponding B-mode images:
(a) tissue mimicking phantom and (b) bovine eye; (c) B-mode image of
(a) and (d) B-mode image of (b).

final ARFI image can be implemented using the Imed and Ixy
obtained in this way.

C. PERFORMANCE EVALUATION METHODS
The performance of the proposed method was evaluated by a
peak signal to noise ratio (PSNR) based on a mean squared
error (MSE) in the below equation (1), (2).

MSE =
1
n

∑n

i=1
(Yi − Ŷi)

2
(1)

PSNR = 10log
s2

MSE
(2)

Additionally, the structural similarity index measure (SSIM)
in equation (3), a method of measuring similarity to the
original image against distortion due to any transformation.

SSIM (x, y) = [l (x, y)]α·[c (x, y)]β ·
[
s (x, y)

]γ (3)

The SSIM index is composed of three terms such as the lumi-
nance term (equation (4)), the contrast term (equation (5)),
and the structural term (equation (6)).
where

l (x, y) =
2µxµy + C1

µ2
x + µ2

y + C1
(4)

c (x, y) =
2σxσy + C2

σ 2
x + σ 2

y + C2
(5)

s (x, y) =
σxy + C3

σxσy + C3
(6)

In this case, µx , µy, σx , σy, σxy are local means, standard
deviations, and cross-covariance for images x, y. Since the
initial image has the impulse noise, the performance evalu-
ation was focused on the relative comparison between FMF,
conventional AMF, and the proposed PMF_AMF.
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FIGURE 4. PMF of the experimentally obtained initial RF data for (a) 5 MHz tissue mimicking phantom, (b) 10 MHz tissue mimicking phantom, and
(c) 5 MHz bovine eye tests.

FIGURE 5. Experimentally obtained 5 MHz ARFI images and contour plots for a tissue mimicking phantom: ARFI images of (a) initial data, (b) FMF (5 ×

5), (c) FMF (11 × 11), (d) proposed PMF_AMF (5 × 5 => 11 × 11); Contour plots of (e) initial data, (f) FMF (5 × 5), (g) FMF (11 × 11), and (h) proposed
PMF_AMF (5 × 5 => 11 × 11). A color bar indicates normalized displacement.

D. ACQUISITION OF ARFI IMAGE DATA
Fig. 3(a) shows a tissue-mimicking cyst phantom fabricated
using an agar. A cyst region with a diameter of 5 mm was
made with an agar solution of 2.5% concentration and located
in the center of the phantom. In the case of the background
region, it was made with an agar solution of 0.6% concentra-
tion which has relatively lower stiffness than the cyst region.
The same tissue-mimicking phantom was used for 5 MHz
and 10 MHz transducers. The cyst was positioned 10 mm
from the surface, considering the focal depths of 20 mm and
10 mm for the 5 MHz and 10 MHz transducers.

To obtain a 5MHz ARFI image, a beam sequence consist-
ing of one reference beamwith a 2-cycle sine wave, one push-
ing beamwith a 1000-cycle sine wave, and 10 tracking beams
with a 2-cycle sine wave was programmed using MATLAB
(The MathWorks, Natick, MA, USA). In particular, to obtain

the local target displacement, the pulse repetition frequency
(PRF) of the 10 tracking beams was set to 10 KHz. In the
case of 10 MHz ARFI imaging, all conditions of the beam
sequence were the same as the 5 MHz case, except for the
center frequency (10 MHz).

These programmed beam sequences are generated through
a function generator (33600A, Keysight Technologies, Santa
Clara, CA, USA) and amplified through an RF power ampli-
fier (75A250, Amplifier Research, Souderton, PA, USA), and
then applied to the transducer. The echo data was acquired
by the pulser-receiver system (5073PR, Olympus NDT, MA,
USA) and finally stored on the data acquisition (DAQ)
board (CS121G2, GaGe Applied Technologies Inc., Lachine,
QC, Canada). The lateral movement of the transducer for
obtaining scanlines was controlled through a linear motor
system (SHOT-304GS, SIGMA KOKI, Tokyo, Japan) with
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FIGURE 6. Experimentally obtained 10 MHz ARFI images and contour plots for a tissue mimicking phantom: ARFI images of (a) initial data,
(b) FMF (5 × 5), (c) FMF (11 × 11), (d) proposed PMF_AMF (5 × 5 => 11 × 11); Contour plots of (e) initial data, (f) FMF (5 × 5), (g) FMF (11 × 11),
and (h) proposed PMF_AMF (5 × 5 => 11 × 11). A color bar indicates normalized displacement.

LabVIEW (National Instruments. Austin, TX, USA) pro-
gram. Fig. 3(c) shows the brightness mode (B-mode) image
of the tissue mimicking phantom using the 5MHz transducer.
In the case of the bovine eye experiment as shown in Fig. 3(b),
the experimental setup was similar to the tissue mimicking
phantom, and the bovine eye was purchased commercially.
Fig. 3(d) shows the B-mode image of the bovine eye.

III. RESULTS
A. INITIAL PMF OF TISSUE MIMICKING PHANTOM AND
BOVINE EYE
Fig. 4 shows the initial PMF of the RF data for 5 MHz and
10 MHz tissue mimicking phantoms, and the 5 MHz bovine
eye. Based on the algorithm as shown in Fig. 2, the initial data
was modified. In Fig. 4(a), most normalized displacement
was focused on by 0.86. This indicates that more than 0.86,
that information may be the impulse noise rather than true
displacement of the tissue. Thus, 0.86 will be a threshold
cut-off level to distinguish them in the 5 MHz phantom.
Fig. 4(b) shows the 10 MHz tissue mimicking phantom, and
the cut-off level was 0.1. Fig. 4(c) shows the 5 MHz bovine
eye and 0.1 was selected as the cut-off level. For a fair
comparison, we also applied the thresholded data to the FMFs
and compared their performance with the proposed method.

B. ARFI IMAGES OF TISSUE MIMICKING PHANTOM AND
BOVINE EYE
Fig. 5 shows the ARFI images and their contour plots of the
tissue mimicking phantom by using the 5 MHz transducer.
Fig. 5(a) and (e) show the initial data before applying the

FMF, where partially blue dots (artifact noise) are found in
both the ARFI image and the contour plot. Fig. 5(b) and (f)
show the results of applying the FMF with a kernel size
of 5 × 5, and Fig. 5(c) and (g) show the results of applying
the FMF with a kernel size of 11 × 11. Fig. 5(d) and (h)
show the results of applying the PMF_AMF with a minimum
kernel size of 5 × 5 and a maximum kernel size of 11 × 11.
In the case of Fig. 5(b) and (f), compared to Fig. 5(c) and (g),
various displacements appear, maintaining details but not
partially removing noise. In Fig. 5(c) and (g), it can be seen
that the filtering effect is large and consists of a narrow
displacement range compared to other cases. On the other
hand, Fig. 5(d) and (h) show that the noise of the initial image
was removed, and the displacement distribution and details
(necessary information) remain similar to the initial image.

Fig. 6 shows the ARFI images and their contour plots of the
tissue mimicking phantom by using the 10 MHz transducer.
As shown in Fig. 6(a) and (e), the impulse noise (red dots) is
partially found in the initial data. In Fig. 6(b) and (f) using
the FMF with a kernel size of 5 × 5, Fig. 6(c) and (g) using
the FMF with a kernel size of 11 × 11, the impulse noises
are removed. However, comparing Fig. 6(a) and (e), it can
be seen that the displacement range is narrow, resulting in
an image with low resolution. Fig. 6(c) and (g) are filtered
more heavily than Fig. 6(b) and (f), and thus, these features
are more visible. On the other hand, Fig. 6(d) and (h) show
the detail image information similar to the initial data as the
noise is removed.

Fig. 7 shows the ARFI images and their contour plots of the
bovine eye by using the 5 MHz transducer. Fig. 7(a)-(d) show
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FIGURE 7. Experimentally obtained 5 MHz ARFI images and contour plots for a bovine eye: ARFI images of (a) initial data, (b) FMF (5 × 5), (c) FMF (11 ×

11), (d) proposed PMF_AMF (5 × 5 => 11 × 11); Contour plots of (e) initial data, (f) FMF (5 × 5), (g) FMF (11 × 11), and (h) proposed PMF_AMF (5 × 5 =>

11 × 11). A color bar indicates normalized displacement.

the ARFI images of the bovine eye based on the displacement
value, and a logarithmic compression technique was applied
because of the large dynamic range and the proportion of
eye displacement values close to zero. Fig. 7(a) and (e) show
the initial data before applying the FMF, where partially
impulse noises (red dots) are found in both the ARFI image
and the contour plot. In Fig. 7(b) and (f), the FMF with a
kernel size of 5 × 5 was applied. In Fig. 7(c) and (g), the
FMF with a kernel size of 11 × 11 was applied. Fig. 7(b)
and (f) are composed of various displacements compared to
Fig. 7(c) and (g), and thus, the detail image information is
preserved, but some noises are not partially removed. In the
case of Fig. 7(c) and (g), it can be seen that the filtering
effect is large capable of removing the impulse noise but it
provides a narrow range of displacements. On the other hand,
Fig. 7(d) and (h) show a similar image pattern to the initial
data as the noise is removed.

Fig. 8 shows the PMF of Fig. 5-7 as another method to
check the performance of the proposed method. Fig. 8(a)
shows the PMF of the initial data for the 5 MHz tissue-
mimicking phantom, and Fig. 8(b) and (c) show the PMFs
applied with the FMFs with kernel sizes of 5 × 5 and 11 ×

11, respectively. Fig. 8(d) shows the PMF applied with the
PMF_AMF technique with a minimum kernel size of 5 ×

5 and a maximum kernel size of 11 × 11. It is found that
the PMF distribution of the PMF_AMF is closer to that of
the initial data compared to the FMF cases. Fig. 8(e) is the
PMF of the initial RF data for the 10 MHz tissue mimicking

phantom, and Fig. 8(f) and (g) show the PMFs applied with
the FMFs with kernel sizes of 5×5 and 11×11, respectively.
Fig. 8(h) shows the PMF applied with the PMF_AMF with a
minimum kernel size of 5 × 5 and a maximum kernel size of
11 × 11. The PMF distribution of PMF_AMF is also closer
to that of the initial data compared to the FMF cases. Fig. 8(i)
is the PMF of the initial RF data of the 5 MHz bovine eye,
and Fig. 8(j) and (k) show the PMFs applied with the FMFs
with kernel sizes of 5× 5 and 11× 11, respectively. Fig. 8(l)
shows the PMF applied with the PMF_AMFwith a minimum
kernel size of 5 × 5 and a maximum kernel size of 11 × 11.
The PMF distribution of the PMF_AMF is closer to that of
the initial data compared to the FMF cases.

Next, as shown in Fig. 9, the performance comparison
between the proposed PMF_AMF and the AMF was also
conducted using the bovine-eye data used in Fig. 7. When
the AMF is used alone in the initial image that contains the
impulse noise (Fig. 7(a)), the high amplitude impulse noise,
which appears in the form of the spike-type red dot, remains
in many parts of the ARFI image as shown in Fig. 9(a). This
phenomenon can be seen more clearly in the 2D contour
plot in Fig. 9(b) and in Fig. 9(c) where the two dimensional
(2D) contour plot is converted to the three dimensional (3D)
contour plot. As shown in Fig. 9(c), the spike-shaped parts
shown in a dark-red color can be considered the impulse
noise. On the other hand, applying the proposed PMF_AMF
method to the same data shows that much of the impulse noise
was removed as shown in Fig. 9(d). These results can also
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FIGURE 8. PMF of RF data: (a) initial data, (b) FMF (5 × 5), (c) FMF (11 × 11), (d) proposed PMF_AMF (5 × 5 => 11 × 11) for 5 MHz tissue mimicking
phantom; (e) initial data, (f) FMF (5 × 5), (g) FMF (11 × 11), (h) proposed PMF_AMF (5 × 5 => 11 × 11) for 10 MHz tissue mimicking phantom; (i) initial
data, (j) FMF (5 × 5), (k) FMF (11 × 11), (l) proposed PMF_AMF (5 × 5 => 11 × 11) for 5 MHz bovine eye.

be found on the 2D contour plot (Fig. 9(e)). In other words,
the spiked-shaped impulse noise having a dark-red color was
removed, and this can be clearly seen in the 3D contour plot
in Fig. 9(f) compared to Fig. 9(d).

C. PERFORMANCE EVALUATION
A quantitative evaluation was performed through PSNR and
SSIM. The PSNR values of the 5 MHz phantom were
72.88 dB for 5 × 5 FMF, 71.10 dB for 11 × 11 FMF, and
73.11 dB for the PMF_AMF. This means that the image of the
PMF_AMF is most similar to the initial image, although the
initial image has the impulse noises. The SSIM values of
the 5 MHz phantom were 0.75 for 5 × 5 FMF, 0.57 for 11 ×

11 FMF, and 0.87 for the PMF_AMF. This also means that
the PMF_AMF image has very similar characteristics to the
initial image. In the case of the 10 MHz phantom, the PSNR
values were 88.48 dB for 5 × 5 FMF, 87.91 dB for 11 ×

11 FMF, and 90.91 dB for the PMF_AMF. The SSIM values
of the 10MHz phantomwere 0.92 for 5× 5 FMF, 0.9 for 11×

11 FMF, and 0.96 for the PMF_AMF. Thus, the PMF_AMF
image is very similar to the initial image. In the case of 5MHz
bovine eyes, the PSNR values were 64.65 dB for 5 × 5 FMF,
63.61 dB for 11 × 11 FMF, and 65.68 dB for the PMF_AMF.
The SSIM values of the 5 MHz bovine eye were 0.54 for 5 ×

5 FMF, 0.48 for 11 × 11 FMF, and 0.70 for the PMF_AMF.
This means that the PMF_AMF image is much more similar
to the initial image than the FMF. Thus, the PMF_AMF image
can be very similar to the initial image regardless of the target
type. For the AMF alone case, a quantitative comparison with
PMF_AMF by using PSNR and SSIM was not performed.
This is because the ARFI image by using the AMF alone has
still lots of impulse noises which is similar to the initial image
having lots of impulse noises. For this reason, the PSNR and
SSIM values of the AMF appear higher than those of the
PMF_AMF. All PSNR and SSIM data are summarized in
Table 1.

IV. DISCUSSION
In this study, we propose the probability mass function based
adaptive median filter (PMF_AMF) to effectively remove
the impulse noise from the acoustic radiation force impulse
(ARFI) image. Generally, in the ARFI image, it is easy to
occur the decorrelation error during the cross-correlation cal-
culation process using data before and after compression, and
the impulse noise (=false peak error) is one of the represen-
tative problems related to the decorrelation error. The artifact
such as the decorrelation error in the ARFI image, espe-
cially the impulse noise, can introduce the abnormal change
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FIGURE 9. Performance comparison between AMF alone and PMF_AMF technique: (a) ARFI image, (b) 2D contour plot, and (c) 3D contour plot for AMF
alone case; (d) ARFI image, (e) 2D contour plot, and (f) 3D contour plot for PMF_AMF case. A color bar indicates normalized displacement.

TABLE 1. Calculated PSNR and SSIM values obtained from
tissue-mimicking phantom and bovine eye.

in displacement measurement, which can lead to unreliable
displacement estimation.

The fixed median filter (FMF) is a common tool used to
eliminate the impulse noise, and it has been widely used for
the ARFI imaging. However, it has a drawback of delivering
inconsistent results depending on the noise density and causes
an increase in the strain rate of the data by modifying all
element values resulting in image distortion. In the case of
tissue mimicking phantom and bovine eye experiments, there

are lots of impulse noises (Fig. 5(a), Fig. 6(a), Fig. 7(a)). After
using the FMFwith a kernel size of 5×5, most impulse noises
were disappeared, but some residual noises still remain due
to the high noise density (Fig. 5(b), Fig. 6(b), Fig. 7(b)). If the
kernel size is increased to 11 × 11, the residual noises were
almost disappeared (Fig. 5(c), Fig. 6(c), Fig. 7(c)). However,
the image resolution becomes low due to a blurred boundary
of the target. This can be confirmed not only by ARFI images
but also by contour plots. In particular, the contour plot
clearly shows that the image contours between the initial data
and the FMF data differ too much. On the other hand, the
general AMF can effectively reduce the impulse noise while
maintaining the detailed image information. This AMF is pri-
marily effective in rejecting the impulse noise that is unipolar
or bipolar in nature. Additionally, adjusting the kernel size
helps mitigate the effects of the amplitude of the impulse
noise. However, in the presence of different amplitudes and
different types of the impulse noise, the performance of the
AMF deteriorates. Therefore, in this study, the PMF, which
has two roles, was used to enhance the effect of the AMF.
The PMF is used to determine the cut-off level to effectively
separate the displacement information and the impulse noise,
and is used to limit the amplitude of the impulse noise.
By applying the proposed PMF_AMF, residual noise was
almost eliminated, and the resolution of the image was very
similar to the initial image (Fig. 5(d), Fig. 6(d), Fig. 7(d)).

142084 VOLUME 11, 2023



G. Y. Lee et al.: PMF-Based Adaptive Median Filtering for ARFI Imaging

Fig. 5, Fig. 6, and Fig. 7 show the performance differ-
ence between the FMF method with different kernel size
and the proposed PMF_AMF method. We also compared
the performance between the AMF method alone and the
PMF_AMFmethod by using the bovine-eye data. The results
show that the PMF_AMF removed the impulse noise clearly
compared to the AMF method alone as shown in Fig. 9.
In other words, for the conventional AMF, if the kernel has
two or more impulse noises of different amplitudes, a prob-
lem arises at level B (Fig. 2) due to the varying amplitudes
of the impulse noises. In this case, although Ixy has a high
value as the impulse noise, its amplitude is not equivalent
to Imax. Thus, at Level-B, Ixy retains its Ixy value instead of
replacing it to Imed. That is, the impulse noise represented
by Ixy remains unremoved (Fig. 9(a)). On the other hand,
by utilizing PMF_AMF, which applies a threshold based on
the cut-off level set in PMF to limit the amplitude of impulse
noise, the impulse noise that cannot be removed in Fig. 9(a)
can be effectively removed as shown in Fig. 9(d).
Furthermore, the quantitative evaluation using PSNR and

SSIM was conducted to compare the performance of the
PMF_AMF compared to the FMF methods. The PMF_AMF
method provides higher PSNR and SSIM values compared
to the FMF with 5 × 5 and 11 × 11 kernel sizes, in both
the tissue mimicking phantom and bovine eye experiments.
This means that PMF_AMF, unlike FMF, has similar image
characteristics to the initial image. In the AMF alone case,
a quantitative comparison with PMF_AMF by using PSNR
and SSIM was not performed. This is because the ARFI
image by using the AMF alone has still lots of impulse noises
which is similar to the initial image having lots of impulse
noises. This phenomenon will increase the PSNR and SSIM
values of the AMF alone case more than the PMF_AMF.

The method proposed in this paper has the advantage
of efficiently removing the impulse noise and maintaining
the image quality of the original image as much as pos-
sible. However, it is not easy to establish a standard for
determining the threshold level based on PMF, and there is
a possibility that it may be mixed with actual data infor-
mation. Therefore, a further research using more diverse
data that can overcome these limitations is needed. The
deep learning-based image reconstruction method based on
several algorithms can be a useful solution to solve this
problem. Some research groups have been shown that the
image reconstruction techniques play an important role in
removing noises that occur during data collection in CT and
MRI [33], [34], [35], [36]. In this case, it has been proven that
the deep learning-based reconstruction methods can be used
efficiently for the image reconstruction even with the limited
data [35], [36]. In the future, additional research should be
conducted to efficiently remove the impulse noise by com-
bining the PMF_AMF method and the deep learning-based
reconstruction technique. Additionally, due to the nature of
AMF, it takes more calculation time than FMF, but this may
not be a major problem as hardware performance has greatly
improved.

V. CONCLUSION
In this study, the modified AMF based on the PMF is pro-
posed. When applying the conventional AMF directly to
the ARFI image, the impulse noise cannot be effectively
removed. To solve this problem, the proposed method uses
the PMF to block the impulse noise of the ARFI RF data
as much as possible, and at the same time limits the ampli-
tude of the impulse noise and then applies the AMF. As a
result, it was confirmed that the resolution of the proposed
method was very similar to the resolution of the initial image
assuming no noise. In addition, unlike conventional methods
using the image file, since the final image can be derived
using the stored ultrasound RF data, it has the advantage of
being directly applicable to a color image as well as a black
and white image without an additional conversion process.
Therefore, the proposed method is expected to be one of the
useful ways to increase the resolution of the ARFI image.
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