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ABSTRACT Due to the growing capabilities of mobile phones and devices, mobile crowd sensing (MCS) is
rapidly gaining popularity among researchers in different fields, given its ability to collect data at scale and
low cost. MCS is particularly important in the healthcare domain since it provides opportunities to collect
health, wellness, and Quality of Life information from a large and diverse population. For example, MCS
can be used to detect early signs of emerging health conditions, track the spread of infectious diseases, and
assess the effectiveness of interventions without the need for frequent clinical visits. Consequently, MCS
can also reduce healthcare costs and help overcome barriers to healthcare access. This article takes a closer
look at MCS systems that have been used to collect data for research in the medical and healthcare domains.
We provide a thorough analysis of selected systems based on their different health-related objectives, such as
monitoring physical activity, detecting and preventing disorders, and providing medical treatment. We also
adopt a three-layered architecture to structure health-centric MCS frameworks, consisting of application,
data, and sensing layers. In the application layer, we analyze participant recruitment, incentive mechanisms,
and task allocation strategies. In the data layer, we analyze the types of data collected and how they are stored
and processed for future use. The sensing layer specifies the sensing methods and explains the fundamental
requirements at a lower level. Additionally, we explore the significant challenges faced by existing MCS
systems and domains that offer promising avenues for future research, which are user privacy, resource
utilization, data quality, and user compliance. This work provides insights into some practical applications
of MCS, highlights challenges faced by existing MCS solutions, and how they can be addressed, all of which
can help catalyze future research in MCS development.

INDEX TERMS Mobile health, mobile crowd sensing, opportunistic sensing, participatory sensing.

I. INTRODUCTION
Mobile Crowd Sensing (MCS) is a powerful strategy that
leverages both mobile computing and human intelligence
to solve complex problems. The concept of MCS was first
introduced by Ganti et al. [1].Mobility is fundamental to this
concept, enabled by the portability of mobile and wearable
devices, and therefore, the ability to collect data from a
user at all times and at all locations [2]. Crowd means
that participation is based on a group of users rather than
a single individual, e.g., leveraging the rapidly growing
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mobile and wearable user population [3], [4]. In contrast
to personal sensing tasks, MCS focuses on multiple partic-
ipants simultaneously, because it requires a greater amount
of information to accurately measure and predict shared
patterns, which cannot be achieved with limited data. Finally,
sensing refers to the data collection tasks participants perform
via their mobile and wearable devices and their rapidly
growing input and sensor capabilities. The goal of MCS is
to leverage these three characteristics to measure and map
shared interests by collecting data and extracting information
from them [5]. Figure 1 serves as a visual guide that
illustrates the different components and processes involved
in MCS, providing a comprehensive overview of the MCS
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FIGURE 1. A visualization of key features of mobile crowd sensing systems.

system and its various design considerations and interaction
points.

The rapidly growing number of smartphones and wearable
devices on the market facilitates the growing reliance on
the MCS paradigm. For example, in [6], location and phone
data were used to detect behavioral changes among study
participants to predict factors that might affect their physical
and mental well-being. The work in [7] presents a similar
study that explores findings on behavioral trends based on
the correlation between data collected from smartphones
and the academic performance of college students. The
study goes further by collecting data from accelerometers,
microphones, light sensors, and self-reported surveys to
classify participants’ activities and emotional states. Con-
versations and physiological activities were also recorded
and analyzed. Today’s mobile devices have a wide range of
sensors, including GPS, accelerometer, gyroscope, camera,
and microphone, but also a growing number of physiological
and health sensors. With access to such rich data resources,
MCS applications are increasingly being used in application
domains such as emergency management [6], [8], [9], [10],
public safety [11], [12], urban planning [13], [14], [15], [16],
[17], environmental monitoring [18], [19], [20], [21], [22],
localization and tracking [23], [24], [25], [26], and social
network activities [27], [28], [29], [30], [31].
The growing interest in MCS has also led to various sys-

tems specifically designed for healthcare research, with goals
such as disease detection and prevention [32], monitoring

and detection of activities of daily living (ADLs), assessing
behavioral change strategies, and measuring the effectiveness
of medical treatment options [33]. The capabilities of
smartphone sensors have contributed significantly to research
efforts in areas such as activity recognition [7], [34], [35],
[36], [37] and emotion recognition [4], [38], [39], [40],
which has also enabled the development of comprehensive
patient-centric applications and tools such as discussed
in [33]. For patients with chronic diseases and their need
to closely track their symptoms, it can be beneficial to
continuously monitor their health status, allowing them,
or their physicians, to make necessary changes based on
the collected information [41]. Such data can help detect
subtle changes in dietary habits, activity level, and the ability
to effectively perform essential ADLs, all of which can be
early signs of a variety of health conditions and diseases.
While these personal sensing activities provide insights into
an individual’s health, the collective information from many
individuals, often over extensive geographic regions, can also
provide insights into disease patterns, environmental factors
that contribute to a disease, or the impact of modifiable risk
factors on disease outcomes.

This study provides a detailed analysis of existing MCS
systems in the healthcare sector that have been used and
evaluated in real-world scenarios. Our work demonstrates
the importance of a unified architectural framework for
MCS systems. The main contributions of this paper are as
follows:
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• We examine representative healthcare-centric MCS sys-
tems and propose a three-layer architecture to analyze
their frameworks and functionalities in detail.

• We highlight the benefits and challenges derived from
the functionalities chosen by researchers and provide
potential solutions to open challenges.

• We present future research directions for MCS systems
in healthcare based on today’s advanced technologies
and techniques.

II. METHODS
The section describes the databases and methods used
to choose the most relevant projects. Table 1 shows the
complete list of mobile crowd sensing systems covered in this
work.

A. DEFINITION AND DATA SOURCES
In this study, we adopted the approach of ‘Preferred
Reporting Items for Systematic reviews and Meta-Analyses’
(PRISMA) [42] for finding related studies. We reviewed and
selected relevant papers from various databases such as IEEE
Xplore, ACM Digital Libraries, MEDLINE, and conferences
such as UbiComp and EAI MobiHealth.

The Patient-Centered Outcomes Research Institute
(PCORI) [43] defines ‘patient-centricity’ in clinical and
health services research as follows: ‘‘Patient-centricity is a
dynamic process through which the patient regulates the flow
of information to and from him/her via multiple pathways to
exercise choices consistent with his/her preferences, values,
and beliefs. This fundamentally transformative concept
affects how health care decisions are made and who has the
authority to make them’’. In order to ensure that our selected
studies prioritized the needs and outcomes of patients as a
fundamental focus, we utilized the definition from PCORI
to discern and exclude any studies that did not align with
the principles of patient-centered research. Applied to the
MCS paradigm, this refers to the relationship between
study participants and researchers. Participants have the
right to choose what information and data they provide,
and it is essential for study creators and administrators to
obtain consent and provide guidance to participants. Both
parties should have equal power and not dominate the
other.

B. SELECTION CRITERIA
We conducted a thorough study following several steps,
including identification, screening, eligibility review, and
inclusion. Our initial search was based on articles that con-
tained the keywords ‘mobile,’ ‘crowdsensing,’ and ‘health’
in the title or abstract. We discovered numerous research
papers that aimed to address specific challenges, such as
reward mechanisms, identifying malicious activities, and
developing strategies for user recruitment. These papers focus
on general methodologies applicable to all MCS frameworks,
but they do not describe specific real-world deployment
details. After filtering out these papers, we were left with

32 relevant research publications. We then searched for
keywords in the full text, including ‘patient,’ ‘disease,’
‘illness,’ and ‘wellness.’ At this stage, we filtered out
publications that lacked health-centric objectives, did not
explicitly state the platform used, lacked participant details,
or had no sensor specifications. Lastly, we considered only
MCS systems that had been used in real-world scenarios and
fell into one of three categories: Health Promotion, Health
Research, or Health Maintenance [44]. Our selection process
is illustrated in Figure 2.
Health promotion is a category that refers to the promotion

of disease detection, behavioral interventions, andmonitoring
of human subjects [44], [45]. For example, a group of
participants performs a series of physical activities. The
result can be shared to motivate others to achieve their
goals related to their personal health status. Health research
includes studies that address issues in public health, clinical
trials, health experiment methodology, and health research
knowledge improvement [44]. Health maintenance is a
category that includes treatment, medical practice, patients,
and diagnostics [44].

FIGURE 2. Flowchart outlining the process for selecting relevant studies.

C. SELECTED STUDIES AND DATA
We have selected 19 practical MCS systems based on
21 research studies that meet our selection criteria. These
projects have been effectively implemented in the past.
Moreover, we have compiled a list of valuable surveys related
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TABLE 1. Selected 19 MCS systems [7], [34], [35], [36], [37], [38], [39], [40], [41], [46], [47], [48], [49], [50], [51], [52], [54], [55], [56] in the healthcare domain.
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to MCS systems, which are included in Table 3. These
surveys address various topics and issues that are related
to the selected projects, and they have aided in identifying
potential solutions to the problems faced.

III. RESULTS
In this section, we categorize MCS systems based on their
specific objective in the healthcare domain and describe their
various architectural designs, providing a comprehensive
breakdown of each layer of the proposed structure. Table 1
summarizes the chosen projects based on the search criteria
defined in Section II. The projects are listed in ascending
chronological order. The main objectives and other details
about the deployments are also listed.

A. SYSTEM CLASSIFICATION
We categorize the selected MCS systems into three groups:
Activity Monitoring, Disorder Detection and Prevention,
and Medical Treatment. Some applications do not fit into
any of these groups, because they have broader healthcare
objectives. However, researchers can customize these more
versatile applications to suit different purposes. They are
discussed under the Configurable category. A detailed
description of these categories can be found in Table 2.
We also briefly highlight some General-Purpose MCS
systems, i.e., systems that have not been designed specifically
for healthcare application but that can be adapted to
study health-related goals. In the end, we included an
Alternative Interpretations section to highlight other possible
classifications for the selected MCS systems aside from our
application-centric approach.

1) ACTIVITY MONITORING
Activity is often understood to be physical (such as exercise,
activities of daily living, indoor/outdoor mobility, etc.),
but often MCS systems must collect many other forms
of data that rely on a broader understanding of ‘activity.’
Examples include sleep [37], food consumption [34], [36],
communication via text messages and phone calls [6], face-
to-face and online social interaction, device usage patterns,
and work or academic performance tracking [7], to name a
few.

An example of such a system is MSDC (Mobile Sensor
Data Collector) [35], one of the first systems developed for
patient activity monitoring based on the Android operating
system. MSDC collects three types of data from users:
accelerometer, temperature, and ECG (electrocardiogram).
Each mobile phone has a near field communication (NFC)
tag at the back, which is connected to the smartphone via
Bluetooth. The data is collected by the NFC tag and then
sent to the smartphone, allowing individuals to view their own
health data. After that, the data is sent to a server for real-time
analysis and storage. As one of the earliest MCS systems,
MSDC illustrates some of the advantages of MCS compared
to wired sensor networks in the healthcare sector by making
it easier to perform remote monitoring of patients.

To ensure that participants have healthy dietary pat-
terns and to prevent obesity, HealthAware [34] and
ImageScape [36] are designed to monitor food intake (e.g.,
using photos of the consumed food), locations, and activity
levels of each participant. Caloric intake and expenditures
are estimated so that researchers can predict whether the
participant has a good dietary plan and sufficient amounts
of exercise. In addition, ImageScape also collects other
contextual information, such as timestamps of the photos
taken and audio data, so that the collected data can be
annotated with time and background noise levels. The
clustering strategy used in the project also considered time,
loudness, and location to reduce the redundancy of the photos.

StudentLife [7] monitors its participants’ mental well-
being and academic performance using automatic continuous
sensing and self-report surveys. Using continuous sensing by
the smartphones, students’ activities are closely monitored
through readings of the accelerometer, GPS, Bluetooth,
microphone, and light sensors. Participants use scaled sur-
veys to report their moods and indicate behavioral changes.
Researchers use the data to perform various statistical
analyses to find various patterns and correlations.

The COVID-19 pandemic has brought significant changes
to people’s lifestyles around the world. SocialSense [56] is
a tool developed to monitor the physical distance between
individuals. Whenever users get too close to each other
physically or intend to do so, an alert is sent out as a
reminder. Additionally, SocialSense addresses issues such as
data quality and security using a federated learning approach.

2) DISORDER DETECTION AND PREVENTION
Many chronic and neurodegenerative diseases have early
signs that can be detected, such as irregular heartbeat, sudden
loss of mobility, and falling. A few MCS applications are
explicitly designed to detect these early signs so patients
and healthcare providers can take preventive actions and
give timely feedback. For example, the SPA [41] system
consists of three main components: a network of body area
sensors that collect both biomedical and environmental data,
a remote server that stores and analyzes this data, and a team
of healthcare professionals who review records and provide
healthcare recommendations. In addition, a personalized
dynamic context-aware questionnaire is used to collect
data and detect any unusual responses from participants.
Depending on factors such as blood pressure readings,
different sets of questions will be presented to different users.
Researchers and health providers can quickly identify any
dramatic changes from sensor readings and survey responses
and then reach out to participants for more information.
Alerts will be sent out automatically based on these unusual
signs.

MoodTraces [39] takes a different approach than SPA.
It minimizes the involvement of participants’ active reporting
and automatically monitors an individual’s mood disorders
through location information only. The goal is to find
correlations between mobility patterns and depressive mood.
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TABLE 2. Real-world MCS projects with different objectives in the healthcare domain.

The goal of StressSense [40] is to identify stress using
audio data recorded using a smartphone’s microphone. Due
to different acoustic environments and individual variations
of sensing stress, they present a stress detection method using
universal adaptive stress models to adapt to specific individ-
uals or environments, therefore predicting the occurrence of
stress more accurately.

Stress and anxiety are common among university students
and require attention. BioBase [54] aims to alleviate anxiety
and promote mental wellness for college students. It offers
a mobile app that allows participants to report their mental
state and mood changes through ecological momentary
assessments. The wearable device BioBeam also collects data
on sleep, heart rate, and physical activity opportunistically.

3) MEDICAL TREATMENT
AllergyMap [50] is designed for the community of patients
allergic to different allergens such as pollen and dust. This
system collects two data sources: objective environmental
data about humidity and dust and subjective data on location,
time, and assessments submitted by the patients. AllergyMap
aims to detect known allergens spatially from the objective
sensor data and, based on patient input data (e.g., gender, age,
the severity of specific allergies, and symptoms), to prevent
patients from going to these identified areas. AllergyMap
also stratifies patients based on their profile data so that each
patient can learn the status of areas of interest in the level
of allergens detected. Historical data from the patients were
used to generate the ground truth of the specific individual;
therefore, the allergic symptoms can be managed to avoid
exacerbation.

The MCS platform TrackYourTinnitus (TYT) [52] tracks
how participants perceive their symptoms of tinnitus using
a smartphone. It records the environmental sound level and
the assessment survey submitted by participants. This work
discovered that patients’ perception of tinnitus annoyance
correlated with other factors, such as stress level. Such
findings help control the level of symptoms of tinnitus, which
was considered uncontrollable before. Such factors can also
be manipulated to mitigate the stress caused by tinnitus.

4) CONFIGURABLE
There are also MCS applications designed for general usage
in healthcare. They can be configured easily without the
need for programming expertise and knowledge of technical
details to design crowd sensing studies at scale and for
different tasks. For example, EmotionSense [46] is designed
to collect data that describes participants’ emotions and activ-
ities and to analyze the data to discover correlations among
a user’s emotions, locations, and activities. The sensors
used for this task are localization sensors (GPS, Bluetooth
Low Energy or BLE), activity sensors (accelerometer), and
microphones, which are all available onmodern smartphones.
The sampling rates can be configured based on the resources
available on the device. The system is designed to minimize
user involvement in any of these steps. EmotionSense’s goal
is to help researchers collect data that can be used for various
psychology and sociology investigations. A limitation of
the system is that it only runs on the Android operating
system.

In contrast to EmotionSense, Koios [55] combines oppor-
tunistic and participatory sensing, i.e., in addition to sensor
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TABLE 3. Surveys and reviews on mobile crowd sensing and related challenges.

data, it also uses triggers to request a user to answer a
survey or questionnaire. This is particularly useful in studies
where patient-reported outcomes are combined with sensor
data. Koios also integrates with Fitbit wearable devices,
so the types and quantities of physiological data collected
are more comprehensive than with smartphones alone. It runs
on both Android and iOS platforms, with data sent to a
central repository, where the received data can be analyzed
and displayed using a web portal. Koios data collections
are highly configurable, i.e., researchers can use the web
portal to design the surveys (questions and answer types,
timing/frequency of surveys, rules to trigger survey requests).
Researchers can also monitor user compliance, i.e., the
number and timing of the surveys submitted and the amount
of sensor data that has been collected. With these capabilities,
Koios opens the door for many types of crowd sensing studies
in healthcare and other domains.

Sensus [49] and AndWellness [38] have the same objec-
tive: to reduce the gap between human-subject researchers
and the technical details behind MCS systems. AndWellness

is another general type of MCS system that is similar
to Koios [55]. It collects survey responses via mobile
applications and has a visualization dashboard on the web.
However, it can only operate on the Android system, while
Sensus operates on both Android and iOS.

5) GENERAL-PURPOSE MCS SYSTEMS
Although not initially designed for healthcare, several MCS
frameworks can be easily adapted to study health-related
objectives. These systems are not included in Table 1,
which only focuses on health-centric applications. One
of these frameworks is MOSDEN [22], which follows
an opportunistic sensing application architecture. It allows
access to internal sensors of Android-based smartphones and
external sensors of other infrastructure. MOSDEN is initially
used for environmental monitoring, such as air and noise, and
it also provides timely visualization based on the collected
data. To make it suitable for healthcare-specific objectives,
the only change needed is to switch the sensors it accesses
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from microphone to location, accelerometer, and camera as
needed.

Medusa [75] makes it easy to obtain health data as it
already accesses several sensors such as the accelerometer,
audio, camera, and GPS. One of the main objectives of
Medusa is video documentation. Video summaries and
features are extracted from videos submitted by participants
to keep helpful information and filter out irrelevant videos.
Instead of extracting features from uploaded videos, it can
be configured only to extract health-related information from
selected raw data. This reduces overhead and allows for more
efficient data collection and analysis.

Pub-SubMCS [76] focuses on solving issues related to
efficient worker recruitment, improving data validation and
resource consumption, and protecting workers’ privacy.
It facilitates data collection through sensors embedded in
modern mobile phones. Due to its comprehensive mechanism
for creating smart contracts for various task subscribers, it can
be used to target specific groups, such as people with chronic
diseases or other medical conditions, to collect health-related
data from their mobile devices.

6) ALTERNATIVE INTERPRETATIONS
The classification of selected MCS systems can vary depend-
ing on various factors. One way to interpret the classification
is through a system-centric approach. For example, sensor
usage distinguishes systems that selectively activate sensors
for participatory and opportunistic sensing [7], [39], [41],
[46], [51] from those that need them constantly on [37],
[47], and [50]. Another way to categorize the systems is
based on user roles, with some systems involving users both
as task initiators and recipients [41], [50] and others [6],
[7], [39], [40], [46], [48] having a clear task flow between
administrators and users. Additionally, systems can also be
classified based on data collection and processing methods,
such as centralized [35], [36], [37], [38], [39], [40] and
distributed [34], [47], [56] approaches.
An infrastructure-based perspective can provide further

categorization criteria that involve the underlying technolo-
gies and physical components that support crowd sensing
tasks. These categories may include considerations of using
mobile phones [34], [35], [36], [37], [38], [39], [40] or other
portable devices [37], [47], Bluetooth utilization [41], [46],
network connectivity requirements [50], [51], [52], sampling
rate variations [38], [46], [55], [56], and battery life consider-
ations [7], [39], [41], [55]. Furthermore, infrastructure-based
categorization can encompass different data storage, data
processing, and data analysis methods [46], [47], [48], [49],
[50], [51], [52], and communication protocols [34], [35],
[36], [37] as additional classification criteria.
Our work proposes a categorization of various MCS

systems, focusing on practical objectives and diagnosis.
It is crucial to be aware that there are other ways to
categorize these systems, such as the system-centric and
infrastructure-centric approaches mentioned above. The pro-
posed categorization aligns well with the real-world MCS

systems selected in our paper, which strongly focus on
objectives.

B. MCS ANALYSIS USING A LAYERED ARCHITECTURE
Section III-A presented an overview of severalMCS solutions
and their specific applications. In this section, we take a top-
down approach inspired by [4] and [72] to analyze these
systems further by using a layered architecture approach.
Unlike the frameworks used in previous research, our three-
layered architecture (Figure 3) concentrates solely on the
most crucial features required for healthcare MCS systems.
We explain each feature in detail, how it benefits the system,
and the goals of their respective studies. Additionally, we use
this analysis to provide recommendations for improvements
for each of the layers.

1) APPLICATION LAYER
The application layer (Table 4) covers several key
requirements for initiating a human-centered research
study. In this layer, we discuss participant recruitment,
incentive methods, and task allocation.

a: PARTICIPANT RECRUITMENT
Researchers recruit participants for a study either through an
open invitation to the public or by selecting targeted individ-
uals. The first strategy is ideal for studies requiring a large
and diverse dataset. By involving individuals from various
backgrounds, researchers can collect comprehensive data and
explore the research question from multiple perspectives.
This approach is especially useful for studies that aim to
establish generalizable findings or rely on statistical analyses.

- Public: Three studies [37], [39], [40] have employed
a direct recruitment approach from the general public.
NetHealth [37] targeted the incoming first-year class, aim-
ing to secure a substantial number of participants and
ensure appropriate representation across various demo-
graphic groups. MoodTraces [39] made its application
freely available on the Google Play Store, enabling any
user who installs and utilizes it to become a participant.
By adopting an open-to-public approach, MoodTraces aimed
to explore the relationship between mobility patterns and
depressive moods across different age groups and back-
grounds. SocialSense [56], likeMoodTraces, uses anAndroid
application to collect location and mobility data from users
of different ages and geographical regions. StressSense [40]
recruited participants within the entire university campus,
aiming to incorporate individuals with diverse backgrounds
into the research cohort.

- Targeted: On the other hand, the second strategy
involves recruiting participants from a narrower and more
specific group. This method is often used when the research
question demands a specialized sample or when there is a
particular target population. By concentrating on a specific
demographic, researchers can thoroughly investigate the
research topic within the context of the chosen group. This
approach enables a more precise and detailed analysis,
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FIGURE 3. An overview of the three-layer architecture and its different features that can be used for sensing tasks in various scenarios.

yielding insights that are directly relevant to the target
population. However, sometimes a targeted approach is also
used out of convenience, i.e., ease of access to a particular
group of participants, such as college students or current
patients of a clinic.

The studies in [7], [49], [52], and [54] used a pre-
screening process to select their targeted participants. In the
StudentLife [7] study, participants were selected based on
their academic performance and had to be from the same
class to make meaningful comparisons. Participants were
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voluntarily recruited from a computer science programming
class. For Sensus [49], participants were recruited from
the same psychology class out of convenience. In [52],
participants were patients with tinnitus with varying levels
of symptom perception. The BioBase [54] study had detailed
inclusion criteria to recruit participants, as they aimed to
compare the results obtained from a randomized group with a
waitlist control group to test the efficacy of their mobile app
and wearable device.

Both strategies involve voluntary participation from indi-
viduals who have a personal interest in helping or who
are directly affected by the health concern. The work
in [37], [40], and [54] promoted their studies through emails,
flyers, and social media pages, and the studies presented
in [7] and [49] advertised solely to their own students in
class.

Our analysis found that it is crucial to be aware of
selection bias during participant recruitment [77]. This occurs
when specific individuals or groups are more likely to be
included in a study than others, leading to inaccurate research
findings. One common cause of selection bias is convenience
sampling, where participants who are easily accessible,
such as classmates [46], [49], are chosen. Selection bias
can result in a non-representative sample that excludes
less accessible individuals. Targeting specific demographics
or geographic areas can also lead to selection bias. For
example, if a study only recruits participants from urban
areas or specific age groups, the findings may differ from
the broader population. Selection bias can have significant
implications, including malicious results [78] and biased
conclusions. To mitigate this, researchers should reach out
to diverse populations and use random sampling when
possible.

b: INCENTIVE MECHANISMS
The implementation of an incentive mechanism is cru-
cial for MCS studies, because it sets the foundation for
maintaining participant enrollment, retention, and high com-
pliance. Incentives are usually rewards that have a monetary
value.

- Fixed: Fixed incentive means that participants will get a
set reward only after the end of the study. This reward can
be predetermined and shared with participants beforehand,
giving them confidence that they will get a specific reward for
their contributions. This approach is transparent and ensures
that participants know what to expect, which can motivate
them to stay committed throughout the study. BioBase [54]
used a fixed amount of incentives in their research studies.
A lottery was used to reward participants in the initial
screening process, regardless of whether they were ultimately
chosen to participate. At the end of the study, all participants
received the same compensation upon returning the wearable
device.

- Progressive: Progressive rewards are given out period-
ically during the study period rather than as a lump sum at
the end. These rewards are not finalized in terms of timing or

amount, and they may be given out when certain milestones
are reached. The specifics of when rewards are given out
can change depending on the study’s design and goals.
This approach keeps participants engaged and motivated
by providing rewards throughout their involvement in the
study. Progressive rewards also allow researchers to tailor
incentives tomatch the study’s specific requirements or goals.
Several studies used the progressive reward mechanism [7],
[37], [39], [40] for different reasons. StudentLife [7] offered
additional bonuses periodically to random top performers,
such as participants with high compliance rates, to encourage
higher task completion rates. Similarly, in the NetHealth
study [37], participants received monthly compensation, and
those with high compliance received an additional bonus.
MoodTrace [39] wanted to ensure that participants complete
a minimum number of surveys. In [40], an incentive was
only given when the participant spent a certain amount of
time performing the assigned tasks. Finally, the study in [49]
only used extra credit for the course taken by the participants
as incentives, and many participants withdrew before the
study finished. The researchers suspected that the incomplete
incentive mechanism directly affected retention. For several
other research studies [34], [35], [36], [38], [41], [46], [48],
[50], [51], no details are provided if and how incentives were
offered.

Comparing the different studies shows that many MCS
system developers have not fully considered how much and
how often rewards should be given to ensure that their studies
meet their recruitment and retention goals. However, a robust
incentive mechanism is essential to the success of a study
since it affects compliance and participation, data quality, and
overall system effectiveness. It is essential to prioritize and
address this issue, and researchers should consider the reward
structure and frequency to match their study’s requirements
and objectives. Considerations include assessing factors such
as task complexity and frequency, study duration, potential
expenses and costs (e.g., traveling or taking breaks fromwork
to be able to participate), and desired participant engagement
level.

c: TASK ALLOCATION
Task allocations can be classified into two main categories:
centralized and decentralized. We can have a better under-
standing of the strategies and mechanisms used to coordinate
and distribute tasks among participating mobile devices. This
distinction serves as a basis for analyzing and optimizing
the performance, scalability, and resource utilization of MCS
systems.

- Centralized: In centralized task allocation, researchers
take the lead in organizing and assigning tasks to participants.
They create the tasks, set guidelines and requirements, and
make them mandatory for participants to complete. This
approach gives researchers direct control over the tasks and
ensures a coordinated approach to data collection. Partici-
pants receive specific tasks and must complete them accord-
ing to concise instructions and deadlines. HealthAware [34]
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TABLE 4. Three primary components of the application layer are participant recruitment, incentive mechanisms, and task allocation. These components
are further categorized based on the strategies used in various works.

applied centralized task allocation by requiring participants
to perform physical activities and upload pictures of their
food intake to generate accurate data. StressSense [40] is
another system that used centralized task allocation, where
participants were given tasks such as mock interviews and
sales scenarios to collect emotion-related data. In [47],
participants were required to wear a mobile sensing device
on their body during the day, with clear instructions given,
and adherence was mandatory.

- Decentralized: In contrast, decentralized task allocation
involves minimal input from researchers after the study
begins. Participants have the freedom to decide whether
to complete tasks, making it a spontaneous decision.
Researchers may define the study’s scope and objectives,
but participants can choose which tasks to complete and
when to do so. This approach allows for a more flexible and
participant-driven approach, potentially resulting in a larger
pool of contributors and broader data collection. However,
it may also introduce variability in task completion and timing
due to different levels of participant engagement and task
prioritization. According to one study [54], participants were
given the option to use a mobile app or not. This option
allowed researchers to test the effectiveness and long-term
effects of using the app and paired devices while leaving the
decision to participate up to the participants.

In the healthcare domain, the participants in an MCS
system are distinct from those in emergency management
or public safety domains. This is because the tasks have
specific instructions and objectives, and prompt responses
are usually necessary. All other systems (18 out of 19)
in Table 2 applied centralized task allocation for their
studies. Our analysis reveals that researchers face a crucial
decision when allocating various sensing tasks: whether to
adopt a centralized or decentralized approach. A centralized
approach provides greater control and consistency but may
result in less genuine data. A decentralized approach offers
more freedom to the participants but may lead to challenges
in ensuring task completion and data quality. It is essential
for researchers to carefully consider this decision as it

significantly impacts the overall dynamics and outcomes of
the MCS system.

2) DATA LAYER
The data layer, shown in Table 5, describes components
such as data format, storage options, and processing
features. In this section, we discuss different implemen-
tations of these components.

a: DATA FORMAT
It is essential to consider how data is classified based on its
format because it affects how the information is organized,
structured, and interpreted. We categorize data format as
either structured or unstructured.

- Structured: Structured data contains organized and
explanatory information, such as demographic information,
survey responses, or experiment measurements. The stan-
dardized format of structured data makes it easy to collect,
store, and analyze. Researchers can quickly sort, filter,
and query structured data for statistical analysis and data
manipulation without extensive preprocessing.

Two MCS systems [49], [51] collect structured data only.
TrackYourStress [51] uses ecological momentary assess-
ments to study the participants’ stress levels. The scales and
subscales in the assessments are integers used to rate the
participants’ stress. It also collects the gender and date of
birth of the participants. Sensus [49] acquires the participants’
personal information from the social media account profile.
The structured data has human-readable values and can be
easily compared and analyzed.

- Unstructured: In contrast, unstructured data lacks a
predefined organization or structure. It includes raw data
from wearables, biosensors, smartphones, audio and video
recordings, social media posts, and images. Unstructured
data requires further analysis and processing to extract useful
information and relevant insights. Researchers use techniques
like natural language processing, machine learning, or qual-
itative analysis to uncover patterns. Although unstructured
data may contain valuable insights, its lack of predefined
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TABLE 5. The Data Layer includes data format, data storage, and data processing. Each category is further classified by the techniques used in our
selected works.

structuremakes it more challenging to analyze than structured
data.

HealthAware [34] and ImageScape [36] require pictures
of the food as the input data. The pictures cannot provide
useful insights and are meaningless before classification and
modeling. EmotionSense [46] collects audio data from the
microphone. The audio data was used to extract features
for analysis and emotion labeling. It is meaningless to
compare the raw audio data alone. In fact, many MCS
systems [35], [38], [40], [48] collect unstructured data only.
Other systems [7], [37], [39], [41], [47], [51], [52], and [56]
collected both structured and unstructured data from study
participants.

Structured data is arranged in a specific format, while
unstructured data captures a broader range of information.
Structured data is clear and easily accessible but may
overlook valuable insights. Unstructured data provides rich
and detailed insights but requires sophisticated techniques to
extract meaningful information. Future MCS platforms must
find the right balance between structured and unstructured
data collection methods.

b: DATA STORAGE
Data storage is crucial forMCS systems in healthcare because
it affects the accessibility, scalability, and reliability of the
MCS system. Generally, data storage can be categorized as
either centralized or distributed.

- Centralized: In a centralized data storage system, all the
data gathered fromMCS systems are consolidated and stored
in a single location. This approach offers the advantage of

easy accessibility to all available data for analysis and visual
representation, depending on the researchers’ objectives.
With a centralized system, researchers can process the entire
dataset without searching and synchronizing information
from various sources. This makes it easier to conduct a
comprehensive analysis and better understand the data.

Various mobile health systems [6], [34], [37], [49] utilize a
centralized data storage system for their collected health data.
HealthAware [34] has its own database dedicated to storing
health data, while Sensus [49] uses Amazon Web Services
Simple Storage Service for data storage and management.
NetHealth [37] used Fitbit to collect data and then stored it in
their own database for convenient access. Most MCS systems
in healthcare [7], [35], [36], [38], [39], [40], [41], [46], [48],
[51], [52], [55] keep their collected raw data and metadata in
a central repository for further analysis.

- Distributed: A distributed data storage system involves
storing participants’ data in different locations. This approach
provides better data security and privacy as the data is
distributed across multiple locations. However, querying and
analyzing the data may be more difficult as researchers may
need to gather and integrate data from different locations. The
fragmented nature of data storage can make data retrieval
and analysis more complex, which may require additional
resources and effort.

Three systems, the Mental and Physical Assessment
system (MPA) [47], AllergyMap [50], and SocialSense [56]
used a distributed data storage approach. In MPA, each
participant was given a mobile sensing device to carry
individually during the study. The device was returned daily
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for data extraction and recharge, as there is no central
repository for storing the data in one location for access and
sharing. On the other hand, AllergyMap used sensor data
from a public library online but also required user input to
indicate the level of allergic symptoms they experienced.
The two databases are independent of each other and
stored in different locations. SocialSense collects and stores
health-related data of the users’ health status, COVID-19
testing status, symptoms, location, and accelerometer data
from various geographical regions at each base station for
future analysis. Decentralized data storage is considered
safer than centralized storage [79] and facilitates data
recovery.

Centralized data storage simplifies data management but
raises concerns about security and privacy. Distributed data
storage enhances data privacy and security but may require
more time and resources for synchronization and analysis.
Robust security measures and privacy safeguards must be
implemented in centralized storage systems, and researchers
must weigh the benefits of enhanced privacy against potential
trade-offs when choosing distributed storage.

c: DATA PROCESSING
We analyze data processing techniques from three perspec-
tives: analysis, feedback, and methods.

- Analytics: When analyzing data, we categorize the
process as either real-time or delayed. Real-time analysis
is crucial in healthcare scenarios, as it allows for prompt
detection and response to critical situations. Immediate
processing and analysis of incoming data enable timely
notifications, alerts, or interventions. For example, real-
time analysis can help identify abnormal vital signs or
detect emergency events, triggering appropriate and timely
interventions or notifications to healthcare providers.

Four MCS systems [34], [38], [39], [41] require real-time
data analysis. Food pictures captured by [34] were analyzed
immediately so that users could quickly locate and track the
pictures under the same category. The corresponding required
activity levels and calorie intake would be reflected on the
main page of the mobile phone application. References [38]
and [39] constantly monitored the system time and location
of the participants and prompted them to perform actions
if a specific trigger was initiated in real-time. Another
similar system is the smartphone-assisted system [41], which
continuously collects biomedical and environmental data.
It detects unusual data changes in real time, and based
on the emergency levels of different monitored parameters,
the data will be reported to healthcare professionals at
different frequencies. Real-time data analysis consumes
more resources, but it is fundamental for MCS systems in
healthcare as timely responses are necessary and sometimes
required.

Delayed data analysis methods, on the other hand, have
their own benefits in healthcare MCS systems. These
methods support long-term trend analysis, retrospective
evaluations, and predictive modeling. By storing and

analyzing data over extended periods, healthcare researchers
and professionals can identify patterns, trends, and potential
risks or insights that may not be immediately apparent.
Delayed analysis methods are particularly valuable for
epidemiological studies, long-term health monitoring, or pre-
dictive analytics to identify disease outbreaks or predict
health conditions.

There are four systems [7], [46], [47], [50] analyzed
collected data in a delayed manner. StudentLife [7] collects
survey responses and sensor data from the accelerometer,
microphone, light sensor, and GPS. They were used as inputs
to statistical analysis to predict the participants’ mental health
and academic performance. EmotionSense [46] continuously
recorded the audio data of the participants; then, researchers
used appropriate classifiers to cluster the data into emotion
categories with different granularity. They can compare the
accuracy results from emotion recognition, but it does not
provide real-time feedback to the users. Another unique
example is the system designed for mental and physical
well-being assessment [47]. In this study, each participant is
given their own sensing device. The data from these devices
can only be retrieved by the researchers once the devices
are returned. This data collection method is delay-tolerant,
which helps conserve computing power and battery life. This
ensures that the study can continue without interruption and
allows for extended device usage. Reference [50] is a typical
study for predictive analysis. The users will only acquire
relevant information and feedback once a significant amount
of data is collected and analyzed.

In healthcare MCS systems, delayed data analysis can
also be beneficial. By analyzing data over extended periods,
healthcare professionals can identify patterns and trends that
may take time to become apparent. This method is beneficial
for long-term healthmonitoring, epidemiological studies, and
predictive analytics to identify disease outbreaks or predict
health conditions.

Several systems have utilized delayed data analysis
methods, including StudentLife [7], EmotionSense [46],
mental and physical well-being assessment system [47], and
AllergyMap [50]. StudentLife [7] collects survey responses
and sensor data to predict participants’ mental health and
academic performance. EmotionSense [46] records audio
data and uses classifiers to cluster the data into emotion
categories. The mental and physical well-being assessment
system [47] provides each participant with their own sensing
device, and researchers can only retrieve the data once the
devices are returned. AllergyMap [50] is an example of
predictive analytics that provides feedback to users once a
significant amount of data is collected and analyzed.

The real-time analysis ensures quick insights and enables
timely interventions or adjustments based on the data.
However, it may require significant computational resources
and real-time processing capabilities to handle the continuous
influx of data. While the delayed analysis may reduce the
computational burden and resource requirements associated
with real-time analysis, it can lead to delayed responses
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to users or study creators, potentially hindering real-time
decision-making or feedback. It is crucial to strike a balance
between real-time analysis and delayed analysis, taking into
account the specific requirements and objectives of the
study.

- Feedback: Feedback mechanisms in MCS systems
encourage participation, enhance data quality, and customize
interventions for individual participants. The classification
of context-aware and non-context-aware feedback plays a
significant role in ensuring effective communication and
participant interaction.

Context-aware feedback mechanisms take advantage of
contextual information, such as location, time, or individual
characteristics, to adapt tasks, recommendations, or system
settings accordingly. This approach enables personalized
feedback and interventions based on the participant’s spe-
cific context and needs. Context-aware feedback facilitates
targeted interventions, personalized health recommenda-
tions, and adaptive task assignments, ultimately enhancing
participant engagement and improving the accuracy and
relevance of collected data in healthcare crowd-sensing
systems.

There are several context-aware systems [34], [37], [40],
[41], [46], [55] used in healthcare. For HealthAware [34], user
information such as age, gender, weight, and exercise goal
is stored in the database. After converting and analyzing the
pictures of food consumed, the system will generate updated
daily exercise goals and calorie intake. Nethealth [37] tracks
users’ compliance levels and triggers actions when they
fall below the required threshold. StressSense [40] collects
human voice from real-life acoustic surroundings and applies
it to adapt universal stress models to participants based on
user-labeled data. Therefore, each user has his or her universal
stress model to predict the occurrence of stress. The SPA [41]
will generate personalized surveys for its users based on
previous survey responses. In EmotionSense [46], the system
has declarative rules based on the ‘facts’ it perceives. The
facts include the user’s emotions and environment, and they
are used as input to generate additional facts to trigger
actions such as turning the GPS sensor on and off. Similar
rules could be applied to other sensors as well. Koios [55]
used similar context-driven logic to design its crowdsensing
platform. Systems with context-awareness capabilities can
adjust their behaviors, leading to more meaningful data
analysis and efficient system operation. Although they
do not consider specific contextual factors, non-context-
aware feedback mechanisms are still valuable for healthcare
scenarios. They offer consistent and standardized feedback to
participants through general instructions, progress updates,
and acknowledgments. These mechanisms are also more
energy-efficient.

This work includes four non-context-aware systems [7],
[35], [51], [54]. [7] does not provide any feedback to the
students during the study because the researchers do not
want to affect student behavior. The goal is to record their
daily experiences discreetly. The system by [35] is designed

to collect sensor data independently of external factors.
TYS [51] and BioBase [54] track the stress and anxiety
of participants by using responses submitted to ecological
momentary assessment. The questions under each assessment
remain the same during the study period. These systems aim
to detect specific patterns from the collected data and do not
require contextual information to adapt.

Sensitive data may be used for personalized feedback,
which can raise concerns about privacy and security. Protect-
ing participants’ personal information and ensuring secure
data handling in a context-aware feedback strategy is crucial.
However, implementing such mechanisms can be complex
and require sophisticated algorithms, data processing capabil-
ities, and access to contextual data sources. This may impose
additional demands on system development resources, such
as computational power and memory. Moreover, contextual
adaptations may not be easily applicable to different contexts
or diverse user populations, posing a challenge for ensuring
the scalability and applicability of context-aware feedback
across various healthcare scenarios. On the other hand,
non-context-aware feedback mechanisms may not consider
individual differences or specific contextual factors, resulting
in a one-size-fits-all approach. This may limit the effec-
tiveness of the feedback, as participants may not receive
feedback that alignswith their unique needs or circumstances.
Additionally, non-context-aware feedback mechanisms may
not adapt tasks, recommendations, or system settings based
on changing circumstances or participant progress, resulting
in static and less responsive feedback. Researchers need to
evaluate these implementations before developing their own
MCS platform.

- Methods: We divide methods used for data processing
into centralized and decentralized. Centralized processing
involves analyzing and aggregating data in a central location,
which is ideal for healthcare scenarios. It offers comprehen-
sive data integration, standardized analysis techniques, and
enhanced security and privacy measures. With centralized
processing, advanced analytics, machine learning algorithms,
and data fusion from multiple sources can be applied more
efficiently, leading to more accurate diagnostics, predictive
modeling, and population health management.

Several systems, such as [37], [38], [40], and [55], use
a centralized processing strategy. Reference [40] sends all
collected data to a secure server for processing and sharing.
AndWellness [38] uses aMySQL database to store all the data
collected, and the database is only connected to one central
server for processing. Koios [55] and NetHealth [37] used
the same strategy to store and process collected data. Most of
the systems [7], [35], [36], [39], [41], [46], [48], [50], [51],
[52] we discussed in this work used a single server for data
processing. Central processing gives researchers and study
providers quick access and timely responses.

Decentralized data processing methods use the computing
power of individual mobile devices. In healthcare crowd-
sensing systems, decentralized processing allows participants
to analyze data on their devices, reducing reliance on

140338 VOLUME 11, 2023



E. Zhang et al.: Study on Mobile Crowd Sensing Systems for Healthcare Scenarios

network connections and maintaining privacy. Decentralized
processing is beneficial when real-time analysis or immediate
feedback is necessary, as it minimizes delays and enables
quick decision-making. Additionally, distributing the com-
putational load across multiple devices can improve system
scalability and resilience.

Three of the selected MCS systems [34], [47], and [56]
used decentralized data processing. HealthAware [34] stores
all data, including photos, on the mobile device for process-
ing. In [47], each mobile device stores the data locally, and
there is no central repository. This strategy is feasible and
valuable because the system collects sensitive data directly
from elderly participants. An advantage of this approach is
that data security and privacy are enhanced since only the user
can access their data. SocialSense [56] stores data from vari-
ous sources in separate base stations, each developing its own
knowledge graph based on node correlations and similarities.
These graphs are then shared across base stations, allowing
them to learn from each other while still maintaining user
privacy.

As data volumes increase in MCS systems, centralized
processing can face scalability issues. Network disruptions
or limitations can also hinder data transmission. Mobile
devices have limited capabilities, making complex data anal-
ysis resource-intensive. Decentralized processing presents
challenges with managing and processing heterogeneous data
from various devices, which can introduce inconsistencies
and errors in processed data. Ensuring data integrity and
reliability across heterogeneous devices is an ongoing
challenge in decentralized processing.

3) SENSING LAYER
Table 6 illustrates the sensing layer in MCS systems.
It includes three main components: human involvement,
sensing frequency, and data transmission. This section
describes the different approaches to structuring the
sensing layer.

a: HUMAN INVOLVEMENT
In [1], it was found that MCS tasks are categorized as either
participatory or opportunistic based on the extent of user
involvement during sensing tasks.

- Participatory: Participatory sensing requires active
and continuous contributions from participants. It involves
participants actively engaging in data collection tasks,
providing real-time and periodic updates, and actively
participating in the sensing process. Participatory sensing
is ideal for scenarios where active user engagement and
personal data collection are crucial, such as health monitoring
or environmental sensing. Two out of eighteen systems [34],
[51] used participatory sensing only. HealthAware [34]
relies heavily on input data entered by participants man-
ually. One important index used to categorize the food
pictures in the database was the name of the food, and
it required the user’s input directly. TrackYourStress [51]
is another system used for participatory sensing only. All

the input data comes from the surveys submitted by the
participants.

- Opportunistic: Opportunistic sensing tasks require
minimal user input compared to participatory sensing. This
method utilizes participant mobile device sensors to collect
data without additional user involvement. Participants can
passively contribute data as they do their daily activities
without manual input. Opportunistic sensing is particu-
larly useful for scenarios requiring large-scale datasets
where continuous user engagement is not practical or
necessary.

Our study showed that most systems, such as [7], [35],
[36], [37], [38], [39], [41], [47], [49], [50], [51], [54],
and [56], took an opportunistic sensing approach. For
instance, [35] collects data from the accelerometer, temper-
ature, and electrocardiogram signals. There is no participant
involvement other than equipping the device. Unlike [34],
ImageScape [36] automatically captures pictures of food
intake and collects additional context information such
as location, timestamp, and audio environment. However,
participants need to tag pictures manually to share with
others. MoodTrace [39] only collects location data, which
requires minimal participant involvement, and [47] only
instructs participants on how to wear the mobile sensing
device, with all sensing tasks implemented opportunistically.
SocialSense [56] collects location and accelerometer data
in an opportunistic manner. However, users need to submit
their COVID-19-related questionnaires manually. Overall,
opportunistic sensing is pervasive in MCS systems. Many
MCS systems in healthcare use both participatory and
opportunistic sensing because data from participants’ daily
activities and their surrounding environment are both crucial
and sometimes necessary.

One major drawback of data collection through active
engagement is that it can discourage widespread partici-
pation. This is because it requires participants to invest
effort and time, which can lead to reduced participation
rates. Additionally, relying on users to initiate and maintain
sensing processes may result in inconsistent data collec-
tion, as participants may only sometimes be available
or motivated to contribute. Opportunistic sensing, on the
other hand, has limitations because the collected data may
lack context and detailed information due to the passive
nature of data collection. This makes it challenging to
ensure data quality and reliability. Furthermore, opportunistic
sensing heavily relies on mobile device sensors, which vary
across different devices, leading to potential inconsistencies
in data collection. There are also privacy concerns as
data is collected without explicit user consent or aware-
ness, requiring careful consideration of privacy protection
measures.

b: SENSING FREQUENCY
The sensing frequency refers to how often the sensing task
should be performed. Two main approaches to collecting
raw sensed data are continuous and event-triggered sensing.
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TABLE 6. Sensing Layer is divided into human involvement in sensing tasks, sensing frequency, and transmission of sensed data. They are further
classified by different requirements of selected systems.

Continuous sensing involves collecting raw sensed data
continuously at a predefined sampling rate, which is suitable
for applications that require real-timemonitoring or capturing
fine-grained variations. This method is commonly used in
health tracking systems.

- Continuous: Some systems, such as [7], [34], [35],
[36], [37], [40], [52], and [54], used continuous sensing
only. One representative example of continuous sensing is
accelerometer data sensing for activity recognition [7], [34],
[35], [36]. Physiological and environmental sound data also
require continuous and independent sensing [37], [40], [52].
Reference [54] used a wearable device on the wrist for data
collecting through biosensors. Continuous sensing is required
for these systems because coherent and time-series data
are fundamental for researchers to analyze the insights and
provide meaningful feedback. Some systems implemented
both continuous and event-triggered sensing in their crowd-
sensing system, such as [38], [46], [49], and [55].

- Event-triggered: Event-triggered sensing, on the other
hand, activates sensing tasks based on specific actions or
events. When a particular action or event occurs, such as
a location change or a sensor threshold being crossed, the
system initiates the data collection process. Event-triggered
sensing conserves resources by collecting data only when
relevant events occur, making it suitable for applications
where data collection is focused on specific occurrences or
specific conditions.

Two systems, [39] and [41], implemented event-triggered
sensing only. In [39], the GPS sensor is activated only when
the user starts moving, with the movement detected through
changes in accelerometer readings serving as the trigger. The
participants in [41] received a personalized survey based on
their previous answers. In this case, the previous submission
serves as the triggering event.

An event-triggering mechanism can help conserve
resources by turning on the sensor only during specific time
intervals. Additionally, labeling the raw data with different
tags or groups can improve the efficiency of data pre-
processing. Many other systems selected in our work used
both continuous and event-triggered sensing.

Continuous sensing can consume many resources, such
as battery power and network bandwidth. This can cause
the device’s battery to drain quickly, which limits how long
the MCS system can operate. Additionally, continuous data
collection generates a large amount of information that can be
challenging to process and analyze in real-time, which leads
to delays or inefficiencies in data processing and analysis.
For event-triggered sensing, it is crucial to accurately detect
events or actions that trigger data collection to ensure that
the MCS system is effective. False positives or missed events
can result in complete or accurate data, affecting the system’s
reliability and validity. Event-triggered sensing relies on
specific actions or events to initiate data collection, but there
may be a delay between when the event occurs and when
data collection begins. This delay can cause a delay in data
collection, impacting the system’s real-time responsiveness
and the timeliness of the collected data.

c: DATA TRANSMISSION
In healthcare scenarios, it is crucial for MCS systems to
transmit data in an effective and reliable manner. It is required
to be capable of maintaining and sending information in
different situations. We analyze data transmission from two
aspects: the network connection’s availability and privacy
rules. We also examine how systems operate with or without
network access and consider both user and service provider
perspectives on data privacy during transmission.
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- Network: Based on the operational requirements of
communication networks, we classify the MCS systems into
online and offline modes. Online transmission refers to the
process of transmitting data when a network connection is
available. This can include cellular networks,Wi-Fi, or GSM.
Online transmission can be further classified into two types:
real-time-only transmission, where data is sent immediately
after collection, and delay-tolerant transmission, where data
can be temporarily stored before being transmitted to the next
destination.

Two systems [35], [56] must have a consistent network
connection to work correctly. In [35], the sensor data needs
to be streamed and analyzed in real-time, and the results
will be presented to users in the shortest time for health
monitoring purposes. SocialSense [56] is a tool designed to
monitor physical distancing, ensuring that users maintain a
minimum distance of two meters to help reduce the spread of
COVID-19. The data is transmitted and processed in real-time
so that alerts can be sent out quickly. This allows for prompt
action to be taken, helping to keep people safe and healthy.

For systems that have delay-tolerant transmission, such
as [7], [36], [37], [39], [41], [48], [50], [51], and [52],
network connection is also required to complete the data
transmission process. However, the data can be temporarily
stored on the device until a connection becomes available.
This approach prevents data loss in the event of network
instability or unavailability. Reference [37] has a very similar
data transmission procedure compared to [35]. The wearable
Fitbit device will record the sensed data locally first. When a
Bluetooth connection is available, the device will transmit the
data to the user’s mobile phone. Finally, the data is uploaded
to the Fitbit server if the mobile phone establishes an internet
connection.

Real-time data transmission relies on a stable network
connection, which can lead to disruptions in areas with
limited coverage or network congestion. Delay-tolerant
transmission has its own challenges, including delays caused
by internet connection and device storage limitations. Partici-
pants may also prioritize other activities, further delaying the
process.

Offline transmission, as the name suggests, refers to the
scenario where data is collected and stored locally on the
mobile device during the sensing task without any network
connection. Offline MCS systems typically have their own
on-device databases to store the collected data. The stored
data is shared or uploaded later when there is a chance for
data synchronization.

Two systems, [34] and [47], implemented offline mode
for data transmission. HealthAware [34] stored the pictures
of food and data collected from the accelerometer. Another
system that operates under offline mode is [47]. Each user
carries the mobile sensing device around the waist. All
sensing tasks are performed offline, and users return the
device to researchers daily. The data collected is stored locally
on the device and can only be uploaded and shared after the
study has ended. This approach ensures that sensing tasks can

be completedwithout network connections andminimizes the
computing and transmission overhead.

Data synchronization delays can affect real-time decision-
making and analysis. Offline networks limit interaction and
hinder the responsiveness of someMCS applications. Storing
data only on mobile devices risks data loss without backup
mechanisms. Offline transmission also requires adequate
storage capacity and can impact device processing power and
battery life. When considering whether to integrate offline
data transmission into their MCS platform, researchers must
carefully examine the specifics of their studies and the
nature of the data they collect. Factors such as the size and
complexity of the data, the frequency and urgency of updates,
and the availability and reliability of network connections
all play a role in determining the feasibility and benefits of
offline data transmission.

- Privacy: To maintain the confidentiality of users’ data
and ensure the accuracy of information received by service
providers, the privacy component of the MCS system is
essential. In the upcoming paragraphs, we will examine the
importance of privacy for both service users and service
providers.

Privacy concerns for service users include the risk of
exposing their identity and location and a lack of awareness
regarding privacy risks. Many MCS systems [7], [34], [35],
[36], [47], [49], [56] implement privacy measures for their
participants or service users. StudentLife [7] provides more
comprehensive privacy considerations than other systems.
It uses random IDs to anonymize user identities and one-
way hashing to conceal phone calls and message information.
Data uploading is also encrypted with SSL to prevent third-
party interception, and when participants leave the study,
their data is removed from the server. Some systems [34],
[36], and [56] used distributed repositories for data storage to
minimize data sharing and communication, while others [35],
[47] focus more on privacy concerns after the data has
arrived at central repositories. Sensus [49] uses run-time data
anonymization for the GPS and survey data. SocialSense [56]
utilized Federated Learning to protect user privacy. The
models were trained on decentralized data sources and later
connected by sharing individual knowledge graphs. In health-
care MCS systems, user privacy is typically protected by
anonymizing identities. This is especially important because
many participants are patients who prefer to keep their
identities confidential.

The importance of privacy for service providers is often
overlooked, especially regarding data reliability. This is
particularly evident in crowdsensing tasks, where users are
rewarded for completing periodic surveys or assessments.
However, if a user submits multiple identical surveys, the
data becomes useless and can mislead the study. This issue is
discussed in [7], which suggests that rewarding users based
on the total number of tasks completed may lead to abuse.

MCS systems have a significant vulnerability when safe-
guarding users’ privacy. The risk of revealing their identity
and location is a significant concern, which could result
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in compromising personal data. There is a possibility that
participants unintentionally divulge sensitive information,
thereby raising concerns about security breaches. Users
may be inclined to complete multiple identical surveys
to maximize rewards, generating repetitive or misleading
data that could impair the study’s reliability. To address
this weakness, future MCS platforms should implement
mechanisms to identify and prevent fraudulent or duplicate
submissions. Data validation, integrity checks, and outlier
detection can help identify and eliminate unreliable or
suspicious data. Clear guidelines and protocols should be
established to discourage fraudulent behavior and ensure data
quality.

IV. DISCUSSION
In this section, we discuss essential considerations when
designing and using MCS systems for healthcare and how
researchers have addressed them so far. Figure 4 presents
a visual representation of these complex and demanding
aspects that require careful consideration. To address each
topic separately, we will first summarize some of the
techniques used in selected systems. Then, we summarize
current techniques that could be used to address the challenge.
Finally, we point out potential future development directions.

A. PRIVACY PRESERVATION
MCS systems in healthcare applications and settings are
designed to collect personal and sensitive information about
their users, and consequently, there is a need for stringent
security and privacy considerations [80]. User privacy should
always be prioritized, especially when handling sensitive
health information. Besides the risks of breach of confiden-
tiality, concerns about privacy could also prevent users from
enrolling in a study in the first place [67].
Anonymization is a critical step used to protect partici-

pants’ privacy, e.g., in [7] and [41], each participant’s identity
was anonymized with a random user ID, which was kept in
a separate database. Further, the sensed data was transmitted
to a central database using an encrypted SSL connection to
prevent interception, i.e., MCS data collections must also
use state-of-the-art network and systems security features
to prevent unauthorized access to and use of personal data.
Very often, after a study ends (or after a certain time period
beyond a study’s conclusion), all data is deleted. In [47], the
researchers applied a privacy-sensitive method for processing
the data so that the recorded audio data is protected before
being stored in the database. In [34] and [47], the data was
processed and stored locally on the user’s device. When the
processed data needs to be uploaded to a central repository,
only the results of some initial processing will be uploaded.
In SocialSense [56], a Federated Learning approach was used
to establish correlations of data collected from each base
station. Since each base station across different geographical
regions is independent of each other, data privacy is enhanced.

Privacy preservation techniques have also been the focus
of several recent studies. For example, CrowdBLPS [81],

FIGURE 4. Main challenges in designing mobile crowd sensing systems.

a blockchain-based system for MCS, protects both the
user’s location and identity. During the participants’ selection
phase, it replaces users’ actual location with a correspond-
ing cloaked region (calculated by an anonymous spatial
area and probability density function). It also implements
pseudonymous addresses to represent researchers and users,
which provides privacy preservation without submitting the
true identity of the selected participant. Privacy-preserving
collaborative reputation system (PCRS) [82] is a framework
used to preserve user privacy. Participants in this framework
collect sensing data and send the data as a report to another
participant. The receiving participant can choose to evaluate
the report based on the local trust value, which is calculated
using past reports, or choose to skip to the next report. Both
reports are then sent to a server for storage. This protects user
privacy by breaking the connection between real identities
and the contextual information of the reported data.

Location privacy [83] is another major concern for MCS
systems, as users’ location data can be easily compromised
by attacks from multiple data sources. Tracking individuals’
locations can reveal sensitive information about their daily
lives, including their home addresses, workplace locations,
and doctor or hospital visits. One solution is to decrease the
accuracy of location data or intentionally introduce unique
noise to make it harder for attackers to determine a par-
ticipant’s actual location [67]. For instance, the coordinates
collected from sensing tasks can be transformed such that
only the researchers know how to decrypt them. A potential
direction for future research in privacy preservation involves
protecting data from leakage and fake sensing attacks by
using deep learning methods [84].

B. RESOURCE LIMITATIONS
Mobile sensing devices, such as smartphones, often have
stringent resource constraints, including limited energy, low
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network bandwidth, and limited computational power [1].
Due to the high variability in the resource capabilities of state-
of-the-art mobile devices, building a model that can precisely
predict resource requirements is challenging. This also makes
scheduling and context-aware sensing more difficult.

Over the years, researchers have consistently addressed the
energy consumption issue in MCS systems. One approach
to tackle this issue is through energy-efficient algorithm
design. It involves optimizing task scheduling to reduce idle
periods and conserve energy by selectively participating in
tasks based on data trends. In [34], researchers designed
an efficient algorithm to differentiate and quantify physical
activities based on accelerometer readings. This algorithm
aimed to balance energy consumption and acceptable data
accuracy. Users were prompted to perform walking and
running activities to train the system with initial parameters
before initiating the study. The obtained parameters are
then continuously compared with the base filter to detect
and differentiate activities such as walking and running.
In [38], researchers compared resource utilization of CPU,
GPS, and network usage under different activity inference
rates. This data collection system can be configured to
change the inference rate from once a second to once a
minute to conserve energy and improve the usability of the
mobile application. In [47], the authors use delay-tolerant
strategies to reduce the resource requirements for real-time
continuous sensing. The data collection and upload processes
can be performed after sensing task completion. In [55],
the authors divided a complete sensing cycle into different
intervals based on triggering rules to save resources. For
example, to track users’ locations, the GPS sensor will be
turned on when Wi-Fi connectivity is unavailable and turned
off when the connection is available, thereby preserving
energy.

Collaborative sensing and task offloading have become
increasingly popular recently. These techniques enable
nearby devices to work together, sharing the burden of
sensing tasks and data collection. In [85], the authors
proposed a blockchain-based architecture to ensure energy
efficiency. All the registered devices in a research study are
grouped under a software-defined network (SDN). Every
activity and transaction occurring on each user’s device is
closely monitored by the SDN controller. If one device’s
remaining resource goes below a certain threshold, the packet
(all data collected) will be transferred to another device
for further transmission. With the proliferation of mobile
devices, the volume of data collected in future experiments
will only increase. Reference [79] suggests that using a
compressive data schema is also an effective solution. Sensed
data is initially stored on participants’ mobile devices, and the
entire dataset is reconstructed later using signal recovering,
requiring less central storage capacity.

C. DATA QUALITY
Ensuring that data quality is high is a fundamental concern
because the quality of the data impacts what we can do

with and learn from the data. We divide issues related to
data quality into two areas: data inconsistency and data
redundancy.

One typical example of inconsistent data is location data,
which is often a critical data source needed to understand
a user’s context, provide location-aware services, or request
user activities based on the user’s current location. One
approach to ensuring data correctness is to verify the
proximity of the submitted data from the recorded GPS by
their registered devices [69]. Due to the different sensing
and computing capabilities of mobile devices, the same
task accomplished by different users may give us different
inference results [68]. Many systems rely on participatory
sensing or users’ manually provided data, thus introducing
the risk of malicious or unintentional data input that could
affect the study’s outcomes. The work in [86] proposed a
cross-validation framework to address these concerns. They
recruited a validating crowd to assess the quality of sensed
data through stochastic optimization. Useful features were
extracted from the raw dataset using a unique sampling
technique and then presented to validators. The researchers
in [87] developed an efficient algorithm to detect label errors
(walking, lying, sitting) from self-reported data to improve
data quality. In [81], the researchers focused on improving
the quality of participants, i.e., they proposed a participant
selection stage before pre-registration to select workers that
meet the working condition by quantifying the selection
criteria to a local optimization problem. The authors of [32]
and [88] proposed improving data quality by enhancing the
design and usability of digital health systems.

To improve the reliability of data, researchers have
explored using the trustworthiness of sensed data [77] and
user reputation scores, as well as maximizing the consistency
of data collected by different mobile devices. Additionally,
improving the accuracy and efficiency of manually submitted
assessments by users through the integration of objective
sensor data from smartphones is an area that requires further
exploration [33].

Continuous sensing is ubiquitous in the healthcare domain,
and the enormous amount of data collected can lead to
data redundancy. For instance, [36] keeps taking pictures
at a fixed rate; therefore, many similar and duplicated
pictures were stored and analyzed. Researchers reduced
the number of pictures for data processing by feature
comparisons and classifications to remove duplicated and
unrelated images. Data are partitioned into different groups,
and then duplicated or remarkably similar pictures will be
grouped based on the comparison metrics. After remov-
ing redundant data, only the ones with unique tags and
references will be stored. The work in [41] uses adaptive
sampling on predefined features to filter out redundant data.
Moreover, data will be aggregated by a defined algorithm
when the storage capacity has been reached. AndWell-
ness [38] implemented survey configuration, preventing par-
ticipants from answering repetitive surveys and reducing data
volume.
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Another recent strategy for removing redundant data is
provided by Compressive CrowdSensing [89], [90]. This
approach tries to make correct predictions of collected
data by using only a few samples. Researchers found
inherent correlations within the data in a small subset, and
it becomes unnecessary to collect data continuously at a
high sampling rate, thus mitigating the data redundancy
problem. This technique could lead to various research
directions in areas such as data reconstruction, data accu-
racy issues, energy management, or managing sampling
costs.

D. USER COMPLIANCE
To track users’ activities and health conditions efficiently,
we need to ensure high compliance. Monetary incentives
have been investigated in [37], showing the correlation
between reward and participation rate, but it does not nec-
essarily give us more reliable contributions from participants
simultaneously. Other factors preventing users from actively
participating are fear of sensitive information leakage (pri-
vacy concerns) and concerns over resource consumption on
their personal devices [2]. Therefore, a more comprehensive
incentive mechanism must be developed, with guidelines and
explanations available to potential users.

The work in [91] proposed a blockchain-based MCS with
a decentralized reward mechanism. Each sensing task is
treated as a contract associated with the participant’s profile.
Participants are rewarded instantly or periodically based on
the size of the sensing task and their stored reputation scores.
In [2], a well-designed user interface can assist users in
achieving higher compliance and better quality of sensory
data. To ensure reliable contribution from users, intelligent
contracts like those used in [92] can be implemented to
evaluate past performance and select potential participants
with high compliance. It is necessary to use a model
during the recruitment process to identify reliable participants
who are likely to complete tasks and comply with tasking
rules [93].

During the study pre-registration, potential participants
can also evaluate the usability of the system. For example,
the work in [32] tested the usability of a neurocognitive
assessment application designed for individuals with Parkin-
son’s Disease. User interactions and system layouts should
be carefully considered in MCS applications in healthcare,
especially for those who may have difficulties completing
assigned tasks or using the system.

V. LIMITATIONS
As mentioned in Section III-A6, the interpretation of the
selected systems can vary among researchers. The boundaries
between ‘Activity Monitoring,’ ‘Disorder Detection and Pre-
vention,’ and ‘Medical Treatment’ are not fixed. Monitoring
physiological data can be utilized as input data for disorder
detection, and the outcomes from disorder detection can
lead to future medical treatment. The highly scalable nature
of these MCS systems makes them applicable in a wide

range of fields within healthcare. In the future, developing
a standardized classification framework that accounts for
the interdependencies of the systems’ objectives could help
address ambiguities and categorize the different facets of
MCS systems more effectively.

VI. CONCLUSION
Due to the rapid development of sensor networks, the
mobile crowd sensing paradigm has been well-established for
different domains. In this paper, we presented a survey of
practical mobile crowd sensing systems used for healthcare
purposes, and we found significant variations within the
proposed architectural frameworks.We classified the selected
systems by their primary objectives to show their diverse
design choices and robust scalability to fulfill different
sensing tasks. We introduced a three-layered architecture
and applied it to analyze the chosen research studies.
This architecture aims to classify systems based on the
methods used in each layer, simplifying future reviews and
summaries. Each system must make trade-offs in light of
the overlapping challenges in each layer, depending on its
objectives. We also offered solutions for existing and poten-
tial challenges. Additionally, we identified future research
directions for mobile crowd sensing that stem from current
challenges.
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