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ABSTRACT This paper presents an AI(Artificial Intelligence)-powered method for enhancing digital
creative design through image stylization. To achieve this, we introduce the Content-Style AlignmentModule
(CSAM), which includes the Dual-Stream Content-Style Processing Block (DS-CSPB), Content-Style
Matching Attention Block (CS-MAB), and Content-Style Space-Aware Interpolation Block (CS-SAIB). DS-
CSPB removes style information from content descriptors using whitening transformation while preserving
semantic structures. CS-MAB reorganizes each content descriptor with its most relevant style descriptor,
ensuring optimal style adaptation for content semantics. CS-SAIB aligns content and style descriptors in the
same space, enabling diverse semantic distributions in content images to match various style patterns. More-
over, we introduce the Multifaceted Optimization Loss (MOL). This loss comprises multiple components:
The relaxed Earth Mover Distance (rEMD) loss enhances color and texture distributions on content images.
TheMomentMatching (MM) loss reduces visual artifacts caused by cosine distance. The differentiable Color
Histogram (CH) loss efficiently addresses color blending issues, preserving image naturalness. The content
loss ensures no significant deformation or distortion during stylization. The reconstruction loss constrains
all encoder-decoder features to the VGG feature space, maintaining shared spaces between content and style
descriptors. We conducted extensive comparative and ablation experiments, which demonstrated superior
performance in image stylization, resulting in high-quality stylized images. Additionally, we provide a
comprehensive review of current research in image stylization, effectively bridging the gap in this area.

INDEX TERMS Deep learning, stylization, encoder-decoder structure, VGG.

I. INTRODUCTION
Image stylization, a technique in the fields of computer
graphics and computer vision, aims to transform one image’s
appearance and artistic style into another [1], giving the
image a unique artistic sense, as depicted in Figure 1. This
process commonly employs machine learning algorithms to
blend one image’s content with another’s style, resulting in
a new image that retains the original content while adopting
a different artistic style. Image stylization has a broad range
of applications in areas like art creation, image editing, and
filmmaking. It enables the transformation of ordinary photos
into various artistic styles, such as oil paintings, watercolors,
impressionism, and more, thereby enhancing images with

The associate editor coordinating the review of this manuscript and

approving it for publication was Taous Meriem Laleg-Kirati .

creativity and artistic value. Furthermore, image stylization
can be employed in design, advertising, and the media indus-
try to create captivating visual effects.

Traditional image stylization methods are often consid-
ered within the broader context of texture synthesis, where
textures are extracted from a style image and transferred
to a content image. Efros et al. [2] employed a Markov
Random Field (MRF) model to select the nearest neighbor-
hood texture segment for filling in pixel values, a classic
but computationally expensive approach requiring iterations
over texture segments for each pixel. Wei et al. [3] improved
the speed of texture synthesis through vector quantization.
Ashikhmin et al. [4] introduced texture synthesis algorithms
suitable for natural landscapes. Liang et al. [5] proposed
algorithms that created mixed texture images by referencing
multiple texture sample images. Han et al. [6] introduced a
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new sample-based multi-scale texture synthesis algorithm,
enabling texture synthesis for low-resolution images at dif-
ferent scales.

Despite the usefulness of traditional stylization techniques
in generating various artistic works, they still have limita-
tions: (1) Limited generalization to specific styles, (2) Focus
on low-level details, neglecting high-level semantic features,
and (3) Slowness in image transformations due to per-
pixel computation. To overcome these limitations, neural
network-based stylization techniques have emerged.

FIGURE 1. A rendering of neural style transfer by Gatys et al [1].
(a) Content image. (b) Style image. (c) Resulting image.

Gatys et al. [1] discovered that deep neural networks
can simultaneously capture low-level texture information
and high-level semantic information from images. They
introduced this technology to the field of style trans-
fer and pioneered a neural style transfer model based on
the VGG (Visual Geometry Group) network, as shown in
Figure 1. Gatys’ work attracted widespread attention from
both academia and the art world. However, their method,
which simply blends style patterns from different feature
layers onto the content image, overlooks the preservation
of content semantics, resulting in stylized images that often
suffer from blurry boundaries and distorted overall contours.
To address this issue, a simple yet effective technique called
Adaptive Instance Normalization (AdaIN) was proposed [7].
AdaIN achieves style transfer at the feature level by altering
the distribution of features to support input from arbitrary
style images. However, this method has limitations as it com-
putes the mean and variance of features globally, ignoring
local details, and therefore, it diminishes local stylization per-
formance. While these methods can effectively transfer color
and texture information from style images to target images,
they lack local perception capabilities in stylization models,
leading to the loss of local semantic information. This results
in unnatural visual effects where detailed information in the
target image is directly stylized and integratedwith the overall
semantic structure.

To improve the local perception capabilities of arbitrary
stylizationmodels, Park et al. [8] introduced Style Attentional
Networks (SANet). SANet matches style descriptors with
content descriptors and pays more attention to similar feature
regions in style images. This method has been proven effec-
tive in generating more local stylistic details in arbitrary style
transfer. However, it only re-weights feature maps of style

images and simply integrates them into content descriptors
during decoding. This causes the stylized style to blur around
the boundaries of objects in the content image. Furthermore,
it fails to align content descriptors with their associated
style descriptors correctly, resulting in inappropriate color
and texture information transfer from content semantics to
artistic styles. Subsequent works of SANet, such as the
methods proposed in [9] and [10], demonstrate the superior
performance. These methods utilize learnable kernels and
compute pairwise similarities to generate attention maps,
serving as fine-grained, point-wise feature transformations
for stylization. However, the aforementioned attention-based
style transfer methods are not without limitations. Due to the
inherent differences in content semantics and style seman-
tics, their feature distributions are heterogeneous. As the
result, the attention blocks struggle to learn the required
feature matching techniques, leading to incoherent alignment
between semantic regions and style descriptors. In other
words, the same content semantic region may be presented
in various different style patterns, resulting in visual artifacts
and chaotic stylization outcomes.

Addressing the issues in existing methods, we propose a
Content-Style Alignment Module (CSAM) to enhance image
stylization. Specifically, to solve problems of overall con-
tour distortion and the loss of local semantic information
leading to the loss of detailed information, we apply whiten-
ing transformation and position-level feature processing to
content descriptors. Additionally, to address the problem of
misalignment between content descriptors and related style
descriptors, an attention fusion block designed for artistic
style transfer is introduced, allowing each content descriptor
to be rearranged with its related style descriptor. Finally,
to resolve the incoherence between content semantics and
style descriptor matching, a space-aware interpolation block
is introduced, enabling individual pairing of content image’s
semantic distribution and style image’s stylistic pattern.

In summary, our main contributions are as follows:
(1) Introduction of CSAM, a network enabling one-to-

one matching of content semantics and style patterns while
preserving the semantic structure of content images.

(2) Proposal of a dual-stream feature processing module to
maintain both the overall contour and local details of content
images.

(3) Design of an attention feature fusion block addressing
misalignment between content and style descriptors, ensur-
ing appropriate transfer of content semantics to colors and
textures.

(4) Presentation of a space-aware interpolation block to
rectify incoherence between content semantics and style
descriptor matching.

(5) Enhancement of the loss function, incorporating
relaxed Earth Mover Distance (rEMD) loss for style fea-
ture optimization, Moment Matching (MM) loss to reduce
visual artifacts, Color Histogram (CH) loss to control color
blending, content loss for semantic preservation, and image
reconstruction loss for feature space consistency.
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(6) Extensive quantitative and qualitative experiments
on benchmark style datasets and diverse content datasets,
demonstrating the effectiveness, efficiency, and generality of
our approach.

(7) A systematic and comprehensive review of the current
landscape of image stylization, highlighting the strengths and
weaknesses of representative methods, serving as a valuable
reference for future researchers.

II. RELATED WORKS
This section provides a systematic overview of image styliza-
tion, including non-neural network-based image stylization
and neural image stylization methods. It categorizes them
in detail and systematically explains the algorithm princi-
ples and their advantages & disadvantages for representative
models.

A. NON-NEURAL NETWORK IMAGE STYLIZATION
Artistic stylization has long been an important research
area in computer graphics due to its widespread appli-
cations. Before the advent of deep learning-based image
style transfer, the related research extended into the field of
Non-Photorealistic Rendering (NPR). However, most NPR
algorithms were designed for specific artistic styles, making
it challenging to extend them to other styles. This section will
briefly review some traditional image stylization algorithms.

1) STROKE-BASED RENDERING
Stroke-Based Rendering (SBR) is the process of rendering
images with specific styles by placing discrete elements
called strokes on a virtual canvas.

SBR algorithms aim to faithfully replicate a specified style
and can effectively simulate certain types of styles, such as oil
painting, watercolor, or sketching. However, most SBR algo-
rithms are typically designed for specific styles and cannot
replicate arbitrary styles.

2) ANALOGY-BASED IMAGE STYLIZATION
Using the analogy-based approach, Hertzmann et al. [11]
synthesized images with new textures by mapping image fea-
ture relationships. Image analogy algorithms learn analogy
transformations in sample training pairs and generate stylized
images that are similar when given a test input photograph.
Image analogy can also be extended in various ways, such as
learning brush positions for portrait rendering.

In general, image analogy works well for various artistic
styles but often lacks paired training data. Another limita-
tion is that image analogy relies only on low-level features,
making it ineffective at capturing image content and style,
resulting in less-than-ideal synthesized image quality.

3) IMAGE FILTERING TECHNIQUES
The creation of artistic images aims to simplify and abstract
the subject matter. Therefore, it is possible to use relevant
image filters to render specific photos. Gooch et al. [12] first

used the difference of bilateral filters and Gaussian filters to
achieve cartoon-like effects.

Compared to other types of image stylization techniques,
image filtering techniques are faster, more stable, and suitable
for industrial applications. However, they are limited in terms
of style diversity.

B. NEURAL STYLE TRANSFER METHODS
This section provides an overview of mainstream neural style
transfer methods, including slow neural stylization based on
image iteration and fast neural neural stylization based on
model iteration. Slow stylization based on image iteration
generates stylized images through pixel iteration on noisy
images, further categorized into statistical and non-statistical
parameter-based methods depending on the style matching
approach. Methods based on non-parametric approaches pri-
marily rely on region block similarity for style transfer,
yielding better results when the content image closely resem-
bles the style image in terms of shape. The second category
of fast style transfer algorithms based on model iterations
includes those using feed-forward models and methods based
on Generative Adversarial Networks (GANs). Among these,
algorithms based on feedforward stylization models achieve
rapid style transfer by pretraining the generation model to
stylize images. On the other hand, methods based on GAN
networks primarily transform input image styles through the
adversarial interplay between generators and discriminators.
In summary, slow neural stylization methods based on image
iterations achieve stylized images by iteratively processing
pixels in the image, resulting in low computational efficiency.
In contrast, fast neural stylization methods based on model
iterations utilize generative models to stylize images, sig-
nificantly improving processing speed. However, they also
suffer from drawbacks, including poor generation quality and
limited flexibility.

1) SLOW NEURAL STYLIZATION BASED
ON IMAGE ITERATION
Slow neural stylization based on image iteration first extracts
image features using deep neural networks and then iter-
atively updates the pixel values of noisy images using
Convolutional Neural Networks (CNN). This process aligns
the semantic features of the noisy image with the content
descriptors of the content image and the style descriptors of
the style image. The slow neural stylization based on image
iteration defines two types of loss functions: content loss
and style loss, with the style loss being the key component.
It can be further divided into statistical and non-statistical
parameter-based methods.

a: STATISTICAL PARAMETER-BASED METHODS
Statistical parameter-based methods use global statistical
information for style transfer, such as Gram matrix-based
methods and Maximum Mean Discrepancy (MMD)-based
methods.
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Gram matrix-based methods. The Gram matrix method
was introduced by Gatys et al. in 2015 [13] and has been
widely used to represent style descriptors. It minimizes the
difference between the content and style descriptors of the
generated image and the input image. However, Gatys et al.’s
method fails to capture long-term correlations in images.
Additionally, the use of Gram matrices to represent style
descriptors has limitations in terms of stability and tex-
ture quality. Moreover, Gatys et al.’s method only extracts
high-level image features, neglecting low-level information,
which can result in the loss of fine details in stylized images.
Furthermore, Gatys et al.’s algorithm does not consider fac-
tors like brushstroke variations, semantic information, and
depth positioning in images, leading to unrealistic styliza-
tion. Subsequent algorithms have sought to address these
shortcomings. Berger and Memisevic [14] improved upon
Gatys’ method by incorporating Markov structures into
high-level features, enabling the generation of images that
exhibit long-term consistency, suitable for generating tex-
tures with global symmetry and transforming image seasons.
Risser et al. [15] discovered that the instability of Gram
matrices primarily arises from their inability to capture the
distribution information of image features. This can lead to
different images with distinct data distributions having iden-
tical Gram matrices. To address this issue, Risser et al. [15]
introduced an additional statistical histogram loss to repre-
sent the distribution information of image features, resolving
the instability of Gram matrices. However, this algorithm
is computationally complex. To address the problem of
low-level information loss in content images, Li et al. [16]
introduced a Laplacian loss to impose additional constraints
on low-level features. They used a Laplacian matrix to
describe low-level information in content images, comple-
menting the high-level semantic information extracted from
the VGG network. Subsequent research introduced seman-
tic information to enhance control over generated images.
Castillo et al. [17] incorporated instance-based semantic
segmentation into Gatys et al.’s method to achieve style
transfer for specific regions. Luan et al. [18] achieved style
transfer in semantically matching subregions by manually
controlling themapping of semantic features between content
and style images, preventing style overflow across different
regions. Penhouest et al. [19] improved upon Luan et al.’s [18]
approach by introducing automatic image semantic segmen-
tation, simplifying the workflow.

MMD-based methods. Li et al. [20] proposed a new
interpretation for neural style transfer, viewing it as a
domain adaptation problem. They used MMD to com-
pare the style differences between the source and target
domains. By minimizing MMD, they reduced the domain
gap, completing image stylization from the source domain
to the target domain. Li et al.’s algorithm provided a math-
ematical explanation for the matching principle of Gram
matrices, demonstrating that matching the Gram matrices
of style images and generated images essentially minimizes
the MMD between the two domain distributions. Therefore,

various MMD algorithms with different kernel functions can
be used for style transfer. This conclusion enhances the the-
oretical understanding of neural style transfer networks in
academia.

Although the aforementioned methods have improved
upon Gatys et al.’s algorithm, addressing issues such as insta-
bility, loss of details, and lack of semantic information, they
have not yet resolved the problems related to brushstroke
variations and the absence of depth positioning information.
These issues remain significant factors affecting image gen-
eration quality.

b: NON-STATISTICAL PARAMETER-BASED METHODS
Non-statistical parameter-based methods, on the other hand,
first segment both images into multiple regions and then
match the most similar regions between the two images to
achieve style transfer. These methods are effective in pre-
serving local image features. They include MRF, semantic
style transfer, and deep image analogy, based on deep neural
networks. Each of these methods has its advantages and
limitations.

Markov Random Fields. Li et al. [21] observed that early
traditional style transfer methods based on MRFs only cap-
tured correlations between individual pixel features without
constraining their spatial layout. Consequently, they proposed
combining MRFs with dCNN (deep Convolutional Neural
Network) for style transfer. They used a MRF model to
segment the image feature maps extracted by dCNN, creating
many regions, and matched regions between the two images
by capturing feature information of local pixels.

However, Li et al.’s [21] algorithm does not yield satisfac-
tory results when there is a significant difference between
the content image and the style image. Additionally, the
algorithm does not preserve image details and global seman-
tic information effectively.

Semantic Style Transfer. Since Li et al.’s [21] algorithm
does not perform precise mask segmentation of images,
it can lead to incorrect semantic matches. Therefore, Cham-
pandard et al. [22] combined semantic segmentation with
Li et al. ’s MRFs algorithm to achieve semantic style trans-
fer. However, the MRFs algorithm has high complexity.
Hence, Chen et al. [23] introduced a new content-aware
semantic mapping model to replace MRFs. This model
uses masks to constrain the spatial correspondence between
source and target images while incorporating high-order
statistical information of style descriptors to enhance style
matching consistency, simplifying the generation process.
Subsequently, Merchrez et al. [24] proposed a new contextual
loss, which considers only the similarity between image fea-
tures, disregarding the spatial positions of features, enabling
semantic style transfer without the need for spatial alignment.

Deep Image Analogy. Unlike MRFs-based methods,
Liao et al.’s [25] deep image analogy finds the most simi-
lar regions between two images using the nearest-neighbor
algorithm, aligning the features of the two images for style
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transfer. However, this method does not effectively preserve
the global semantic information in the images. Therefore,
Gu et al. [26] introduced a feature rearrangement loss on top
of this approach, adding constraints to the nearest-neighbor
algorithm to match as many region blocks as possible, main-
taining the global semantics of the image.

Although the aforementioned non-parametric methods
have expanded the horizons of slow neural style transfer, they
still have several limitations: (1) They require a certain degree
of similarity in shape between the content and style images.
(2) They lack effective representation of global semantic
features in images. (3) They tend to produce images with
relatively uniform style patterns, lacking richness in style
descriptors.

2) FAST NEURAL STYLIZATION BASED
ON MODEL ITERATION
While neural style transfer methods based on iterative image
processing have achieved impressive results, their time-
consuming nature, which requires iterations over each pixel in
an image, has been a significant drawback. Johnson et al. [27]
proposed a solution to address this issue by sacrificing flex-
ibility in style selection and delegating the image generation
process to a pre-trained feedforward stylization network,
greatly enhancing the speed of style transfer. This section
elaborates on model iteration-based methods, including those
based on feedforward generation models and GAN-based
approaches. In the case of feedforward generation models,
a significant amount of image data is initially required to
train the stylization network. Once trained, this network can
directly produce stylized results from input content images.
In contrast, GAN-based methods involve training both a gen-
erator and a discriminator until they reach aNash equilibrium,
at which point the generated images are indistinguishable
from real ones.

a: FEEDFORWARD STYLIZATION MODEL-BASED METHODS
There are two representative works in the field of feedforward
stylization model algorithms, namely, those by Johnson et al.
[27] and Ulyanov et al. [28]. Both of these models share a
common approach of stylizing images through pre-trained
feedforward models, differing primarily in their model archi-
tectures. Johnson et al. [27] introduced residual blocks and
strided convolutions on top of the model architecture pro-
posed by Radford et al. [29], while Ulyanov et al. [28] utilized
a multi-scale architecture for their generation network. Build-
ing upon Gatys et al.’s algorithm [13], Johnson et al. [27]
pioneered fast style transfer using feedforward stylization
models, achieving real-time style transformation. They intro-
duced a perceptual loss function, which aligns with the two
loss functions proposed by Gatys et al. [13]. Ulyanov et al.
[28] introduced an image generation model with a multi-scale
architecture, allowing it to learn features of the input image
across different scales, resulting in more detailed generated
images. Compared to Johnson et al. [20], Ulyanov et al.’s [28]

model employed more parallel channels, reducing the model
parameters and further enhancing style transfer speed. Sub-
sequently, Ulyanov et al. [30] discovered that replacing batch
normalization (BN), as used in their original model, with
instance normalization (IN), which normalizes each image
individually, significantly improved the quality of gener-
ated images. However, the above mentioned algorithms had
limitations such as loss of low-level information, lack of
stroke variation, and absence of deep positional information.
Moreover, their generated images slightly lagged in quality
compared to Gatys et al.’s [13] algorithm.
While the above generation model methods improved the

speed of style transfer by two orders of magnitude com-
pared to earlier iterative image stylization methods, they
could only generate images in specific styles. Achieving other
styles required retraining a feedforward generation network,
which was inflexible and time-consuming. Thus, single-
model multi-style generation networks emerged, integrating
multiple styles into a single model to enhance the efficiency
of feedforward networks. Dumoulin et al. [31] improved
upon Ulyanov et al.’s [30] work by introducing Conditional
Instance Normalization (CIN), enabling the creation of net-
works capable of transforming images into 32 different styles.
Chen et al. [32] proposed the concept of StyleBank layers,
where style descriptors are associated with a set of parameters
in StyleBank layers, while content descriptors are shared.
To achieve new style transfers, only a new StyleBank layer
needs to be separately trained. These algorithms bound style
descriptors to a small number of model parameters, reducing
the training burden. However, as the number of learned styles
increases, the model parameters become more redundant.
Therefore, Zhang et al. [33] introduced a style selection
model that incorporates multiple styles, using pixel values
as input signals to control the generation of stylized images.
This model can synthesize over 300 different textures and
generate images in 16 different styles using a feedforward
network. Zhang et al. [34] introduced the concept of CoMatch
layers, where the model first learns multiple styles and then
guides the input image to match the style descriptors in the
CoMatch layer based on the target style image, achieving
stylization.

Subsequently, Chen et al. [35] introduced the concept
of arbitrary style transfer models. They used a pre-trained
VGG network to extract multiple activation blocks from
both content and style descriptors, and then matched each
content activation block with the most similar style activa-
tion block, referred to as ‘‘Style Swap,’’ to generate images.
However, this model was slower in terms of style transfer
speed. Huang et al. [36] improved upon Dumoulin’s [31]
work by enhancing CIN with the introduction of Adaptive
Instance Normalization (AdaIN) layers, achieving real-time
arbitrary style transformation for input images. However,
AdaIN is data-driven and has limitations when generalizing
to unseen data. Additionally, AdaIN only alters the mean
and variance of feature maps, making it challenging to
generate images with rich details and complex structures.
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FIGURE 2. Sketch for image stylization using GAN.

Lu et al. [37] introduced semantic stylization into feedfor-
ward generation models, enabling arbitrary style transfer
based on semantic correspondence. Li et al. [38] proposed an
encoder/decoder-based model that introduced Whitening and
Coloring Transformations (WCT), achieving arbitrary styl-
ization without the need for training specific styles. Li et al.
[39] found that algorithms like AdaIN and WCT employed
linear transformations between content image features and
a transformation matrix for style transfer. They proposed
a general optimization approach for linear style transfer,
where a linear feedforward model was trained to replace
matrix computations in the stylization process, simplifying
the feedforward stylization model’s generation process and
improving generation speed. Shen et al. [40] introduced a
novel meta-network for arbitrary style transfer. Compared to
previous models, this meta-network had a smaller model size,
making it more portable and suitable for running on mobile
devices. Park et al. [8] discovered that previous algorithms
did not balance global and local style patterns well. There-
fore, they introduced the Style-Attentional Network (SANet),
which flexibly matched style descriptors to content descrip-
tors based on the semantic spatial distribution of the content
image.

In summary, the flexibility of feedforward stylization mod-
els has greatly improved, enabling arbitrary style transfer.
However, the generated image quality still lags slightly
behind slow style transfer algorithms based on image
iteration.

b: STYLIZATION METHODS BASED ON GAN NETWORKS
In 2014, GANs were introduced by Goodfellow et al. [41].
GANs consist of two components: a generator and a discrim-
inator, as illustrated in Figure 2.
The training process can be seen as a game between the

generator and the discriminator. The generator aims to pro-
duce realistic-looking data, while the discriminator’s goal
is to distinguish real data from fake data. Through adver-
sarial training, both components learn and improve together
to achieve the best possible generation results. Li et al.
[42] used adversarial training to train a feedforward network
based on MRF, resulting in realistic images. Their algorithm
outperformed Johnson et al.’s [27] feedforward generation

model by preserving coherent textures in complex images.
However, Li et al. ’s algorithm did not consider semantic
relevance and performed less effectively on non-texture styles
like facial synthesis. Mirza et al. [43] introduced Condi-
tional GANs (CGANs) for image generation, extending the
original GAN model by adding extra information to both the
generator and the discriminator to guide the generation pro-
cess. However, this supervised learning algorithm required
training on perfectly matched pairs of data, which are not
always available. This led to further research into unsuper-
vised stylization using GANs. Zhu et al. [44] introduced
CycleGAN, a GAN that does not require training on paired
datasets. CycleGAN employs two generators and two dis-
criminators. The generators are responsible for transforming
images between two domains, while the discriminators dif-
ferentiate between real and fake images in their respective
domains. This model not only requires images to be trans-
formed from the source domain to the target domain but
also requires target domain images to be transformable back
to the source domain, referred to as cycle-consistency loss.
DisCoGAN [45] and DualGAN [46] share similarities with
CycleGAN in terms of model architecture and experimental
approaches. Liu et al. [47] designed the UNIT framework,
which combinesGANs andVariational Autoencoders (VAEs)
to achieve unsupervised image-to-image translation by con-
structing a shared latent space. These generative adversarial
training models addressed the limitation of CGANs, which
required training on paired datasets. However, they could
only learn the relationships between two different domains
at a time, making it challenging to handle transformations
between multiple domains. Choi et al. [48] introduced Star-
GAN, a model trained on multiple cross-domain datasets,
enabling multi-domain transformations. StarGAN takes tar-
get domain labels as inputs to the generator, allowing the
generator to produce different outputs based on varying tar-
get domain labels. It trains the discriminator to identify
real or fake images and classify them into the appropri-
ate domain. During style transfer, StarGAN only alters the
domain-specific differences. Subsequently, Chen et al. [49]
introduced CartoonGAN, which transforms real images into
cartoon style. This model builds upon CycleGAN by adding
two losses based on cartoon image features, i.e., edge adver-
sarial loss and content loss, resulting in generated imageswith
clear edges and content features resembling cartoon images.
Pęśko et al. [50] extended CartoonGAN to transform videos
into cartoon style by extracting keyframes. Li et al. [51]
introduced the Attentive Adversarial Network (AAN) for car-
toonizing selfies, known as SCGAN (Selfie Cartoonization
Generative Adversarial Network). Wang et al. [52] improved
CartoonGAN with a novel lightweight GAN known as Ani-
meGAN, which preserves the original colors of images and
only cartoonizes textures. This is achieved through the intro-
duction of three novel loss functions, i.e., grayscale style loss,
color reconstruction loss, and grayscale adversarial loss. The
resulting images in the style of Hayao Miyazaki are shown in
Figure 3.
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FIGURE 3. AnimeGAN stylization result. (a) Content image. (b) Miyazaki
style image.

Following this, Zhao et al. [53] proposed ACL-GAN
(Adversarial Consistency Loss-GAN), which encourages
generated images to retain essential features of the source
images rather than requiring complete translation back to
the source domain. This allows images from two domains
to focus on feature-level similarities rather than pixel-level
similarities, enhancing flexibility and functionality. However,
the above models only focused on transforming image styles
while neglecting geometric differences between real and car-
toon images. Therefore, Cao et al. [54] introduced CariGAN,
which simultaneously performs stylization and geometric
transformation on facial photos, resulting in images with
both the texture style of cartoons and exaggerated geometric
appearances. The core of geometric deformation lies in the
introduction of a new loss function called feature loss. This
loss exaggerates the most significant features by calculating
the difference between facial coordinates in the input image
and the average facial coordinates. Shi et al. [55] introduced
WarpGAN, which combines CNNs and GANs to achieve
fully automated transformation of facial photos into a cartoon
style.

In summary, the use of GANs has provided new insights
into the stylization field, improving both speed and image
quality. Researchers have also designed various GANs tai-
lored to specific requirements, enhancing the practicality of
style transfer technology and facilitating its application in
commercial settings.

III. THE PROPOSED METHOD
A. OVERALL ARCHITECTURE
In order to achieve content preservation and semantic-region
style coherence in images, this paper proposes a novel archi-
tecture, which includes an encoder-decoder structure and
CSAM, as shown in Figure 4. In this work, a pre-trained
VGG19 network is employed as the encoder to extract deep
features from both the content and style images, which
are then input into CSAM. Within CSAM, the dual-stream
content-style processing block (DS-CSPB) is used to per-
form channel-wise feature processing for style descriptors
and position-wise feature processing for content descriptors,
content-style matching attention block (CS-MAB) aligns the
statistics of content descriptors with the attention-weighted
mean and variance of style descriptors, the content-style

FIGURE 4. Overall architecture.

space-aware interpolation block (CS-SAIB) adaptively inter-
polates between the corresponding content and stylized
descriptors to improve their feature matching degree. Finally,
the enhanced features after fusion are passed through the
decoder to generate stylized images, with the decoder struc-
ture being symmetric to the encoder structure.

B. CSAM
To achieve style coherence of content semantics while pre-
serving the semantic structure of content images, this paper
introduces a novel module designed for artistic image styliza-
tion, called CSAM. It consists of DS-CSPB, CS-MAB, and
CS-SAIB, as shown in Figure 5.

1) DS-CSPB
This paper uses two attention-based streams to process the
input content and style descriptors separately, aiming to
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FIGURE 5. CSAM.

calculate their self-similarity through the attention mecha-
nism for enhancing content and style representations. Firstly,
since style descriptors can be represented using the inner
product of vectorized feature maps, channel-wise feature
processing operations are introduced to enhance the artistic
styles in style images. The extracted style descriptors ds ∈

RC×H×W are provided to three convolutional layers to gen-
erate ds1, ds2, and ds3, and reshaped to RC×N , where N =

H×W. Then, the style attentionmapAs ∈RC×C is formulated
as (1):

As = softmax(ds1 ⊗ dTs2) (1)

In which, ⊗ denotes the matrix-wise multiplication
between feature maps ds1 and ds2. Finally, the enhanced style
feature map is calculated as (2):

dss = AT
s ⊗ ds3 + ds (2)

To remove style-related texture information from content
images while preserving their global structures, this paper
transforms content descriptors dc ∈ RC×H×W to generate
feature map dw through whitening transformation (WT).
As preserving local semantics of content images in stylized

results is crucial, position-wise feature processing is intro-
duced to adaptively capture detailed information in content
descriptors. The newly processed feature maps dw1, dw2, and
dc3 are reshaped to RC×N through convolutional operations,
generating the content attention map Ac ∈ RN×N as in (3)
and the enhanced content feature map as in (4):

Ac = softmax(dTw1 ⊗ dw2) (3)

dcc = dc3 ⊗ AT
c + dc (4)

2) CS-MAB
Currently, most attention-based research methods re-weight
the style feature maps and simply fuse them into content
feature maps, which may cause misalignment between trans-
ferred style descriptors and corresponding content descrip-
tors, leading to inappropriate colors and textures in the
stylized images. To address this issue, this paper introduces
a CS-MAB. This block learns the correspondence between
content descriptors and style descriptors based on the atten-
tion weight information of content and style descriptors.
It enables a more accurate embedding of local style patterns
from the stylization references into content feature maps
at each position. The block processes content feature maps
dcc and style feature maps dss through channel-wise mean-
variance normalization, resulting in attentionweightmapAcs.
To align style descriptors with corresponding content

descriptors more effectively in the feature space and ensure
that content semantics are transferred appropriately to
the style information, the proposed block re-weighted the
mean value and standard variance of style descriptors, and
expressed the weighted mean M∈RC×N and the weighted
standard variance S∈RC×N as follows in (5) and (6):

M = V ⊗ AT
cs (5)

S =

√
(V ⊙ V) ⊗ AT

cs − M ⊙ M (6)

In which, ⊙ denotes element-wise multiplication. Finally,
the transformed feature map is obtained by using the
weighted standard deviation S and weighted meanM:

Dcs = S ⊙ Norm(dcc) + M (7)

3) CS-SAIB
In the research of image stylization, most existing methods
are primarily focused on how to transfer the artistic styles
from the reference image to the content image as much as
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possible, while neglecting the correlation between content
semantics and a single style pattern. This often leads to mul-
tiple different artistic styles being transferred into the same
content semantics, resulting in a visually confusing effect
in the generated images. To address these issues, this paper
introduces a space-aware interpolation block [56] to achieve a
one-to-one matching effect between the semantic distribution
of the content image and the style pattern of the style image.
The space-aware interpolation block enables two types of
descriptors to be aligned in the same space, allowing different
semantic distributions in the content image and different style
patterns in the style image to be matched separately. This
block utilizes regional information for adaptive interpolation
between dcc andDcs, summarizing multi-scale regional infor-
mation using three different scales of convolutional kernels,
as in (8):

W =
1
n

n∑
i=1

Convi(Concen(dcc,Dcs)) (8)

In which, Convi(.) represents the i-th convolutional kernel,
Concen(.) denotes the channel-wise concatenation operation,
and n is set to 3. The concatenated features help identify dif-
ferences between corresponding content and style descriptors
and address the local incoherence introduced by the previous
attention block. The spatial weightsW∈RH×W obtained from
the learnable channel-wise concatenation operation are used
for interpolation:

dcs = W ⊙ dcc + (1 −W ) ⊙ dcs (9)

Unlike previous feature fusion methods, CS-SAIB fuses
features in the same spatial domain. Therefore, the inter-
polated content descriptors do not degrade, preserving the
integrity of the content semantics. Finally, the stylized
descriptors dcs are fed into the decoder to generate the final
stylized image.

C. MOL
The proposed multifaceted optimization loss function is
denoted as LMOL , which includes three main components:
reconstruction loss (Lrec), content loss (Lc), and style loss
(Ls), the latter of which consists of three sub-losses, namely
LrEMD (relaxed earth mover distance loss, rEMD), LMM
(moment matching loss, MM), and LCH (color histogram
loss, CH). The total loss function is formulated as in (10):

LMOL = αLc + βLrec + γLrEMD + δLMM + εLCH︸ ︷︷ ︸
Ls

(10)

In which, α, β, γ , δ and ε represent the weights assigned
to Lc, Lrec, LrEMD, LMM , and LCH , respectively, with values
set to 2.0, 2.0, 0.5, 9.0, and 1.0.

1) rEMD loss
To effectively enhance the distribution of colors and textures
from the style image onto the content image, the rEMD loss

is used to optimize style descriptors during feature alignment,
as in (11):

LrEMD = max(
1

HsWs

∑
i

minMij,
j

1
HsWs

∑
j

minMij
i

)

Mij = 1 −
dics ⊗ djs

||dics|| · ||djs||
(11)

where i and j are the row order and column order of thematrix,
respectively,Mij represents a pairwise cosine distance matrix
between dcs and ds.

2) MM LOSS
To address issues with the cosine distance used in LrEMD,
which neglects the magnitude of feature vectors and may lead
to visual artifacts, the MM Loss is introduced, as in (12):

LMM = ||Mcs − Ms||1 + ||6cs − 6s||1 (12)

In which,M and 6 are the mean and covariance matrix of
feature vectors.

3) CH LOSS
While the proposed module can generate high-quality styl-
ized images, it also tends to produce color blending artifacts.
Moreover, it causes color transfer to be overly uniform in
certain regions of the content image and mixes various style
patterns together. To address this issue, this paper refers
to the differentiable color histogram loss introduced by
AFIFI et al. [64]. This CH loss, at the cost of sacrificing par-
tial coherence, effectively reduces the color mixing problem,
as in (13):

LCH =
1

21/2
||H1/2

s − H1/2
cs ||2 (13)

where H is the color histogram feature.

4) CONTENT LOSS
In order to preserve the semantic structure of the content
image and prevent significant deformations and distortions
during the stylization process, this paper adopts the content
loss proposed in [56]. This loss is based on the structural
self-similarity between the content descriptor dc and the styl-
ized descriptor dcs, which is described as follows:

Lc =
1

HcWc

∑
i,j

|
Mc

ij∑
i
Mc

ij
−

Mcs
ij∑

j
Mcs

ij
| (14)

In which, Mc
ij and Mcs

ij represent the pairwise cosine dis-
tance matrix between dc and dcs.

5) RECONSTRUCTION LOSS
The existing attention transformation method alters both the
original style feature space and the content feature space.
This characteristic is detrimental to the learning process of
the proposed CS-MAB and exacerbates issues related to
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incoherent feature alignment. To address this challenge and
constrain all features within the VGG space, we employ an
image reconstruction loss. This loss compels the decoder to
reconstruct VGG features, ensuring that all features between
the encoder and decoder remain within the VGG space. This
strategy helps maintain a shared space between content and
style descriptors, as in (15):

Lrec = c(||Irc − Ic||2 + ||Irs − Is||2)

+

∑
i

(||Ri(Irc) − Ri(Ic)||2 + ||Ri(Irs) − Ri(Is)||2)

(15)

In which, Ic and Is are the input content and style images,
Irc and Irs are the content and style images of the VGG feature
reconstructions, c is a constant weight (set to 25), and Ri(I)
represents the ReLU-i layer VGG features of image I.

IV. EXPERIMENT
A. DATASET
In this paper, we utilized the MS-COCO dataset [57] for con-
tent and the WIKIART dataset [58] for benchmark style. The
MS-COCO dataset comprises 82,783 natural photos across
various categories worldwide, while the WIKIART dataset
includes 80,095 artistic images from 27 different styles, serv-
ing as the training set. Furthermore, to showcase the method’s
generality and for comparison purposes, we adopted the
settings from [65] and randomly selected 2000 images
from the Places365 dataset [66] as an additional content
dataset. For testing, we used 1,000 real photos and artistic
images.

B. EVALUATION METRICS
Our evaluation about image stylization primarily considers
qualitative evaluation and quantitative evaluation.

Qualitative evaluation focuses on visual consistency (i.e.,
whether the style aligns the content, including color and
texture), visual quality (i.e., whether the image is clear and
detailed), artistic effects (i.e., whether the image is attractive
and aesthetically pleasing), visual authenticity (i.e., whether
the image appears natural without unrealistic artifacts or dis-
tortions), and whether it meets users’ aesthetic and emotional
preferences (i.e., subjective evaluation criteria).

Quantitative evaluation methods in the MS-COCO content
dataset primarily include Fréchet Inception Distance (FID),
Content Fidelity (CF), Global Effects (GE), and Local Pattern
(LP).

1) FID
FID is a metric used to compare the similarity between two
data distributions, typically used to evaluate the performance
of generative models. In image stylization, it is used to com-
pare the distribution of style-transferred (ST) imageswith that
of ground-truth (GT) images. A lower FID value indicates
that the visual quality of the ST images is closer to that of GT

images. Its calculation is as follows (16):

FID(ST ,GT ) = ||µST − µGT ||
2

+ Tr(6ST + 6GT + 2(6ST6GT )0.5) (16)

where GT∈{c, s}, representing content images and style
images, respectively. µ is the mean of images, 6 is the
covariance matrix of images, and Tr(.) denotes the trace.

2) CF
CF uses deep convolutional neural networks to extract
high-level semantic features and calculates the similarity
between the ST images and content images through the com-
putation of multi-scale feature similarity.

3) GE
GE initially directly compares global color histograms
obtained from style images and ST images, and then cal-
culates multi-layer features in style images and ST images
using the Grammatrix to better evaluate overall texture across
multiple layers.

4) LP
LP extracts a set of 3 × 3 neural patches from multi-layer
features of style images and ST images and calculates local
style pattern similarity and diversity using normalized cross-
correlation. Its calculation is as follows (17):

LP = 6(1 − NCC(ps, pST )) (17)

where ps represents local feature patches extracted from style
images, and pST represents local feature patches extracted
from ST images. NCC denotes the normalized cross corre-
lation as in (18):

NCC(ps, pST ) =
6(ps − µps )(pST − µpST )√
6(ps − µps )2(pST − µpST )2

(18)

Note that CF, GE, and LP all use cosine similarity for
comparison since cosine similarity is independent of feature
dimensions and feature point values, making it better for
measuring overall alignment in feature direction rather than
absolute value differences.

Quantitative evaluation methods in the Places365 content
dataset primarily include Content Loss [38] (CL), LPIPS
[67], and Deception Rate (DR) [68]. For CL and LPIPS,
we used a pre-trained VGG-19 and computed the average
perceptual distance between the content images and stylized
images. For DR, we trained a VGG-19 network for classify-
ing 10 different styles fromWikiArt. DR is then calculated as
the percentage of stylized images for which the pre-trained
network predicts the correct target style.

C. EXPERIMENT SETTINGS
Adam is employed as the optimizer with a learning rate of
0.0001. During training, 8 content-style image pairs are used
in each batch. The input content and style images are resized
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to 512×512 and then randomly cropped to 256×256 patches
for effective training. The experiments are implemented using
PyTorch 1.8.1 and trained in parallel on 4 NVIDIA Tesla
V100 SXM2 GPUs with 32GB. The training process consists
of 160,000 iterations with parameter checkpoints saved every
10,000 iterations. During testing, our architecture can handle
images of arbitrary sizes.

D. BENCHMARK METHODS
To demonstrate the effectiveness of the proposed method,
contrast experiments were conducted against various
benchmark methods, including Style-Attentional Networks
(SANet) [8], multi-adaptation network (MANet) [59],
AdaAttN [10], and Progressive Attentional Manifold Align-
ment (PAMA) [56]. The following provides an introduction
to these benchmark methods:

1) SANet
SANet employs attention mechanisms to selectively extract
and apply style descriptors from reference images, cap-
turing both global and local style patterns. It incorporates
cross-feature style fusion to enhance style diversity. Through
comprehensive experiments and visual examples, SANet
showcases its ability to generate high-quality stylized images
while preserving content details. This method provides a
strong foundation for achieving impressive stylization results,
making it a noteworthy benchmark for comparison with other
style transfer methods.

2) MANet
MANet learns to adaptively match and blend content and
style descriptors from a given image and a reference style
image. This process allows for precise control over the degree
of stylization while maintaining content structure. MANet
incorporates multiple adaptation modules to capture varying
levels of detail and style complexity, resulting in impressive
style transfer results. This method serves as a valuable bench-
mark for comparing with other style transfer techniques,
particularly in its ability to handle diverse style inputs.

3) AdaAttN
The core idea of AdaAttN involves adapting attention mod-
ules to selectively transfer style information, effectively
preserving content details and achieving more coherent
and visually appealing stylized images. AdaAttN’s innova-
tive attention mechanisms enable it to surpass conventional
stylization methods, making it a compelling choice for com-
parative analysis in style transfer research.

4) PAMA
PAMA focuses on dynamically rearranging style descrip-
tors based on the spatial distribution of content descriptors
through attention operations. This approach enables the align-
ment of content and style manifolds on feature maps. This
core idea of PAMA is crucial in improving the fidelity and

TABLE 1. Quantitative assessment of image stylization effectiveness.

TABLE 2. Quantitative assessment of image stylization efficiency about
different sizes (MS).

TABLE 3. Results of additional generality evaluation experiments.

coherence of style transfer, making it an essential point of
reference for evaluating stylization methods.

E. CONTRAST EXPERIMENTS
1) QUANTITATIVE EVALUATION
a: EFFECTIVENESS CONTRAST
Table 1 provides a quantitative assessment of image styliza-
tion effectiveness.

We use 10 content images and 10 style images to generate
100 stylized images for each method and shows the average
scores in Table 1. According to the FID metric, the proposed
method achieves optimal results in preserving the structural
semantics of content images while maintaining the competi-
tive stylization compared to recent state-of-the-art methods.
It also scores highest in CF and LPmetrics, indicating a better
balance between transferring artistic styles in local details and
preserving overall content structure. Although it slightly lags
in the GE metric compared to other methods, the sacrifice
of some global style to ensure the overall visual quality of
stylized images is acceptable.

b: EFFICIENCY CONTRAST
Table 2 compares the average stylization speeds of our
method with other methods.

To ensure fairness, all methods are implemented using
PyTorch. Experiments were conducted on NVIDIA Tesla
V100 SXM2GPUs for 256 px and 512 px images. The values
in the table represent the average runtime for 100 image pairs.
Since the proposed method is an improved approach based
on attention mechanisms, it has the slightly slower speeds
compared to SANet, but it achieves speeds similar to MANet
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FIGURE 6. Comparative stylization results. (a) Content image. (b) Style
image. (c) Proposal. (d) PAMA. (e) AdaAttN. (f) MANet. (g) SANet.

and PAMA, and ismore than twice as fast as AdaAttN. In fact,
the speed of our method is limited by attention blocks and
could be further improved by designing a lightweight network
in the future.

2) QUALITATIVE EVALUATION
a: OBJECTIVE EVALUATION
To evaluate the proposed method sensorally, we compare it
with four other stylization methods, as shown in Figure 6.
In Figures 6(f) and 6(g), SANet and MANet utilize atten-

tion mechanisms to perform deep transformations of deep
features. They calculate attention maps from both style and
content descriptors and adjust their style descriptors, inte-
grating attention outputs into content descriptors.While these
methods generate fine-grained results with vivid style styles,
including texture and color, they still suffer from issues such
as semantic distortion (1st and 2nd rows) and visual artifacts
(3rd and 5th rows), causing significant distortions in the
global semantic structure of the content image. Since these
attention-based methods independently present feature points
without considering semantic distribution, they do not strictly
match a single style style (4th row).

In Figure 6(e), AdaAttN extends the attention mechanism
by fusing shallow features onto deep features, achieving bet-
ter content semantic preservation. However, the increasing
preservation of content semantics sacrifices style styles, lead-
ing to significant differences in color distribution compared
to style images (2nd and 4th rows). It also introduces style
confusion (1st row) and visual artifacts (3rd and 5th rows).

In Figure 6(d), PAMA aligns content descriptors with
style descriptors through three attention alignment modules,
gradually fusing style information into content descriptors,
allowing the attention mechanism to capture feature distribu-
tion and maintaining global semantic structure well (4th and
5th rows). However, there are still local distortions (2nd and
3rd rows) and style mixing (1st row), resulting in confusing
stylization effects.

FIGURE 7. Subjective evaluation results.

Figure 6(c) represents our method, which processes deep
content descriptors through whitening transformations, pre-
serving the global structure and fine details of the content
image effectively. It achieves content-style coherence by uti-
lizing CS-MAB and CS-SAIB for one-to-one alignment of
content semantics with artistic styles.

b: SUBJECTIVE EVALUATION
To provide statistical data evaluation of method performance,
we conduct a user study with 100 participants to compare
the visual effects of stylized images. To ensure the fairness
and comprehensiveness of the user study, 40 participants
were professionals in the field of image stylization, 30 were
researchers in image processing-related fields, and 30 were
individuals unrelated to image research. we randomly select
30 different content images and 30 different style images
from the test set and paired them randomly. Each participant
is required to select the image with the best artistic visual
effect from the stylized images generated by the proposed
method and the four comparison methods. A total of 3,000
votes are collected, and the voting ratios for each method are
statistically analyzed, as shown in Figure 7.

From Figure 7, it can be seen that our method received the
most votes, demonstrating that it not only has good content
preservation capabilities but also generates stylized images
with high style consistency and overall artistic visual effects.

F. ABLATION EXPERIMENTS
1) LOSS ABLATION
We provide results from loss ablation experiments to validate
the effectiveness of each loss function used to train the pro-
posed architecture as shown in Figure 8.

To test the effectiveness of the content loss Lc, it was
removed, resulting in significant distortion and warping of
the semantic structure of the content image, as shown in
Figure 8(c).
Removing the reconstruction loss Lrec led to incoherent

alignment between content and style descriptors, as shown
in Figure 8(d).
Eliminating LrEMD resulted in minimal style transfer,

as shown in Figure 8(e).
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FIGURE 8. Loss ablation results. (a) Content image. (b) Style image.
(c) without Lc . (d) without Lrec . (e) without LrEMD. (f) without LCH .
(g) MOL.

FIGURE 9. Block ablation results. (a) Content image. (b) Style image.
(c) without WT. (d) without CS-SAIB. (e) without CS-MAB. (f) CSAM.

Removing LCH caused color blending and overly uniform
color transfer in a region of the content image, mixing various
artistic styles, as shown in Figure 8(f).
Since removing LMM would only generate the original

content image, experiments without loss ablation were not
performed.

These experiments confirm the effectiveness of the five
selected loss functions, which are all indispensable for
achieving the desired results in this paper.

2) BLOCK ABLATION
The proposed CSAM consists of three main blocks. To val-
idate the necessity of all blocks for the experimental results,
ablation experiments were conducted, as shown in Figure 9.

The DS-CSPB primarily relies on whitening transfor-
mations to normalize content descriptors, removing style
information while preserving the global structure.

When whitening transformations are absent, too much
of the original style information from the content image is
retained, resulting in noticeable local structural distortion,
as shown in Figure 9(c).

When CS-SAIB is removed, the features fused by
CS-MAB cannot distinguish the differences between corre-
sponding content and style descriptors. It also fails to identify
the local incoherence caused by attention block, ultimately
leading to the transfer of multiple artistic styles in content
semantics and generating chaotic stylized images, as shown
in Figure 9(d).

Omitting CS-MAB means replacing it with SANet. It can
be observed that without the our fusion block, style descrip-
tors are not accurately embedded at each position in the
content feature map, leading to misalignments between con-
tent local semantics and inappropriate style information,
as shown in Figure 9(e).

FIGURE 10. Visualizations. (a) Content image. (b) Style image.

G. VISUALIZATIONS
To visually evaluate the performance of the proposedmethod,
we present some generated results of image stylization.

As shown in Figure 10, we select five different cate-
gories of source images, including animals, fields, oceans,
buildings, and portraits, and five different categories of
reference images, including sketches, oil paintings, crayon
drawings, impressionist paintings, and landscapes, for image
style transfer experiments. From the generated 25 stylized
images, it can be observed that our method can perform
arbitrary stylization experiments between various types of
images. It not only preserves the global structure of the con-
tent image but also maintains the integrity of local features.
Furthermore, it effectively conveys style information (i.e.,
texture and color) and achieves precise segmentation of dif-
ferent semantic structures, aligning perfectly with the artistic
style. Ultimately, it produces visually pleasing stylized image
results.

H. GENERALITY EXPERIMENT
To validate the universality of our method, a quantitative eval-
uation was performed on the additional Places365 dataset.
The results are shown in Table 3.

It can be observed that even when using an additional
content dataset, our method performs well in stylization,
delivering highly competitive results.

V. DISCUSSIONS
While image stylization techniques have made significant
research progress, there are still some areas where research
is not sufficiently deep, and certain unresolved issues persist.
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The following describes these problems and suggests some
targeted improvement methods:

A. LACK OF STANDARDIZED EVALUATION METRICS FOR
GENERATED IMAGE QUALITY
Currently, there is a lack of standardized objective evaluation
systems for the quality of images generated by style transfer
models. Evaluations often involve human judgments, which
are highly subjective and lack scientific rigor. Therefore,
a future research direction is to establish a standardized
evaluation process and metric system. This could involve
specifying an algorithm as a comparison standard, defining a
set of standardized image datasets for evaluation, and involv-
ing a diverse range of evaluators, including both the general
public and relevant artists, while providing them with a fixed
evaluation framework.

B. INSUFFICIENT RESEARCH ON FAST SEMANTIC STYLE
TRANSFER IN GENERATED MODELS
Current semantic segmentation is primarily applied to
slow-style transfer models, with most researchers employing
the VGG model for image feature extraction. While VGG
is effective in extracting image features, it comes with sig-
nificant computational complexity. Hence, a critical research
direction is to enhance the generation quality of fast-style
transfer models while reducing style leakage when incor-
porating semantic style transfer. A potential approach is to
employ a feedforward stylization network for style transfer
and then construct an image semantic stylization network
to segment the input content image, identifying regions that
require stylization. Finally, image fusion and edge smoothing
can be performed on these regions.

C. TEXTURE-ONLY STYLE TRANSFER
Existing neural style transfer algorithms often transfer both
color and texture simultaneously. However, there are scenar-
ios where maintaining the color of the content image while
applying style only to its texture is desired. Thus, achieving
a higher degree of selectivity in generating images while
preserving the color underlies a future development trend.
This can be potentially realized by working with grayscale
images, initially converting both the content and style images
to grayscale. Then, only the texture features are transferred
from the style image to the content image. Finally, a color
transfer algorithm can be used to reconstruct the color of the
stylized image based on the content image, ensuring both
texture and color preservation.

D. PERSONALIZED PROCESSING
To enhance image effects and cater to specific domain
requirements, it is possible to further investigate the incor-
poration of additional processing during the style trans-
fer process. Introducing color transfer, as proposed by
Zhang et al. [60], can facilitate color control in stylized
images. The utilization of image fusion, as demonstrated by

Luan et al. [61], can harmonize foreground and background
images during stylization. Additionally, incorporating image
segmentation for multimodal stylization, as introduced by
Zhang et al. [62], allows for the transfer of different styles
to segmented modules. Integrating these image processing
techniques into stylization has significant implications for
commercial applications.

E. CONSTRAINTS ON SHAPE ALTERATION
Most current stylizations primarily focus on altering image
texture and color while neglecting the impact on image shape.
In specific contexts, there is a need to generate images with
shapes that resemble the target imagemore closely. For exam-
ple, when converting real faces into cartoon characters, the
transformation involves not only stylistic changes but also
exaggerating the shape characteristics, such as the outline.
Therefore, integrating geometric transformations with image
stylization represents a crucial avenue for advancing neural
style transfer models. This could involve training a deforma-
tion network that combines with the style transfer network to
ensure that the input image closely matches the target image
in terms of both style and shape, catering to artistic domains
like cartoon production and filmmaking.

F. AUTO-TUNING
To achieve desirable stylized image results, manual parameter
tuning is often required, particularly in model optimization-
basedmethods. Each adjustment of model parameters usually
necessitates retraining themodel.While the priormethod pro-
posed a method for arbitrary stylization that does not require
extensive training, alleviating the parameter tuning problem
and avoiding the need to train separate models for different
styles, the training process of this method is complex, and
the image synthesis results are not significantly improved.
Therefore, finding a simple, controllable, and quality-assured
solution for auto-tuning parameters should be the focus of
future research.

In summary, enhancing evaluation systems, improving
model generation speed and quality, and increasing model
flexibility and diversity to meet various commercial demands
are the future research directions in the field of image
stylization.

VI. CONCLUSION
In this work, we harness the power of AI to advance digi-
tal creativity design through image stylization. We propose
a novel CSAM comprising DS-CSPB, CS-MAB, and CS-
SAIB, effectively addressing the content-style discrepancy.
In addition, our method leverages a MOL to optimize style
and content descriptors, resulting in improved color and
texture distribution while minimizing visual artifacts. This
innovative method yields high-quality stylized images with-
out significant content deformation.
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