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ABSTRACT Cloud, fog, and edge computing integrationwith futuremobile Internet-of-Things (IoT) devices
and related applications in 5G/6G networks will become more practical in the coming years. Containers
became the de facto virtualization technique that replaced Virtual Memory (VM). Mobile IoT applications,
e.g., intelligent transportation and augmented reality, incorporating fog-edge, have increased the demand
for a millisecond-scale response and processing time. Edge Computing reduces remote network traffic and
latency. These services must run on edge nodes that are physically close to devices. However, classical
migration techniques may not meet the requirements of future mission-critical IoT applications. IoT mobile
devices have limited resources for running multiple services, and client-server latency worsens when fog-
edge services must migrate to maintain proximity in light of device mobility. This study analyzes the
performance of the MiGrror migration method and the pre-copy live migration method when the migration
of heterogeneous multiple VMs/containers is considered. This paper presents mathematical models for
the stated methods and provides migration guidelines and comparisons for services to be implemented
as multiple containers, as in microservice-based environments. Experiments demonstrate that MiGrror
outperforms the pre-copy technique and, unlike conventional live migrations, can maintain less than
10 milliseconds of downtime and reduce migration time with a minimal bandwidth overhead. The results
show thatMiGrror can improve service continuity and availability for users.Most significant is that themodel
can use average and non-average values for different parameters during migration to achieve improved and
more accurate results, while other research typically only uses average values. This paper shows that using
only average parameter values in migration can lead to inaccurate results.

INDEX TERMS Downtime model, migration model, MiGrror, service continuity, service availability,
microservices, heterogeneous multiple containers, multi-access/mobile edge computing (MEC), fog
computing, live migration.

I. INTRODUCTION
New cloud-based applications (apps) have emerged due to the
cloud’s virtually infinite accessible resources and extensive
service offerings [1], [2], [3]. Moreover, microservices
are gaining increasing interest as a potent architectural
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practice for delivering software services. In this approach,
applications are designed as a set of modules known as
microservices, with each module focused on one component
of the entire application [4]. Currently, microservices are
delivered utilizing container frameworks rather than virtual
machines (VMs). Although the microservices concept was
originally built for the cloud context, it is gaining traction
as a viable solution for edge computing environments
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[5]. However, these advancements have been followed by
challenges for delay-sensitive applications with strict delay
requirements [6]. Mobility support and low latency cannot
be accommodated by the present cloud computing paradigm
[7]. In order to solve these issues, the fog [8] and edge
computing [9] paradigms have been proposed that seek to
expand cloud resources and services and bring them closer
to the network’s edge where data is generated. Consequently,
end-to-end latency is lower since the data is transmitted
across fewer hops.

Multi-access/Mobile edge computing (MEC) was recently
introduced as a key enabler of future 5G and 6G networks,
shifting services from large remote cloud servers to an
ubiquitous architecture of micro servers close to access
networks and base stations [10], [11], [12]. This proximity
can help MEC provide its main characteristics: mobility
support, real-time response, and high bandwidth [13],
which is especially important for mobile Internet-of-Things
(IoT) devices. These characteristics are vital for demanding
applications such as autonomous vehicles, healthcare, virtual
reality, augmented reality, and online gaming [9], [14], [15],
[16], particularly when migration is involved. With more
users shifting to edge computing and microservices, manag-
ing resources is becoming more challenging. Mobile devices
at the network’s edge may be repositioned between various
MEC nodes. When this movement occurs, corresponding
microservices may require migration between MEC nodes
to keep proximity to the device [17]. Furthermore, someMEC
nodes may become overloaded due to changing workloads,
while others may stay underutilized on the same network
infrastructure [18].

In some modern applications, multiple cooperating ser-
vices are required in microservices-based environments to
provide certain services; thus, we may need to consider
migrating multiple microservices [19] for those containers
that need to be in proximity to the device. Each con-
tainerized application may make use of multiple containers.
Furthermore, each mobile IoT device may run multiple appli-
cations; in this environment, multiple container migration
is inevitable [20], [21]. Therefore, we need to investigate
the simultaneous migration of multiple containers. Assume
a smart city in which tourists are traversing with their mobile
IoT devices. The mobile IoT devices are running applications
such as augmented reality (AR) and virtual reality (VR) for a
virtual tour guide in the context of the metaverse. The mobile
IoT devices are connected to the edge to reduce application
latency (turn-around time) and to provide more bandwidth.
As a basic example of a containerized metaverse application,
one microservice captures the environment from the device,
and another microservice renders the AR data to the device.
Each microservice can use single or multiple containers
in its tasks. For the VR component of the application,
another service deploys virtual reality components to the
mobile device. This application needs ultra-low response time
for smooth functionality. For such real-time applications,
Salman et al. [22] suggests an end-to-end response threshold

of 17 milliseconds (ms); otherwise, it cannot meet real-time
latency requirements. While tourists traverse the city, mobile
IoT devices require migration to keep their connections alive.
Since the applications require high bandwidth and ultra-low
latency, migrations and hand-offs must occur fast enough to
keep the applications’ response time as minimal as possible.

The hand-off is a migration component [15] that is
triggered when a device disconnects from the access point
(AP) of an edge node and connects to another node’s AP
on the same network infrastructure. Downtime occurs when
a VM or container is unavailable during migration while a
device is handed off from one edge node to the next [23].
Downtime caused by VM/container migrations lies in the
range of seconds to minutes [15], [24], [25], [26], [27], [28],
[29], [30]. The delay is strongly affected by the amount of
downtime and page faults [31], [32]. Moreover, since the
mobile IoT devicemustmigrate from the old connection point
to the new one throughout the procedure, it cannot access
services or data during hand-off. There has been considerable
work focused on reducing downtime [15], [25], [26], [27],
[28], [29], [33]. Live migration techniques could facilitate
downtime issues by sending and receiving data while the VM
or container is still operating at the source or destination.

The pre-copy live migration proposed by Clark et al.
[34], mostly used in literature, moves data from the source
to the destination in pre-determined rounds that regularly
transfer changes from the source to the destination. Despite
pre-copy lowering the downtime compared to the non-live
migration method, the VM/containers are not synchronized
(sync) immediately following a change in the memory from
the source [23]. This late synchronization causes more data to
be required to transfer after hand-off and, consequently, high
downtime and migration time for delay-sensitive applications
[23]. Some or all application components of intelligent
transportation, virtual reality, healthcare, augmented reality,
and online gaming requires ultra-low latency for data
processing and communication [35].

The stated end-to-end response is difficult to achieve with
the pre-copy method which led Rezazadeh et al. [23] to
propose the MiGrror migration technique for faster syn-
chronization between source and destination, which results
in less data transmitted during hand-off and, consequently,
less migration time and downtime compared to the pre-copy
method. The MiGrror technique mirrors memory from the
source to the destination in the same way that mirroring is
used in wide-area network servers. In this analysis, the pre-
copy method ends and hands off when the number of rounds
reaches a pre-defined threshold, e.g., 10-30 rounds in most
research. To ensure fairness, we initiate the hand-off for both
methods at the same time: pre-copy and MiGrror.

Furthermore, another limitation of the previous work on
migration is that the evaluation typically assumes aver-
age input parameter values during migrations. The input
parameters considered in this research are the transfer
rate (provisioned bandwidth), memory dirtying rate, and
memory size of the VM/container (VM/container size).
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However, the given input parameter values fluctuate over
time during migration. Memory dirtying rate and container
size values vary during the migration process depending
on the task for each VM/container of an application.
Moreover, the transfer rate can vary throughout the migration
since the user’s mobility causes changes in the distance
between the user’s device and its services, resulting in
diverse signal strength and available bandwidth for each
VM/container of an application [36].

Studies [18], [19], [33], [37], [38], [39], [40], [41],
[42], [43], [44], [45], [46], [47], [48], [49], [50], [51] use
migration modelling to comprehend the future behavior
of a system. Although most research employs average
parameter values [18], [19], [33], [37], [38], [39], [40], [41],
[42], [43], [44], [45], [46], [47], [48], [49], [50], [51] and
assumes the input parameter values remain unchanging,
our study demonstrates that the results vary since the input
parameters can constantly change during the migration. Our
results show it is essential to learn if these parameters
are higher or lower at the beginning, middle, and end of
the migration, considering migration time and downtime as
output parameters. Downtime and migration time are the two
primary output parameters in migration [18].

FIGURE 1. Various values of memory dirtying rates during migration.

The models provided need to be more accurate to represent
real-world scenarios. Figure 1 depicts the various memory
dirtying rates during a migration process derived from
the CSAP dataset [52]. The CSAP dataset consists of a
comprehensive collection of over 40,000 instances of live
migration samples accumulated over a span of several
months. The dataset comprises multiple parameters, namely
the memory dirtying rate and transfer rate.

The figure depicts hundred values representing the data
that must be transferred from the source to the destination
during migration. The values presented in figure 1 were
obtained from a snapshot of the CSAP dataset. The values
presented in figure 1were obtained from a subset of the CSAP
dataset and subsequently averaged. In our experiments,

we observed the identical trend displayed in figure 1 and
described in [15].

The problem is that while the stated input parameters can
change continuously throughout the migration process, most
migration models [18], [19], [33], [37], [38], [39], [40], [41],
[42], [43], [44], [45], [46], [47], [48], [49], [50], [51] for
multiple services assume that the parameter values remain
constant in contrast to what we see in figure 1.

As a result, using only average parameter values can result
in output parameters that differ from their realistic outputs
because output parameters can be similar, when using the
same average values for input parameters. In contrast, the
outputs for non-average input parameters can deviate, while
maintaining the same average input values. Consequently,
utilizing non-average parameter values can produce different
results while their averages remain unchanged. Using non-
average input parameter values can result in more precise
migration time and downtime outcomes. In addition, inno-
vative strategies for migrating multiple VMs/containers are
possible when considering non-average parameter values.

To exemplify the discussed current migration models’
limitations, consider twomigration procedures with the same
average parameter values (e.g., transfer rate and memory
dirtying rate) but varying values during themigration process.
In this example, increasing the memory dirtying rate at the
end of the migration significantly impacts downtime since
downtime occurs when the migration is complete [17], and
this increased memory dirtying rate requires transferring a
higher-than-average memory dirtying rate. The same holds
true when we decrease the transfer rate at the end of the
migration and the dirtied memory data transfers at a lower-
than-average transfer rate. In both cases, using average
parameter values generates the same migration time and
downtime, whereas using actual (non-average) parameter
values generates different outputs.

The same concern as described above occurs due to
employing average parameter values in current migration
models while decreasing the actual (non-average) transfer
rate at the beginning of the migration in this example. As a
result, if input parameters are higher or lower than their
average value at crucial points - at the beginning and the end
of the migration process, they can negatively affect downtime
andmigration time. These situationsworsenwhen parameters
at the given critical migration points are significantly higher
or lower than average, and in these cases, they extremely
affect downtime and migration time.

However, these crucial states are hidden when develop-
ing the edge computing environment, relying exclusively on
average input parameter values. As a result, new migration
models in edge computing are required to achieve more
accurate results for multi-container mission-critical 5G/6G
mobile IoT applications. This paper presents mathematical
models for the pre-copy and MiGrror migration methods,
offering a new perspective on modelling by utilizing both
average and non-average values during MiGrror migration,
while typically, only average values are considered in the
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literature [18], [19], [33], [37], [38], [39], [40], [41], [42],
[43], [44], [45], [46], [47], [48], [49], [50], [51]. The research
in this paper takes into account non-average values of
transfer rate, memory dirtying rate, and VM/container size
for the MiGrror technique in addition to average values.
Our experiments show that the results of both average and
non-average parameter values for the pre-copy method are
mostly identical since memory changes several times in each
round. However, the MiGrror method can consider a larger
number of synchronizing events, which is advantageous
since using actual (non-average) parameter values rather
than average ones is possible when employing the MiGrror
method. We take this novel approach since some parameters,
such as memory dirtying rate, may change several times
during the migration. To the best of our knowledge, this is
the first time that different values of bandwidth, memory
dirtying rate, and VM/container size, rather than classical
average values, are considered during the migration of each
single VM or container. To distinguish between these two
types of modelling, we also consider average parameter value
results and compare them to non-average parameter value
results in section V. Furthermore, the non-average MiGrror
migration model is applicable regardless of whether machine
learning approaches, compression, or other methods are used
to decrease migration time and downtime.

In this paper, we first model the migration of multiple
containers for both stated migration methods. We do this by
first using average values of the CSAP dataset [52], then non-
average values, followed by non-dataset input values.We also
compare the migration overhead of both methods listed and
discuss which is better suited to specific scenarios.

The main contributions of this study are summarized as
follows:

• We present the MiGrror mathematical migration model
for heterogeneousmultiple VMs/containers. This is the
first MiGrror model that considers the simultaneous
migration of multiple VMs/containers.

• For the first time, we use non-average and classical
average values for the transfer rate, memory dirtying
rate, and VM/container size, during each migration
period of every single VM/container for the MiGrror
method.

• We conducted experiments to analyze the input param-
eters that impact the performance of the investigated
migration methods.

The remainder of this paper is structured as follows: Section II
delivers background and related work on classic migration
strategies. Section III describes the classic pre-copy live
migrationmodel used in this analysis to comparewith the new
model. Section IV presents models of the MiGrror migration
for multiple VMs/containers. Section V provides evaluations
and discussions, and Section VI concludes this study.

II. BACKGROUND AND RELATED WORK
This section provides a high-level overview of edge comput-
ing live migration techniques, as well as models for migrating

multiple VMs and containers. Live migration allows virtual
machines and containers to remain operational for most of
the migration process [39]. First the pre-copy and post-copy
live migration methods are summarized, followed by the
MiGrror technique, and finally, the migration model studies
are reviewed.

A. PRE-COPY LIVE MIGRATION TECHNIQUE
With pre-copy migration [34], the entire VM/container state
is sent from the current node to the target node. An iteration
is a round in which the pre-copy waits for memory changes to
send at the end of each round. The source then resends dirty
pages, which are updated memory pages from the previous
iteration, over a number of iterations. Upon receiving the
hand-off signal, the source VM/container pauses execution to
prevent memory and state modification and transfers the final
dirty page and the latest changes in the runtime (execution)
state, which includes CPU and register updates, to the target
edge node. Finally, the VM/container resumes operation on
the target edge node. Since the pre-copy technique typically
transmits each memory page multiple times, it may have a
negative impact on the total amount of data transmitted
throughout the migration process and, consequently, the total
migration time [23]. Figure 2 shows the pre-copy iterations
and related symbols.

B. MiGrror MIGRATION TECHNIQUE
The MiGrror migration method [23] was introduced to
reduce migration time and downtime when compared to
the pre-copy method. This objective is accomplished by
synchronizing the source and destination more frequently,
resulting in a mirror of the VM/container at the destination,
similar to how mirroring is done in wide-area network
servers [23]. This technique reduces the amount of data
transferred during hand-off. Despite the intention to use more
bandwidth, the results indicate that this method outperforms
pre-copy in terms of downtime, delay, and total migration
time. Furthermore, the amount of data transferred during
migration is greater than that of live migration techniques.
Since 5G and 6G networks have significantly more available
bandwidth than previous generations, increasing bandwidth
usage between MEC nodes in this approach should not
substantially impact overall performance [23], [53]. This
methodwill be examined by presenting amathematicalmodel
in section IV, followed by results and discussion in section V.

C. POST-COPY LIVE MIGRATION TECHNIQUE
Before transferring the latest state from the source to the
target, the post-copy migration technique [54] pauses the
VM/container execution to prevent runtime state changes.
The state is then transferred to the target, along with the
minimummemory and state required to resume the execution
of the VM/container. The VM/container is then resumed at
the target. An access problem occurs when the VM attempts
to access a page that the target has not yet received. In this
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FIGURE 2. Pre-copy iterations (rounds) [51].

condition, a page fault occurs, and the source transmits
the faulty page to the target. When the VM/container is
restarted at the target node during the post-copy process, any
applications executing in the VM/container continue to run
at the target. After sending all remaining pages, the page
transfers to the target stops, and the VM/container post-copy
migration is complete.

D. MODELLING LIVE MIGRATION TECHNIQUES
Several research studies on live migration modelling have
been conducted over the last decade. Most of them base their
research on the use of a single VM or container migration
[33], [46], [47], [48], [49], [50], [51]. The studies primarily
focus on downtime and migration time and compare live
migration techniques based on various input values, such
as pre-copy iterations, page dirtying rate, bandwidth, and
VM/container size, using datasets, implementations, or their
assumptions. A subset of these papers provides models
and compares various parameters of live migration methods
[46], [47], [48], [49], while others employ estimation and
optimization techniques to reduce migration costs, such
as downtime and migration time [33], [50], [51]. Despite
extensive research on modelling the migration of a single
VM/container, few authors focus on modelling multiple-
VM/multiple-container migration [18], [19], [37], [38], [39],
[40], [41], [42], [43], [44], [45]. Some of these studies
focus on the number of VMs/containers and provisioned
bandwidth in addition to the stated input values. Most of
these studies focus on modelling multiple-VM migration
[18], [19], [37], [38], [40], [42], [43], [44], [45] to optimize
the migration performance of multiple VMs, while authors
in [39] and [41] focus on modelling multiple-container
migration. The authors in [18], [19], [33], [37], [38], [39],
[40], [41], [42], [43], [44], [45], [46], [47], [48], [49], [50],
and [51] employ only average parameter values.

E. SINGLE SERVICE MIGRATION
Altahat et al. [33] propose a neural network-based model
that predicts VMmigration performance metrics for pre-copy

and post-copy methods as well as different application
workloads to analyze the migration models under various
workloads. Metrics include downtime, migration time, and
the amount of data transferred during the migration process.
They compare their model to Linear Regression, SVR,
and SVR with bagging. The authors of [48] propose an
adaptive VM monitoring strategy for migrating a single VM
using pre-copy and post-copy methods. They develop an
autoregressive model to predict the dirty memory rate and
use it to reduce migration downtime, migration time, and the
data transfer amount. The model’s output value is determined
by a linear combination of a stochastic variable and the
previous model’s values. Tang et al. [49] use reinforcement
learning with deep Q-learning container migration to propose
power consumption, delay, and migration cost models. The
evaluation compares their algorithm to other ML algorithms,
including static threshold, median absolute deviation, and
interquartile range regression. Baccarelli et al. [50] use the
pre-copy migration time, downtime, round-trip time, and
energy consumption models to reduce delay and energy
consumption in wireless connections with a bandwidth
manager.

F. MULTIPLE SERVICE MIGRATION
The authors develop adaptive bandwidth allocation in [18],
[39], and [40] to minimize migration time in their models.
Singh et al. [18] use Geometric Programming to assign
transfer and compression rates to each VM in order to
reduce the total migration time of multi VMs. The parameters
considered includes VM size, memory dirtying rate, transfer
rate, and compression ratio of VMs. They evaluate their
experiments with up to seven VMs and nine pre-copy
iterations. Maheshwari et al. [39] developed a cost model
for multi-container migration, considering container size,
number of containers, memory dirtying rate, bandwidth, and
load at an edge node that supports mobility. They use a
Min-Max model to minimize the migration cost. Liu et al.
[40] build a migration cost model by predicting the memory
dirtying rate and employing parameters such as VM size and
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transfer rate. They use a cost model for multi-VM and employ
adaptive bandwidth allocation to reduce migration costs.

G. MIGRATION MODELS THAT PRIORITIZE DOWNTIME
AND MIGRATION TIME
The following papers consider migration to be the primary
or secondary contribution of their analysis. In more detail,
Sun et al. [19] use an M/M/C/C queuing migration model to
optimize migration and reduce downtime and migration time
for multiple VMs. Satpathy et al. [37] compare migration
model performance for multiple VMs, including comparisons
based on VM size, memory dirtying rate, and available
bandwidth. Using a platform based on a software-defined
network (SDN), He et al. [38] evaluate the performance of
multiple VM migration models. They consider migration
time and downtime to be two of their most important criteria.
To balance server load, Zhang et al. [41] propose a set of algo-
rithms for optimizing load balancing and migrating multiple
containers among cloud servers in order to balance server
load. The primary focus is load balancing; migration would
occur as a result of server load balancing with the migration
time model. Similarly, Forsman et al. [44] present a load-
balancing solution that reduces the migration cost of multiple
VMs. They also include migration time and downtime in their
cost model. In another study, Satpathy et al. [42] propose a
VM placement strategy for cloud servers while modelling
multiple-VM migration with downtime and migration time.
Considering power constraints, Elsaid et al. [43] examine
the migration cost of multiple VMs using migration time
and power consumption. Cerroni [45] investigates the cost of
migrating multiple VMs based on downtime and migration
time using the Markovian model. The network overhead and
throughput degradation are also components of the migration
cost model.

III. A PRE-COPY MIGRATION MATHEMATICAL MODEL
FOR MULTIPLE VMS/CONTAINERS USING AVERAGE
PARAMETER VALUES - THE PRE-COPY MIGRATION
MODEL
This section describes existing pre-copy migration models
for multiple VMs/containers that use average parameter
values [18], [19], [33], [37], [38], [39], [40], [46], [47],
[48], [49], [50], [51] that will be used in our experiments.
Although the stated pre-copy migration models are not
completely identical, the pre-copy migration for multiple
VMs/containers in this section will be modelled derived from
the models used in [18], [19], [33], [37], [38], [39], [40],
[46], [47], [48], [49], [50], and [51], so that we can compare
the pre-copy results with the proposed migration model.
We use only average parameter values for the pre-copy
method since considering non-average parameter values is
ineffective. This method typically employs a limited number
of rounds, e.g., 10-30 rounds in most research [18]; however,
this is incompatible with constantly changing parameter
values, such as memory dirtying and transfer rates. The
transfer rate and memory can change multiple times in each

TABLE 1. Symbols and definitions.

round of the pre-copy migration in short intervals. Therefore,
there is no single value for the stated parameters for each
round of the pre-copy.

Furthermore, since the pre-copy migration method uses a
limited number of rounds, results for both average and non-
average parameter values are mostly identical. Utilizing non-
average parameter values based on the preceding discussions
would be inefficient, as the pre-copy method cannot employ
every single value of each input parameter during the
migration. Downtime and migration time are the two primary
parameters for migration modelling analysis [18]. Downtime
is an important performancemetric for end-users, whichmust
be as low as possible to avoid service interruptions [18]. The
total migration time must be as short as possible because it
consumes computational and network resources from both
the origin and the target MEC nodes [18]. The amount of
data that must be transmitted during the migration of multiple
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VMs/containers is also considered as an overhead metric
of the migration process in this paper. Table 1 defines a
number of key parameters and their notations for the models
described in this paper. In the table, Mj, d̄j, and r̄j represent
the VM/container memory size, average memory dirtying
rate, and average transfer rate (average bandwidth) available
during migration for any VM j/container j, respectively.

The parameters specified affect migration time
(
TMPre

j

)
and downtime

(
TDPrej

)
. Higher Mj and d̄j levels increase

migration time and downtime, while higher r̄j levels decrease
migration time and downtime. The remainder of this section
will examine the downtime,migration time, andmigration
overhead of the pre-copy migration model.
During round one, the entire memory of any VM j or

container j is transferred from the source to the destination.
As a result, the data transmitted during round one, i.e., V Pre

1,j ,
may be calculated using the equation below:

V Pre
1,j = Mj (1)

The memory becomes dirty throughout the transfer as the
VM/container remains active at the source during pre-
copy migration. Then, the pre-copy rounds transfer just the
memory that was dirtied during the preceding round. The
amount of data sent at round i for every VM j/container j is:

V Pre
i,j = d̄jtPrei−1,j (2)

As soon as i reaches m, the final round, i.e. stop-and-copy,
begins.We assume that all VMs and containers havem rounds
and that every single VM j/container j stops execution after m
rounds before the stop-and-copy phase. Furthermore, the time
necessary for the transfer round i for VM j/container j, i.e.,
tPre1,j , may be recursively calculated using equations (1) and (2)
as follows:

tPre1,j =
V Pre
1,j

r̄j
+ τ =

Mj

r̄j
+ τ (3)

where τ is the inter-iteration delay shown in Figure 2.

tPre2,j =
V Pre
2,j

r̄j
+ τ =

d̄jtPre1,j

r̄j
+ τ

= λjtPre1,j + τ = λj

(
Mj

r̄j
+ τ

)
+ τ

=

λjM j

r̄j
+ λjτ + τ =

λjM j

r̄j
+ τ

(
1 + λj

)
(4)

where λj is the average memory dirtying rate divided by the
average transfer rate, d̄j

/
r̄j, for any VM j/container j.

tPre3,j =
V Pre
3,j

r̄j
+ τ =

d̄jtPre2,j

r̄j
+ τ

= λjtPre2,j + τ =
Mj

r̄j
λ
2
j + τ

(
1 − λ

3
j

1 − λj

)
(5)

. . .

tPrei,j =
V Pre
i,j

r̄j
+ τ = λjtPrei−1,j + τ

=
Mj

r̄j
λ
i−1
j + τ

(
1 − λ

i
j

1 − λj

)
(6)

Thus, the migration downtime for VM j/container j, i.e.,
TDPrej , may be calculated as:

TDPrej =
V Pre
s,j

r̄j
=
d̄jtPrem,j

r̄j

= λjtPrem,j =
Mj

r̄j
λ
m
j + λjτ

(
1 − λ

m
j

1 − λj

)
(7)

where V Pre
s,j represents the data during hand-off for any

VM j/container j. We use a maximum value here since
containers are dependent on, and interact with, one another,
and some must wait for others to respond to each user. The
maximum amount of downtime during pre-copy migration is
expressed as follows:

T PreDowntime = max
{
TDPre1 ,TDPre2 ,TDPre3 , . . . ,TDPrep

}
(8)

where p is the number of VMs/containers.
Further, the totalmigration time for everyVM j/Container j,

i.e., TMPre
j with m number of pre-copy transfer rounds

followed by a final stop-and-copy round, is given by:

TMPre
j =

m∑
i=1

tPrei,j + TDPrej

=

(
Mj

r̄j

m∑
i=1

(
λj
)i−1

+
τ

1 − λj

m∑
i=1

(
1 − λ j

)i)
+TDPrej

=
Mj

r̄j

1 − λ
m
j

1 − λj
+τ

m
(
1 − λj

)
−λj

(
1−λ

m+1
j

)
(
1 − λj

)2 +TDPrej

=
Mj

r̄j

1 − λ
m
j

1 − λj
+τ

m
(
1 − λj

)
−λj

(
1 − λ

m+1
j

)
(
1 − λj

)2
+
Mj

r̄j
λ
m
j + λjτ

(
1 − λ

m
j

1 − λj

)
(9)

The maximum migration time by assigning network transfer
rate r̄j for each VM j/container j in pre-copy migration can be
expressed as:

T Premigration = max
{
TMPre

1 ,TMPre
2 ,TMPre

3 , . . . ,TMPre
p

}
(10)

Thus, the total amount of data, migration overhead, to be
sent during migration for any VM j/container j, i.e., TAPrej ,
is given by:

TAPrej

=

m∑
i=1

V Pre
i,j + V Pre

s,j

= Mj +

m∑
i=2

d̄jtPrei−1,j + d̄jtPrem,j = Mj +

(
d̄j

m∑
i=2

tPrei−1,j

)
+ d̄jtPrem,j
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= Mj +Mjλj
1 − λ

m
j

1 − λj
+ τ d̄j

m
(
1 − λj

)
− λj

(
1 − λ

m+1
j

)
(
1 − λj

)2
+ d̄jtPrem,j = Mj +Mjλj

1 − λ
m
j

1 − λj

+ τ d̄j
m
(
1 − λj

)
− λj

(
1 − λ

m+1
j

)
(
1 − λj

)2
+Mjλ

m
j + d̄jτ

(
1 − λ

m
j

1 − λj

)
(11)

The total migration overhead during migration for all
VMs/containers is expressed as follows:

DataPremigration =

{
TAPre1 + TAPre2 + TAPre3 + . . . + TAPrep

}
(12)

For downtime, migration time, and total migration overhead,
subject to:

p∑
j=1

r̄j ≤ B (13)

where B is the total maximum reserved bandwidth for the
entire migration between two edge (MEC) nodes, and:

0 ≤ r̄j ≤ B and λj < 1 (14)

IV. MATHEMATICAL MODEL OF MULTIPLE
VMS/CONTAINERS MIGRATION USING NON-AVERAGE
PARAMETER VALUES – MiGrror MODEL
This section describes the MiGrror [23] migration model,
which for the first time, uses non-average parameter values
for transfer rate (bandwidth), memory dirtying rate, and
VM/container size during migration. Downtime, migration
time, and migration overhead (the amount of data that must
be transferred during migration) of multiple VMs/containers
are all modelled. Since stated parameters, such as memory
dirtying rate, are likely to change and do not have a
fixed value during the migration process, the use of non-
average parameter values can lead to more accurate migration
time and downtime results. Most researchers used average
parameter values. However, our proposed migration time and
downtime models revealed that the results would be different
if these parameters were higher or lower at the beginning,
middle, and end of the migration process with the same
average parameter value, as discussed in the introduction.
The problem with relying solely on average parameter
values is that the migration and downtime results will be
identical, while these results for non-average parameter
values will vary. This is a critical limitation of the current
models.

To illustrate the previously discussed limitation of the
current migration models, consider, for instance, two
migration processes with the same average parameter values
(e.g., transfer rate and memory dirtying rate) but with varying

values throughout the migration. In this example, if the
memory dirtying rate increases at the end of the migration,
it can significantly impact downtime since downtime occurs
at the end of the migration [17], and this increased
memory dirtying rate requires transferring a higher-than-
average dirty memory rate. The same holds true if the
transfer rate drops at the end of the migration and the
dirtied memory data must transfer at a slower-than-average
transfer rate. In both cases above, using average parameter
values yields the same results, whereas using actual (non-
average) parameter values yields different results. In this
case, data must be transferred at a slower-than-average
rate.

The same situation as described above occurs due to using
average parameter values in current models, while the actual
(non-average) transfer rate was lower at the beginning in
this example. As a result, if input parameters are higher or
lower than their average value at crucial points during the
migration, they can severely affect downtime and migration
time. These situations deteriorate when critical parameters
are extremely higher or lower than average, and in these
cases, they significantly affect downtime and migration
time.

These findings imply that it is advantageous to know
when the value of a parameter has a more significant
impact on the result and that we can control the result
by precisely selecting other parameter values, when it is
possible, to achieve desired results. As a result, using non-
average parameter values can provide greater insight and
control over the migration process, particularly for 5G
and 6G networks. However, these critical conditions are
hidden when constructing the edge computing environment
using only average input parameter values. As a result,
new migration models in edge computing are required
to achieve more accurate and precise results for multi-
container mission-critical IoT applications that consider user
mobility.

To address these issues, we propose developing new
models for multi-container migrations which support
mobility andmore accurately characterize migration down-
time, migration time, and migration overhead, than current
models for ultra-low and real-time applications. The models
will employ explicit input parameter details which occur
throughout the migration process as well as the requirements
of applications that provide services to end users. These input
parameters include memory dirtying rate, transfer rate, and
container size.

Using non-average input parameter values can prevent
failure related to a lack of comprehension of the stated
crucial conditions. In addition, using non-average parameters
can provide a more encouraging understanding, including
additional details of output parameter values, specifically
downtime and migration time, throughout the migration
process. Furthermore, the migration process is more pre-
cisely controlled by selecting available input parameters,
namely transfer rate, in order to achieve the desired
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results, particularly for mobility support and latency-sensitive
applications in 5G/6G mobile networks.

To the best of our knowledge, the MiGrror migration
method [23] is the only option for using non-average
parameter values during migration, as it transfers dirty
memory as soon as it becomes available. Therefore,
we will employ the MiGrror migration method in our
models.

Table 1 describes the modelling parameters. In the table,
Mj, di,j, and ri,j represent the memory size, memory dirtying
rate during event i, and available transfer rate during event
i in migration for any VM j/container j, respectively. The

specified parameters affect migration time
(
TMMir

j

)
and

downtime
(
TDMirj

)
. Higher Mj and di,j levels increase

migration time and downtime, whereas higher ri,j levels
decrease migration time and downtime. It is also critical that
different levels of ri,j and di,j occur at the beginning, end
(during hand-off), as well as the middle of the migration
process. The ri,j and di,j levels are more critical for migration
time at the beginning of the migration process, and these
levels are more critical for downtime at the end of the
migration process. The levels of both stated parameters have
the least impact on migration time and downtime in the
middle. The remainder of this section presents the MiGrror
model.

During the first event, the entire memory of any VM j or
container j is transferred from the source to the destination.
So, the data sent during event one, i.e., V1,j, can be computed
using the equation given below:

VMir
1,j = Mj (15)

The memory becomes dirty throughout the transfer as the
VM/container remains active at the source during MiGrror
migration. Then, memory-change events transfer just the
memory that was dirtied during the preceding event. The
amount of data sent at event i for every VM j/container j is:

VMir
i,j = di−1,jtMiri−1,j (16)

Furthermore, the time necessary for the transfer event i for
VM j/container j, i.e., tMir1,j , may be recursively calculated
using equations (15) and (16) as follows:

tMir1,j =
V1,j
r1,j

+ τ1,j =
Mj

r1,j
+ τ1,j (17)

where r1,j is the available transfer rate during the first event
in migration for VM j/container j, and τ1,j is the time between
the first and second consecutive events of MiGrror migration
for VM j/container j.

tMir2,j =
VMir
2,j

r2,j
+ τ2,j =

d1,jtMir1,j

r2,j
+ τ2,j

= λ2,jtMir1,j + τ2,j = λ2,j

(
Mj

r1,j
+ τ1,j

)
+ τ2,j

= λ2,j
Mj

r1,j
+ λ2,jτ1,j + τ2,j (18)

tMir3,j =
VMir
3,j

r3,j
+ τ3,j

=
d2,jtMir2,j

r3,j
+ τ3,j = λ3,jtMir2,j + τ3,j

= λ3,jλ 2,j
Mj

r1,j
+ λ3,jλ 2,jτ1,j + λ3,jτ 2,j + τ3,j (19)

tMir4,j =
VMir
4,j

r4,j
+ τ4,j

= λ4,jtMir3,j + τ4,j = λ4,jλ 3,jλ 2,j

Mj

r1,j
+ λ4,jλ3,jλ 2,jτ1,j

+ λ4,jλ 3,jτ 2,j
+ λ4,jτ 3,j + τ4,j (20)

. . .

tMiri,j =
VMir
i,j

ri,j
+ τi,j = λi,jtMiri−1,j + τi,j (21)

where τi,j is the time between two consecutive events i and
i + 1 in MiGrror migration for VM j/container j. Moreover,
λi,j is the memory dirtying rate of the previous event, event
i − 1, divided by the transfer rate of the current event, event
i, for any VM j/container j, and is equal to di−1,j/ri,j. Then:

tMiri,j = λi,jλi−1,j . . . λ 2,j
Mj

r1,j
+ λi,jλi−1,j . . . λ 2,jτ1,j

+ λi,jλi−1,j . . . λ 3,jτ 2,j
+ λi,jλi−1,j . . . λ 4,jτ 3,j

+ . . . + λi,jλ i−1,jτ i−2,j
+ λi,jτ i−1,j + τi,j (22)

Thus, the migration downtime for VM j/container j i.e.,
TDMirj can be calculated as:

TDMirj

=
VMir
s,j

rs,j
=
dn,jtMirn,j

rs,j
= λs,jtMirn,j

= λs,j

(
n∏
i=2

λi,j
Mj

r1,j
+

n∏
i=2

λi,jτ1,j +

n∏
i=3

λi,jτ2,j

+

n∏
i=4

λi,jτ3,j+. . .+λn,jλ n−1,jτ n−2,j
+λn,jτ n−1,j + τn,j

)
(23)

where VMir
s,j and rs,j represent the data sent and the available

transfer rate during hand-off, respectively, and λs,j is dn,j/rs,j
for any VM j/container j. We use a maximum value here since
containers are dependent on, and interact with, one another,
and some must wait for others to respond to each user. The
maximum amount of downtime during MiGrror migration is
expressed as follows:

TMirDowntime = max
{
TDMir1 ,TDMir2 ,TDMir3 , . . . ,TDMirp

}
(24)

Further, the total MiGrror migration time for every
VM j/container j, i.e., TMMir

j with n number of transfer events
followed by a final stop-and-copy event, is given by:

TMMir
j =

n∑
i=1

tMiri,j + TDMirj (25)
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The maximum migration time by assigning network transfer
rate ri,j for each VM j/Container j in MiGrror migration can
be expressed as:

TMirmigration = max
{
TMMir

1 ,TMMir
2 ,TMMir

3 , . . . ,TMMir
p

}
(26)

Thus, the total amount of data, migration overhead, to be
sent during MiGrror migration for any VM j/container j, i.e.,
TAMirj , is given by:

TAMirj =

n∑
i=1

VMir
i,j + VMir

s,j = Mj +

n∑
i=2

di−1,jtMiri−1,j + dn,jtMirn,j

(27)

The total migration overhead during migration for all
VMs/containers is expressed as follows:

DataMirmigration =

{
TAMir1 + TAMir2 + TAMir3 + . . . + TAMirp

}
(28)

For downtime, migration time, and total migration overhead,
subject to:

p∑
j=1

ri,j ≤ B (29)

where B is the total maximum reserved bandwidth for
the entire migration between two edge (MEC) nodes,
and:

0 ≤ ri,j ≤ B and λi,j < 1 (30)

V. PERFORMANCE EVALUATION AND DISCUSSIONS
Several parameters may affect migration performance,
including container size, transfer rate, and memory dirtying
rate. This section investigates how various parameters affect
migration performance. We use the CSAP dataset [52] and
our experiments to model pre-copy and MiGrror migration
methods. The migration time, downtime, and migration
overhead (transferred data) numbers given in the results
are the averages of ten distinctive migration runs of each
model using the Python code we developed. The pre-copy
method terminates when the number of rounds (iterations)
reaches a predefined threshold of 10 rounds (m = 10). To be
fair in our comparisons, we trigger the hand-off for both
migration methods at the same time. Furthermore, we use 20
VMs/containers (p = 20) to migrate from the source to the
destination during migration. We divide the total bandwidth
(B) by the number of VMs/containers (p) for non-dataset
values, and the transfer rate for each VM j/container j is the
same. Additional considered parameters vary and are detailed
in the subsections that follow.

Since we, unlike other researchers, consider non-
average parameter values, we calculate the minimum,
maximum, median, average, and standard deviations of

the stated parameters to examine the dataset in more
depth. The transfer rate

(
ri,j
)
ranges between a minimum

of 50 megabits per seconds (Mbps) and a maximum of
150 Mbps. The median, average, and standard deviation are
108.5, 105.385, and 29.79, respectively. Thememory dirtying
rate

(
di,j
)
is another parameter for which we consider non-

average values. The minimum value is 0.02323 Mbps, and
the maximum is 145.076 Mbps. The median and average
memory dirtying rates are 18.52 and 28.979, respectively,
with a standard deviation of 31.89. Memory sizes for VMs
and containers

(
Mj
)
range from a minimum of 249.41

megabytes (MB) to a maximum of 4080.94MB. The median,
average, and standard deviation are 813.326, 1049.83, and
625.268, respectively. The final parameter considered is λi,j,
which is the memory dirtying rate divided by the transfer rate.
During the migration process, the minimum and maximum
λi,j are 0.000196718 and 0.999938322. The median and
average are 0.166656325 and 0.274938801, respectively,
with a standard deviation of 0.292347702.

A. RESULTS USING AVERAGE PARAMETER VALUES AND
THE DATASET
This subsection focused on average parameter values to
demonstrate the difference between the pre-copy method and
MiGrror, with the following subsection focusing on non-
average parameter values.

In this subsection, we investigate the performance of the
pre-copy and MiGrror using average parameter values of
VM/container size, memory dirtying rate, and transfer rate
for each VM/container. Figure 3 illustrates that downtime
is the most noticeable distinction between the pre-copy and
MiGrror. In our experiments, the median downtime for pre-
copy is 265.924 ms, while the median downtime for MiGrror
is less than 1 ms. The pre-copy downtime is unacceptable
for future 5G and 6G delay-sensitive applications since it
results in prolonged service interruptions during migration.
The MiGrror technique, on the other hand, generates much
less downtime than the pre-copy technique since it uses live
mirroring between the source and destination.

Furthermore, as illustrated in the figure, the migration time
using the MiGrror technique is less than that of the pre-
copy technique, with maximums of 23.65 seconds (s) and
23.93 s, respectively. Using non-average parameter values
in the subsequent subsection, non-average parameter value
subsection, reveals a significantly larger difference. With the
shorter migration time, resources at the source can be made
available to other containers more quickly.

Although the MiGrror reduces downtime and migration
time, it comes at a cost: migration overhead. However, the
cost is negligible. Since the MiGrror method synchronizes
faster than the pre-copy method, it requires more bandwidth
to mirror changes from the source to the destination. The
MiGrror consumes more bandwidth than pre-copy, but it is
only a negligible 1.16% increase in total migration overhead.
Despite the additional overhead of 1.16%, downtime and
migration time are reduced.
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FIGURE 3. Comparison of the pre-copy and MiGrror migration methods using the dataset’s average parameter values (blue: Pre-Copy, red: MiGrror) (left:
Downtime, middle: Migration Time, right: Migration Overhead).

B. NON-AVERAGE PARAMETER VALUE RESULTS USING
THE DATASET
This subsection examines the performance of the pre-copy
and MiGrror techniques. For the MiGrror method, we use
average and non-average parameter values for memory
dirtying rate, transfer rate, and VM/container size and
compare them to the results of the classical pre-copy model,
which only uses average parameter values.

We cannot compare non-average parameter values of
MiGrror and pre-copy since the pre-copy uses a lim-
ited number of rounds, and the stated parameters can
change many times during each round. Therefore, only
non-average parameter values of the MiGrror migra-
tion method, and average parameter values of both the
pre-copy and MiGrror migration methods, are presented
in Figure 4.

Figure 4 is the best representation of why wemust consider
non-average parameter values in contrast to the traditional
view of using only average parameter values. The figure
depicts that fluctuations of downtime, migration time, and
migration overhead are unanticipated even when using the
same method, MiGrror. To clarify, when using average and
non-average parameter values, neither the mean nor the
median of the results is identical or even close. The same
pattern holds true for the maximum and the minimum of the
results.

Consider the MiGrror results with average and non-
average parameter values. Although the median downtime
for average parameter values is roughly four times that of
non-average parameter values, the maximum downtime using
average parameter values is roughly 50% of non-average
parameter values. Furthermore, the maximummigration time
using average parameter values and non-average parameter
values differs by about 25%, while the minimum migra-
tion time using average and non-average parameter values
differs by more than 32%. Moreover, when using average

parameter values, the standard deviation of the downtime
is only 0.21, whereas when using non-average parameter
values, it is 3.81. This high standard deviation results from
memory dirtying rate of the last event, which directly
affects downtime, according to the model and results. The
standard deviation ofmigration time follows the same pattern,
when using average and non-average parameter values at
0.30 and 3.46, respectively. The difference in standard
deviation between average and non-average parameter values
for migration overhead is substantial; 22.36 and 346.33,
respectively. Consequently, using non-average parameter
values provides us with a new perspective to improve future
applications and prevent unanticipated outcomes, such as
those shown in Figure 4, when implementing them in
the real world. These findings highlight the practicality
of using non-average parameter values when analyzing
data.

We demonstrate that the MiGrror migration overhead is
only 0.5% greater than the pre-copy migration overhead
on average, which is an additional advantage of utiliz-
ing non-average parameter values. However, when using
average parameter values, the MiGrror overhead amount
is 1.19% greater than the pre-copy migration overhead on
average.

C. NON- DATASET PARAMETER VALUES
This section studies the performance of the pre-copy and
MiGrror models in terms of several parameters: container
size, memory dirtying rate, and transfer rate. We use average
parameter values with synthesized data in this subsection
to make a fair comparison since we cannot calculate the
pre-copy results using the non-average parameter values as
explained in the previous subsection. Each subsection focuses
on one of these three parameters, with the final subsection
focusing on λi,j variations.
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FIGURE 4. Comparison of the dataset’s average and non-average parameter values using MiGrror migration (left: Downtime, middle: Migration Time,
right: Migration Overhead, blue: pre-copy. red: MiGrror using average values, green: MiGrror using non-average values).

1) PERFORMANCE BASED ON VARYING
VM/CONTAINER SIZE
Figure 5 illustrates the impact of varying VM/container
sizes on downtime, migration time, and migration overhead.
The first row of 3-D figures represents the variations in
VM/container size in terms of different λi,j ratios and the
corresponding results. The figure also depicts the down-
time, migration time, and migration overhead for various
VM/container sizes with λi,j set to 0.25 in the middle row
and 0.5 in the bottom row.

This figure shows that increasing the VM/container size
has no meaningful effect on MiGrror downtime. Only
with high λi,j ratios does pre-copy downtime increase, but
the λi,j increase is negligible since the difference is less
than 4% between the smallest and largest VM/container
sizes. However, increasing the VM/container size increases
migration time and overhead. It is also evident that the
difference between migration time and overhead of the
researched methods becomes more apparent with a higher
λi,j. In addition, as shown in the figure, migration time and
overhead increase as the VM/container size increases.

2) PERFORMANCE BASED ON VARIATION OF TRANSFER
RATE
Figure 6 illustrates how various transfer rates affect down-
time,migration time, andmigration overhead for the pre-copy
and MiGrror migration methods. We consider 200 MB as
a typical size for a container which also is considered
a lightweight VM. Furthermore, we consider that there
is a 1000 Mbps total bandwidth for all VMs/containers.
The VM/container size and memory dirtying rate are
fixed at 200 MB and 50 Mbps (since we assume there
are 20 VMs/containers), respectively. The figure represents
that increasing transfer rates reduces pre-copy downtime
significantly, from 1421 milliseconds (ms) to 70 ms, but the
value is still relatively high. However, MiGrror downtime
begins at 22 ms and ends at 1.1 ms, which is still superior
to the pre-copy. In terms of migration time, the MiGrror is
5.65% less than that of pre-copy at low transfer rates, and less
than 1% at high transfer rates. In terms of migration overhead,
the MiGrror consumes 14.61% more bandwidth than pre-
copy at a low transfer rate, but this decreases to 4.15% more
bandwidth consumption at a high transfer rate.
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FIGURE 5. Downtime, Migration Time, and Migration Overhead as functions of VM/container size for the pre-copy and MiGrror migration methods
using non-dataset parameter values (blue: Pre-Copy, red: MiGrror) (top: λi,j varies between 0.04 and 0.515, middle: λi,j is constant and set to 0.25,
bottom: λi,j is constant and set to 0.5).

These findings imply that pre-copy downtime is still
unacceptable for latency-sensitive mobile IoT applications,
even with a high transfer rate. In addition, increasing the
transfer rate converges the migration time and overhead of
both methods. These results indicate that when the transfer
rate is high, and the downtime is nonessential, such as
in applications with no delay constraints. The performance
of both approaches is nearly identical. However, when the
transfer rate is limited, MiGrror outperforms pre-copy in
terms of downtime and migration time.

Furthermore, as shown in the figure, migration time and
overhead decrease as the transfer rate rises. The same pattern
applies to pre-copy downtime but not MiGrror downtime.
MiGrror downtime is low from the beginning.

3) PERFORMANCE BASED ON VARIATION OF MEMORY
DIRTYING RATE
Figure 7 illustrates how various memory dirtying rates affect
downtime, migration time, and migration overhead for the
pre-copy andMiGrror migration methods. The VM/container
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FIGURE 6. Downtime, Migration Time, and Migration Overhead as functions of Transfer Rate for the pre-copy and MiGrror migration methods using
non-dataset parameter values (blue: Pre-Copy, red: MiGrror).

FIGURE 7. Downtime, Migration Time, and Migration Overhead as functions of Memory Dirtying Rate for the pre-copy and MiGrror migration methods
using non-dataset parameter values (blue: Pre-Copy, red: MiGrror).

size and transfer rate are fixed at 200 MB and 200 Mbps,
respectively. The figure depicts that increasing memory
dirtying rates increases pre-copy downtime significantly,
from around 20 ms at a 5 Mbps transfer rate to more than
700 ms at a 100 Mbps transfer rate. However, MiGrror
downtime begins at less than 1 ms and ends at 11 ms with
the same transfer rates, which is still superior to the pre-
copy. In terms of migration time, the MiGrror is 0.21%
less than that of the pre-copy at a low transfer rate and the
migration time improves to 4.72% at a high transfer rate.
In terms ofmigration overhead, theMiGrror consumes 0.91%
more bandwidth than pre-copy at a low transfer rate, but this
increases to about 9%more bandwidth consumption at a high
transfer rate.

These findings imply that pre-copy downtime is still
unacceptable for latency-sensitive mobile IoT applications,
even with a lowmemory dirtying rate. In addition, decreasing
the transfer rate converges migration time and overhead of
both methods. These results indicate that when the memory
dirtying rate is low and the downtime is nonessential, such
as in applications with no delay constraints, the performance
of both approaches is nearly identical. However, when the
memory dirtying rate is high, MiGrror outperforms pre-copy
in terms of downtime and migration time.

Furthermore, as shown in the figure, migration time and
overhead increase as the memory dirtying rate rises. The

same pattern applies to pre-copy downtime but not MiGrror
downtime.

4) PERFORMANCE BASED ON VARIATION OF λi,j (MEMORY
DIRTYING RATE DIVIDED BY TRANSFER RATE)
Figure 8 illustrates how various λi,j rates affect downtime,
migration time, and migration overhead for the pre-copy and
MiGrror migration methods. The VM/container size is fixed
at 200 MB. The figure shows increasing λi,j rates increase
pre-copy downtime significantly, from 60 ms at a 0.08 λi,j
rate to more than 700ms at a 0.50 λi,j rate. However, MiGrror
downtime begins at 0.95 ms and ends at 11 ms with the same
λi,j rates, which is still superior to the pre-copy. In terms of
migration time, the MiGrror is 0.69% less than that of the
pre-copy at a low λi,j rate and the difference is raised to more
than 6.65% at 0.65 λi,j rate. In terms of migration overhead,
the MiGrror consumes 0.98% more bandwidth than the pre-
copy at a 0.0275 λi,j rate, but this increases to a 9.63% more
bandwidth consumption at a 0.5 λi,j rate.
These findings imply that while the MiGrror downtime

is acceptable, pre-copy downtime is still unacceptable for
latency-sensitive mobile IoT applications, even with a low
λi,j rate. In addition, decreasing the transfer rate converges
migration time and overhead of both methods. These results
indicate that when the λi,j rate is low, and the downtime
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FIGURE 8. Downtime, Migration Time, and Migration Overhead as functions of λi,j for the pre-copy and MiGrror migration methods using non-dataset
parameter values (blue: Pre-Copy, red: MiGrror).

FIGURE 9. The pre-copy and MiGrror Downtime as a function of their
migration time (blue: Pre-Copy, red: MiGrror).

is nonessential, such as in applications with no delay
constraints, the performance of both approaches is nearly
identical. However, when the λi,j rate is high, MiGrror
outperforms pre-copy in terms of downtime and migration
time. In fact, only when the λi,j is low the pre-copy downtime
is acceptable.

Furthermore, as shown in the figure, migration time and
overhead increase as the λi,j rate rises. The same pattern
applies to pre-copy downtime but not MiGrror downtime.

5) FURTHER DISCUSSION
Figure 9 shows the relationship between downtime and
migration duration for the pre-copy and MiGrror migration
methods. As pre-copy downtime increases, migration time
increases linearly. This finding means that we cannot use
the pre-copy method after a certain value when application
downtime or migration time is critical. For instance, if an
application cannot tolerate more than 100 ms without
interrupting users, we cannot use the pre-copy for that
application, even if the migration time falls within that
application’s tolerance range. Using MiGrror, however, the
rate of increase in downtime is significantly lower than its
migration time. This finding indicates that by employing the

MiGrror method, the MEC is able to service applications,
as in the stated example, with a greater amount of migration
time, since the MiGrror downtime is still within the tolerance
range of the application.

Furthermore, as shown in figures 6, 7, and 8 as well as
in the modelling results, the memory dirtying rate directly
impacts the amount of memory transfer at each MiGrror
migration event. The MiGrror method reduced downtime by
lowering the final amount of memory transfer, as shown in
the results and equation (23).

Moreover, based on equations (7, 9, 23, 25) and fig-
ures 6 and 8, it is evident that with the same overall
bandwidth, increasing the number of containers will reduce
the transfer rate of each container, resulting in longer
migration times. The transfer rate also slightly increases
container downtimes. We skip the figure for the preceding
argument since it can be inferred from figures 6 and 8.

VI. CONCLUSION AND FUTURE DIRECTIONS
In this paper, we model the MiGrror method for multi-service
migrations for the first time. We use non-average parameter
values as well as traditional average parameter values for
downtime, migration time, and migration overhead for the
first time. We illustrated that the MiGrror migration time and
downtime outperform the pre-copy ones. As demonstrated
in the paper, utilizing non-average parameters allows for
a better understanding of what occurs during migration
and more accurate results. Outputs can deviate drastically
during crucial migration phases when actual (non-average)
input parameters vary while their averages are unchanged.
As previously stated, outputs during critical stages of the
migration process can vary significantly if actual (non-
average) input parameter values differ while their averages
remain constant. Using non-average input parameter values
in migration models can provide a refined, rational, migration
analysis, which takes into account low response time and
mobility, in multi-containerized edge computing environ-
ments. As a result, we use non-average parameter values
to obtain more accurate results and comprehension of the
environment.
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Furthermore, this model can be integrated with other
migration approaches, such as that described in [15], using
compression for the migration model to improve accuracy.
In addition, the new migration model can be integrated with
Machine Learning (ML) techniques to provide a detailed
view of expected outputs. For example, using the new MiGr-
ror model with non-average parameter values can improve
output precision to reduce migration times for multiple
containers of the research described in [18]. As a result of
utilizing MiGrror and the proposed strategies, we showed
that MiGrror improves service continuity and availability
for users. This study will lead to future research exploring
models using non-average parameter values in order to better
understand and optimize downtime and migration time using
the MiGrror method. The proposed model approach can
optimize both downtime and migration times in multi-
containerized (multi-VM) environments using non-average
parameter values, unlike previous research that only focused
on optimizing migration times using average parameter
values.
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