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ABSTRACT The current application of control theory is commonly carried out in systems with a model or
known system dynamics. However, in practice this is a formidable task to achieve as not all state information
can be known. The use of the Output Feedback (OPFB) scheme in the field of control systems also possesses
a weakness because it requires the use of an observer. This appears rather contradictory as the use of an
observer requires system dynamics information. This research proposes an optimal control scheme using
DeepRecurrent Q-Networks (DRQN) to generate an optimal control signal trajectory based on a collection of
input and output data from the system itself. The approach proposed in this study is based on the Q-Learning
method from the Reinforcement Learning (RL) scheme. The Long-Short Term Memory (LSTM) is used
to approximate the Q-function and determine the control signals for a system without a known model. The
method that we proposed in this study has been tested on four case studies. The control signal trajectory
generated from our proposed algorithm, is much smaller than the control signal that generated from classical
Q-Learning scheme. The results of this research are certainly relevant to the aim of OPFB, namely that the
controller is designed to be able to regulate (bring the state trajectory to zero) and minimize control signal
energy. It is empirically discovered that the same result is proven by the norm values resulting from the
Q-function trajectory. The norm of Q-function trajectory for our proposed algorithm on the 1st, 2nd, 3rd,
and 4th case studies are 2.11E-08, 3.15E-06, 3.79E-09, and 1.59E-13, respectively.

INDEX TERMS Reinforcement learning, output feedback, q-learning, deep recurrent q-network, LSTM.

I. INTRODUCTION
The use of Reinforcement Learning (RL) algorithm in
designing the optimal control has progressed recently [1],
[2], [3]. One of the problems in optimal control is Output
Feedback (OPFB) [4], [5]. This scheme allows control
design without going through full state feedback. The control
objectives using the OPFB scheme are (1) to fulfill the
stability conditions of the closed loop system, (2) the control
system is able to track the desired reference signal [2], [5].

The application of the OPFB scheme has been carried
out in several studies. In the oil and gas industry, rotary
drilling equipment is needed to open a borehole in a rock
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formation. However, this equipment has problems regarding
vibration which has implications for reducing oil exploration
efficiency. In research, [6] has succeeded in implementing
vibrations control based on the OPFB scheme to maintain
oil exploration efficiency. The authors proposed the use of
OPFB due to the limited number of sensors on the equipment.
The use of the OPFB method has also been implemented in
Unmanned Aerial Vehicle (UAV) systems to track reference
signals [7].
Solving OPFB can be executed by seeking a solution to the

Hamilton-Jacobi-Bellman Equation (HJB) analytically [2],
[8]. Solving the HJB equation requires a system dynam-
ics model, which is quite complex to obtain practically.
In addition, the OPFB scheme requires an observer to
produce state trajectories during the learning process [2].
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Conversely, RL methods can be classified as model-based
and model-free [9], [10]. The model-based RL method
performs the role of the Dynamic Programming (DP) to
find the optimal control signal. Meanwhile, the model-free
RL method employs Q-learning in general. On-policy and
off-policy are model-based RLmethod classifications viewed
from a policy perspective [11].

In control system design, acquiring a mathematical model
of the control presents considerable difficulty. This is due
to the uncertainty factor between the model and the real
system. The application of a model-free scheme, when
viewed from the perspective of control system theory,
has relevance to the OPFB scheme. However, using a
conventional OPFB scheme calls for the role of an observer
which requires information on the system dynamics model.
The development of artificial intelligence approaches (e.g.
RL) is also applied in designing optimal control system
schemes without the need to know the system dynamics
model. From the point of view of the RL method, this scheme
is known as model-free. This study seeks to show that the
use of a combination of artificial intelligence methods (i.e RL
and ANN) can be employed to solve optimal control system
problems.

The application of OPFB that requires the role of observer
is contradictory to the model-free RL terminology. The use
of the model-free RL method (i.e. Q-Learning) has been
successfully applied to solve Linear Quadratic Tracking
(LQT) problems on discrete-time (DT) systems [12], [13].
In [12], research has succeeded in utilizing neural networks
to approximate value functions based on the value iteration
method. However, in this research, the model-based RL
method was still used. However, in [13] the calculation of the
Q-function is still carried out on the basis of the model.

The implementation of a model-free RL method for a
control system scheme requires significant efforts. As a result
of designing a control system without a model, an estimator
(for example: a Kalman filter) is required to estimate the
dynamics of the state needed to design a controller. The use of
the Kalman filter as an estimator is completely contradictory
to the terminology of the model-free RL [14], [15]. Further
research was conducted at [16] which developed a model-free
RL method to solve LQT problems based on system input
and output data. In [13] and [16] continue to use the state
trajectory to operate the LQT scheme. The operation of
the OPFB scheme on [17] has successfully implemented
the Q-Learning method based on a collection of system
input and output data to find the optimal solution. However,
in the research [3], [17] do not implement the discount
factor parameter in the RL method but the stability of the
system can be maintained. In addition, [3], [17] research
continues to use state trajectories in the design of optimal
controllers. Model-free RL method has been employed to
solve the optimal control problem in [18]. The authors’ choice
to employ the λ−PI method reveals a weakness since it is
based on the Policy Iteration (PI) method which requires a
controller initialization value that is guaranteed to stabilize

the system. This proves to become a bottleneck in the process
of calculating and implementing the control system.

When viewed from the perspective of computer science,
the Q-Learning method can also be developed by involving
deep learning into Deep Q Networks (DQN) [19]. The DQN
was first applied in computer vision to provide an action
based on the case study of the Atari problem [19]. Atari is
originally a home video game console developed in 1977 and
sold for over a decade [20]. Atari is a single game screen
of 160 pixels wide and 210 pixels high, with a 128-colour
palette, 18 actions can be input to the game via a digital
joystick. The digital joystick is represent the three positions
of the joystick for each axis, plus a single button. The Atari
2600 hardware limits the possible complexity of games,
which is believed to strike the perfect balance: a challenging
platform offering conceivable near-term advancements in
learning, modeling, and planning [20]. The use of the Deep
Recurrent Q-Networks (DRQN) method is preceded by [21],
this is because the type of environment required is partially
observer.

This paper is a further research from [22]. In [22],
we proposed the combination of model-based RL and
KalmanNet to adapt the conventional Linear Quadratic
Gaussian (LQG) scheme. The proposed algorithm in [22] is
formulated to solve the regulator problem for stochastic and
DT linear systems. Contributions to this research include:
• Proposing a new framework, DRQN based on LSTM
Networks to solve the OPFB problem for deterministic
discrete-time systems. We employ the DRQN to dis-
cover the optimal controller gain based onmeasured data
of the system.

• Implementing the LSTM network to adapt the OPFB
based Q-Learning algorithm to carry out the policy
evaluation and policy improvement stage to obtain the
control signal trajectories. LSTM is designed to handle
sequential data, making themwell-suited for tasks where
the input or output data has a temporal or sequential
structure [23].

• The advantage of the control scheme proposed in this
study, when compared to [22], is that it no longer
requires information regarding the dynamical model of
the plant (A,B,C,D) in designing the optimal control.
Additionally, it is no longer necessary to assign an
observer as a state estimation method.

The remaining section of this paper covers the development
of the proposed algorithm. Section II comprises the definition
of the problem of conventional OPFB and OPFB based
on classical Q-Learning. Section III discusses the DRQN
based on LSTM as our proposed solution. The application
of the proposed solution to the design data driven OPFB
scheme for cart-pole system, batch distillation column, and an
unstable plant are included in Section IV, which also covers
the simulations and evaluations of several test schemes.
This arrangement is aimed at ensuring that our proposed
algorithm provides the most optimal results empirically.
Lastly, Section V contains the conclusions of this research.
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A. NOTATIONS
In this research, k , n, m, p, and N are represent the
time-step, state-order, input-order, output-order, and time-
horizon, respectively. The control gains obtained from the
conventional OPFB, classical Q-Learning, and DRQN based
on LSTM are denoted asKM,KL, andKD, respectively. The
control signal in general form is denoted as uk . The Riccati
solutions achieved from conventional OPFB and DRQN
based on LSTM are denoted as P and PD, respectively. The
discount factor is denoted as γ .

II. OPFB BASED ON CLASSICAL Q-LEARNING
In control system design, developing a mathematical model
of the control is rather complex. This is due to the uncertainty
factor between themodel and the real system. The application
of a model-free scheme when observed from the point of
view of control system theory has relevance to the OPFB
scheme. However, using a conventional OPFB scheme calls
for the role of an observer requiring some information on
the system dynamics model. The development of RL is also
utilized to design optimal control system schemes without the
system dynamics model. Q-Learning is one of the model-free
RL methods devised to solve the optimal control problem.
In Section II-B, a brief introduction of the Q-learning method
based on measured data is presented.

A. CONVENTIONAL OPFB
The dynamics of a DT linear system is formulated in Eq. (1)
and (2) where xk ∈ Rn, uk ∈ Rm, and yk ∈ Rp and A, B, and
C are the state, input, and output matrices, respectively.

xk+1 = Axk + Buk (1)

yk = Cxk (2)

The control signal could be obtained by state feedback control
laws of the form in Eq. (3).

uk = KMx̂k (3)

Meanwhile, observer calculations can be carried out as in
Eq. (4).

x̂k+1 = Ax̂k + Buk + L(yk − ŷk ) (4)

From Eq. (3) and (4), the KM and L are the controller and
observer gain, respectively.

The observer gain L for deterministic case must be selected
so that the observer poles (A− LC) can be arbitrarily located
in a unity circle for the DT system [24]. In this research,
a Luenberger observer is employed to obtain the observer gain
for the model-based approach. The Luenberger observer is an
applicable method to locate the observer gain in the sense of
a deterministic case [24].

The selection of the controller gain matrices is uncovered
by solving ARE formulated in Eq. (5) where P is the Riccati
solution [3].

KM = (Ru + BTPB)
−1BTPA (5)

The OPFB scheme can be used to solve this problem by
involving the role of observer [24], [25]. The OPFB scheme
has a weakness, namely the dynamics model must be known.
Of course this contradicts the terminology of the model-free
RL method.

B. OPFB VIA Q-LEARNING BASED ON INPUT-OUTPUT
DATA
Consider a DT linear system could be formulated in
Eq. (1) and (2). Beneath the controllability and observability
assumption on (A,B) and (A,C), respectively, we would
like to discover the control signal that minimizes the
cost function. The reward function for quadratic cases can
be formulated in Eq. (6) where Ry ≥ 0 and Ru >

0 are output and control weight matrices, respectively.
This reward function is inspired from [3] and [17] but
modified using the output signal. It is assumed that the state
information is immeasurable. Thus, the output signal for
reward computation is utilized [15].

r(yk , uk ) = yTk Ryyk + u
T
k Ruuk (6)

On the basis of the reward function in Eq. (6), the Q-function
is defined in Eq. (7).

Q(yk , uk ) = r(yk , uk )+ γQ(yk+1, uk+1) (7)

1) THE AUGMENTED SYSTEM BASED ON MEASURED DATA
The control signal based on Q-Learning that we used in
this section is denoted as uk . The dynamics of the system
in the finite time horizon [k − N , k] can be expressed as
in Eq. (8a) [26], [27] and can be simplified to Eq. (8c)
with the UN is defined in Eq. (8b) and ūk−1,k−N =[
uk−1 uk−2 uk−3 . . . uk−N

]T [1], [16]. The UN is called as
controlability matrices [3], [16].

xk = AN xk−N +
[
B AB . . . AN−1B

]

uk−1
uk−2

...

uk−N


(8a)

UN =
[
B AB A2B . . . AN−1B

]T (8b)

xk = AN xk−N + UN ūk−1,k−N (8c)

The system output equation can be formulated into Eq. (9a)
by deriving a formula like Eq. (9b)-(9d).

ȳk−1,k−N = VN xk−N + TN ūk−1,k−N (9a)

ȳk−1,k−N =


yk−1
yk−2

...

yk−N−1
yk−N

 (9b)
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VN =


CAN−1

CAN−2
...

CA
C

 (9c)

TN =


0 CB CAB . . . CAN−2B
0 0 CB . . . CAN−3B
...

...
. . .

. . .
...

0 . . . 0 0 CB
0 0 0 0 0

 (9d)

The Eq. (8c) can be simplified into Eq. (10a) where
matrices M and z̄k is defined in Eq. (10b) and (10c),
respectively [1], [17].

xk = Mz̄k (10a)

M =
[
UN − ANV

+

N TN ANV+N
]

(10b)

z̄k =
[
ūk−1,k−N
ȳk−1,k−N

]
(10c)

Assumption 1: The pair of (A,B) is controllable and (A,C)
is observable.

If Assumption 1 holds, then VN is full rank, then the
pseudo-inverse of the VN observability matrices can be
expressed as in Eq. (11)

V+N = (V T
N VN )

−1V T
N (11)

The state trajectory xk−N can be formulated as Eq. (12) with
V+N as in Eq. (11) is assumed to be full column rank [1].

xk−N = V+N (ȳk−1,k−N − TN ūk−1,k−N ) (12)

Substitute Eq. (12) to (8c) becomes Eq. (13).

xk = (ANV+N )ȳk−1,k−N + (UN − ANV
+

N TN )ūk−1,k−N (13)

So that the state equation can be stated as in Eq. (14)where the
matricesMy andMu respectively represent Eq. (16) and (15).

xk = Myȳk−1,k−N +Muūk−1,k−N (14)

My = ANV+N (15)

Mu = (UN − ANV
+

N TN ) (16)

The Bellman equation could be formulated in Eq. (17) where
γ ∈

[
0, 1

]
is the discount factor.

V (xk ) = yTk Ryyk + (uk )TRuuk + γV (xk+1) (17)

For the quadratic case, the value function of an augmented
states based on the shape of the performance index could
be formulated in Eq. (18). The quadratic form for the value
function is a common approximation used in optimal control
and RL because it simplifies the problem and leads to
tractable solutions.

V (xk ) = xTk P̄xk (18)

Substitute Eq. (10a) to (18) such that the value function could
be represent in Eq. (19).

V (xk ) = (Mz̄k )T P̄(Mz̄k ) = z̄Tk Pz̄k (19)

Eq. (19) with P = MT P̄M . However, one thing that is quite
important is that the matrices P depends on the dynamics of
the system (A,B,C). We could know that P found by solving
the Least-Square (LS) method, is equal to MT P̄M where the
proof was developed in [16].

2) BELLMAN EQUATION BASED ON MEASURED DATA
The Bellman equation for this OPFB scheme could formu-
lated in Eq. (20) by subtitute the Eq. (19) into (17).

z̄Tk Pz̄k = yTk Ryyk + (uk )TRuuk + γ z̄Tk+1Pz̄k+1 (20)

The Hamiltonian function could be formulated in Eq. (21)

H (z̄k , uk ) = yTk Ryyk + (uk )TRuuk + γ z̄Tk+1Pz̄k+1 − z̄
T
k Pz̄k
(21)

The notation z̄k+1 can be defined as in Eq. (22a) and P can be
formulated in Eq. (22b).

z̄k+1 =

 uk
ūk−1,k−N
ȳk−1,k−N

 (22a)

P =

 p0 pu py
(pu)T p22 p23
(py)T p32 p33

 (22b)

Based on the Eq. (19), it can be seen that the P is related
to M . Matrices M is also related to model-based state
equations. Minimizing the Hamiltonian function in Eq. (21)
with respect to uk . Thus, the control law could be formulated
in Eq. (23c) [1], [17].

∂H (z̄k , uk )
∂uk

= Ruuk + γ (p0)uk + γ ((pu)ūk,k−N+1

+ (py)ȳk,k−N+1) = 0 (23a)

uk (Ru + γ p0)+ γ ((pu)ūk,k−N+1 + (py)ȳk,k−N+1) = 0

(23b)

uk = −γ (Ru + γ p0)
−1((pu)ūk,k−N+1 + (py)ȳk,k−N+1)

(23c)

Based on Eq. (23c) it implies that the control signal uk
depends on the value of the previous control signal, output
and reference. Meanwhile, the control gainKL is represented
in Eq. (24).

uk = −γ (Ru + γ p0)
−1 [pu py

]︸ ︷︷ ︸
KL

[
ūk,k−N+1
ȳk,k−N+1

]
︸ ︷︷ ︸

z̄k

(24)

In the next sub-section, we will discuss the use of DRQN
algorithm to calculate the value of the controller gain to
calculate the control strategy. The use of the Q-Learning
method can be used to solve regulatory and tracking issues to
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OPFB. The following is an algorithm for using the Q-learning
method to overcome the OPFB problems.

III. DEEP OUTPUT FEEDBACK CONTROL
The novelty proposed appears as in Fig. 1. The system
to be controlled has training data consisting of input and
output signal denoted as uk and yk . The training dataset in
a sample range from k = 1 to N are stored a ūk−1,k−N
for the input signal and ȳk−1,k−N for output signal. The
dataset is stored as a D which then is applied to carry
out the training stage. The sequences of z̄k obtained from
the D is the time series data type as input signal for the
LSTM network. The LSTM networks have been appeared to
memorize long-term conditions more easily than the basic
RNN structures, to begin with on manufactured datasets
designed for testing the capacity to memorize long-term
conditions [28]. The Q-Learning method in this study is a
baseline with the aim that the target data used is r(yk , uk ) as
formulated in Eq. (6).

FIGURE 1. Proposed algorithm.

The implementation of DRQN based on LSTM scheme
is summarized in Fig. 2. The testing for each case study is
divided into three main stages. The 1st stage is responsible
for creating a dataset via the GenerateSeq() function. As a
test, the dataset in this study is given through a simulation for
four case studie based on their mathematical model. Thus, the
system matrices (A,B,C) are known. The InputOutputSeq()
function is applied to generate the controllability matrix
UN , observability matrices VN , and the Toeplitz matrix TN
which formulated in Eq. (8b), (9c), and (9d), respectively.
Additionally to that, this function is also necessary to produce
shifting matrices z̄k like Eq. (22a).
The 2nd stage covers the implementation of the framework

proposed in this study. At this stage, the calculation of
the control signal trajectory uk is rooted in the input and

output signal dataset of the system, denoted as ūk−1,k−N
and ȳk−1,k−N , respectively. The use of the LSTM network
to adapt the role of Q-learning in calculating control signals
is summarized in Algorithm 1. At the 2nd stage, it is
imperative to use LSTM to implement Algorithm 1. The
LSTM parameters used in this study are selected with the
final optimal hyperparameters, specifically:
• Backpropagation method: ADAM
• Number of hidden units: 30
• Maximum Epoch items: 1000
• Mini batch size: 128
• Gate activation function: sigmoid

In this research, we use the LSTM stability proposition,
which is defined and proven in [29].

At the 3rd stage, the control signals obtained through
DRQN based on LSTM are implemented into the system. All
initial conditions are expressed as zero in the value. The tests
at this stage is carried out to compare the three methods of the
control, output, and Q-function trajectory that are obtained
from the model-based Linear Quadratic Regulator (LQR),
Q-Learning, and DRQN based on LSTM.

FIGURE 2. Flowchart implementation.

A. APPROXIMATE Q-LEARNING
The Q-function for OPFB problem was formulated in Eq. (7)
where k is denoted for the time-step. In this research, we does
not employing the discount factor because it does not incur
bias from the excitation noise [17]. If the control signal uk
is obtained from the use of approximation scheme, then the
quadratic Q-function can be expressed as in Eq. (25a) where
PD is the Riccati solution in the sense of approximation
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scheme. The PD could be represent into matrix form in
Eq. (25b).

Q(yk , uk ) =
1
2

[
uk
yk

]T
(PD)

[
uk
yk

]
(25a)

Q(yk , uk ) =
1
2

[
uk
yk

]T [
PDuu PDuy
PDyu PDyy

] [
uk
yk

]
(25b)

The process of calculating the control signal uk
based on the minimization concept is obtained through
Eq. (26a)-(26c).

∂

∂uk
Q(yk , uk ) = 0 (26a)

2PDuuuk + 2PDuyyk = 0 (26b)

uk = −(PDuu)
−1PDuyyk (26c)

Meanwhile, the Q-function in Eq. (25b) is equivalent with
Eq. (30). Basically, Q-learning learns the Q-function using
Temporal Difference (TD) method. The TDmethod are based
on Bellman equation and solve equations without using
system dynamics knowledge but using the observed data
along a single trajectory of the system [25], [30]. TD method
is used to update the value of a system trajectory based on
the Bellman equation. The main idea of TD method is update
the value estimate to make the TD error small [25], [30]. The
TD-Error formula for Q-Learning is formulated in Eq. (27)
with γ = 1.

ek = −Q(yk , uk )+ r(yk , uk )+ Q(yk+1, uk+1) (27)

Substitute Eq. (30) into (27) became Eq. (28). The policy
evaluation step in RL method is based on the Bellman TD
error in Eq. (28). Eq. (28) implies that the Bellman equation
could performed using only the measured data, not the
state [1].

ek = −zTk P
Dzk + yTk Ryyk + u

T
k Ruuk + z

T
k+1P

Dzk+1 (28)

The TD method will be used to estimate the kernel
matrix PD without requiring information about system
dynamics (A,B). However, the process of estimating the
kernel matrices PD can be reached through the measurement
data trajectories of yk and uk from the system.
The Q-function can be expressed as a hypothesis function

as in Eq. (29) where the vector PD is the unknown parameter
while the φ(zk ) is the vector basis.

Q(zk ) = (PD)Tφ(zk ) (29)

In discrete time-LQR case, the φ(zk ) is a quadratic form and
consist of output signal yk and control signal uk .

The computation of Q-Function in Eq. (25a and (25b)
could be formulated in Eq. (30) where the Kronecker
product ⊗ and vec(PD) the vector formed by stacking the
column of PD matrix [25].

Q(yk , uk ) =
1
2
zTk P

Dzk =
1
2
vecT (PD)(zk ⊗ zk ) (30)

Kronecker product could improve the computation process in
the sense of control system and system identification [31].

The Q-function consists of the control signal uk as an
argument so that ∂((PD)Tφ(zk ))/∂uk could be explicitly
computed using Eq. (31a) [25]. The chain rule is used to solve
the derivative process (see Eq. (31a)-(31b)).

∂Q(yk , uk )
∂uk

=

(
∂zk
∂uk

)T(
∂φ(zk )
∂zk

)T(
∂(PD)Tφ(zk )

∂φ(zk )

)T

(31a)

∂Q(yk , uk )
∂uk

=

(
∂zk
∂uk

)T(
∂φ(zk )
∂zk

)T

PD (31b)

The first section in Eq. (31a) could be solved using Eq. (32)
where the control, output signal, and augmented state are
denoted as uk ∈ Rm, yk ∈ Rp, and zk ∈ Rm+p, respectively.(

∂zk
∂uk

)T

=
[
Im 0m×p

]T (32)

Eq. (33) is used to solve the second section from Eq. (31a)
where the computation of the gradient ∇φ are crucial to be
done.

∂φ(zk )
∂zk

T
= ∇φT (33)

The basis vector φ(zk ) that called as quadratic polynomial
function consists of the pairwise product from component zk
such that could be formulated in Eq. (34) [25].

φ(zk ) = zk ⊗ zk ;φ(zk ) ∈ R(m+p)2 (34)

Thus, the gradient of φT could be formulated using Eq. (35).

∂φ(zk )T

∂zk
= Im+p ⊗ zk + zk ⊗ Im+p (35)

Using these equations we could approximate the Q-function
parameters without knowing the system matrices A,B. The
next section would be tell us about LSTM network that we
use as a function approximation.

B. LSTM
Fig. 3 illustrates the way to approximate the Q-function via
the LSTM network. From Eq. (21), it can be concluded that
computation of Q-function is dependent on z̄k and z̄k+1.
For that reason the recurrent scheme is employed to store
the previous information to approximate Q-function. The
fully connected layer in Fig. 3 is applied to estimate the
controller gain KDk . LSTM is one of the schemes proposed
by Hochreiter in 1997 to overcome the vanishing gradient
problem in the RNN structure [23]. This is because the initial
idea of LSTM is to decide when to forget or store information
to the next stage [28]. The LSTM architecture consists of two
layers (state), namely hidden layers and cells [23], [32]. All
outputs from each block are reconnected to the input blocks
and all gates [28]. Unit cells and gates appear to be in a hidden
state [23]. Each existing cell has several gates that are used to
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FIGURE 3. The details of DRQN.

regulate information (input) [32]. Function⊙ is element-wise
product. Weights in LSTM layer defined below:
• Input weights:Wf , Wi,Wc, Wo ∈ Rnh×(m+p)

• Recurrent weights: Rf , Ri,Rc, Ro ∈ Rnh×nh

• Bias weights: bf , bi, bo
In forget and input gate which denoted as fk and ik , the
formulas are respectively described in Eq. (36) and (37).
Input and recurrent data from the previous state are added
up. A Hadamard product of two vectors is represented by ⊙.
The function g(.) in Eq. (38) and (41) are hyperbolic tangent
function.

fk = σ
(
Wf z̄k + Rf hk−1 + bf

)
(36)

ik = σ
(
Wiz̄k + Rihk−1 + bi

)
(37)

C̃k = g
(
Wcz̄k + Rchk−1

)
(38)

Connections between the cell to all gates are added to
the architecture to make precise timing easy to learn [23].
Eq. (39) describes the formulation in a cell.

ck = ik ⊙ C̃k + fk ⊙ ck−1 (39)

The output gate denoted as ok , formulation represented in
Eq. (40). While the block output is denoted in Eq. (41) and
the hk represents the output of LSTM network.

ok = σ
(
Woz̄k + Rohk−1 ⊙ ck + bo

)
(40)

hk = ok ⊙ g
(
ck

)
(41)

This scheme for training the LSTM is an extension
of the standard back-propagation algorithm known as
Back-Propagation Through Time (BPPT) [23]. The use of
LSTM in this study is called stable in the sense of NN learning
if Eq. (42)-(44)are fulfilled and let ||f ||∞ = supk ||fk ||∞.
The computation of supremum function in this research was
developed in Appendix VI. Meanwhile, the proof has already
been developed in [29]. The term stable in this research refers
to: when the gradient does not explode or converge to a
stationary point [28], [29]. The exploding gradient problem
refers to increasing the norm of the gradient during the
learning process. This can cause network output to grow
exponentially [33].

||Ri||∞, ||Ro||∞ < (1− ||f ||∞) (42)

||Rc||∞ < 0.25(1− ||f ||∞) (43)

||Rf ||∞ < (1− ||f ||∞)2 (44)

After implementing the Algorithm 1, the next step is
computing the control signal trajectories using Eq. (45).

uk = −KDk yk (45)

Algorithm 1 OPFB Based on LSTM
Initialization:

Input: Data-driven augmented system sequences z̄k ∈
R(m+p)N

Target: Reward signal r(yk , uk ) ∈ RN (see the Eq. (6))
E : Number of epoch
i: Iteration index
while i < E do

Compute the forget, input, cell, and output gate which
formulated in Eq. (36), (37), (40) and (39), respectively.

Compute the hidden state using Eq. (41).
Define the hidden state as Q-function, denoted as QD

Update the weights and bias using BPTT
Check the learning stability of LSTM networks based

on Eq. (42)-(44)
Compute the Fully Connected (FC) layers with

the dataset QD and controller gain that obtain from
model-based solution (Eq. 5)

Compute the iteration i = i+ 1
end while

Output: Define the output from fully connected layer as the
controller gain KDk

In the [34], the RL based RNN scheme was operated
using two step procedures, namely system identification
and control. In this research, the network is simplified by
only using a single LSTM influenced by [35]. If the action
space is relatively small but the state space is partially
observable, a direct value function approximation approach
can be adopted with the basis of RNN [35].

IV. STABILITY ANALYSIS
In this research, we define the combination of the state and
controller as augmented state. The augmented state for every
sample k is denoted as ζk and formulated in Eq. (46) where
the state ζk =

[
xk uk

]T .
ζk+1 = 3kζk (46)

where the 3k is formulated in Eq. (47) and the state, input,
and output matrix are denoted as A, B, and C , respectively.

3k = (A− BKDk C) (47)

The computation of KDk could be represented into nonlin-
ear function of the control and output signals are denoted as
uk and yk , respectively.

We can view the KDk as a time varying matrix that has a
specific value in a specific time index k . By using this point of
view, we can perform the stability analysis of the closed-loop
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system as a finite-time stability analysis for linear time-
varying system. We will discuss the stability property in
Definition 1.
Definition 1: Let 8(k, 0) is the evolution operator of

Eq. (46), i.e. 8(k, 0) = 3k3k−1 . . . 30. We say that Eq. (46)
is stable in a finite horizon for k = 0, 1, . . . ,N − 1 if and
only if ||8(k, 0)|| is bounded for k = 0, 1, . . . ,N − 1.
A necessary and sufficient condition for stable in a finite

horizon, is given by the following proposition.
Proposition 1: The system (46) is stable in a finite horizon

k = 0, 1, . . . , (N − 1), if and only if ||3k || is bounded for all
k = 0, 1, . . . , (N − 1) [36].

Proof 1: It is obvious from the definition of the evolution
operator 8(k, 0).

Moreover, observe that by following the design procedure
which satisfies the learning convergence requirements in
Eq. (42)-(44), the 8(k, 0) is bounded and it implies the norm
of ||3k || will be bounded for k = 0, 1, . . . ,N − 1. Therefore
under Proposition 1, our closed-loop system will be stable in
finite horizon according to the Definition 1.

V. SIMULATION STUDY
In this research, the DRQN based on LSTM is tested using
four case studies: cart-pole, batch distillation, an unstable
plant, and satellite attitude system. All these simulations
are uploaded in1 using MATLAB. In each case study, the
proposed algorithm is tested by variating the discount factor
and compare three methods, specifically:
• 1st method: Model-based (blue graph)
• 2nd method: Q-Learning (red graph)
• 3rd method: DRQN based on LSTM (magenta graph)

The proposed method for the first and second case studies
have been published on [22]. The third case study is
inspired by [17]. The simulation specifies the use-defined
performance index as Ry = 10 and Ru = 0.1.

TABLE 1. Nomenclature of Cart-Pole system.

A. CASE STUDIES
1) 1ST CASE STUDY: CART-POLE SYSTEM
One of the classic control problems is a cart-pole system.
The objective of this case study is to apply the forces uk to
a cart moving along a track and keep the pole hinged to the
cart. This model is selected deliberately for its simplicity in
demonstrating the aims of this research. The dynamics of the
cart-pole system represented in Eq. (48) with the parameter
value summarized in Table 1 from the technical detail in.2 The

1https://github.com/adinovitarini/DRQN based on LSTM.
2https://github.com/openai/gym/blob/master/gym/envs/classic_control/

cartpole.py

FIGURE 4. Performance comparison in which the blue, red, and magenta
graph represent the control and output signal trajectories for the 1st case
study obtained from model-based, Q-Learning, and DRQN based on LSTM,
respectively (a) control signal trajectories (b) output signal trajectories.

plant dynamics is formulated in Eq. (48) in which the state
variables x1, x2, x3, and x4 are cart’s position, cart’s velocity,
pole’s position, and pole’s velocity, respectively.

xk+1 =


0 1 0 0
0 0 mp

mc
g 0

0 0 0 1
0 0 mp+mc

lmc
g 0

 xk +


0
1
mc
0
1
lmc

 uk

yk =
[
0 1 0 1

]
xk (48)

It’s worth noting that in this first case study, the system
applied is detectable or not fully observable but fully
controllable (see Eq. (48)). The control signal obtained from
the DRQN based on LSTM is shown in Fig. 4a which is
denoted in the magenta graph holds the fastest convergence
time. This is due to the use of the DRQN method which
utilizes the use of an LSTM network to search for optimal
control signals. Empirically, it can be seen that the use of the
DRQN method is computationally faster than conventional
optimal control solutions. The fastest convergence time is
closely correlated to the maximum peak of the trajectories
control signal in Table 2 for the 1st case study. This is due
to the assistance of the LSTM network which carries out the
learning process offline so that the energy produced by the
control signal is minimized. The lowest point maximum value
of control signal is generated by the third method, specifically
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the DRQN based on LSTM. Fig. 4b shows the same result,
which is also shown in the output signal trajectories in the
first case study. The fastest convergence is achieved from the
use of the third method, specifically DRQN based on LSTM
which is denoted in the magenta graph.

2) 2ND CASE STUDY: BATCH DISTILLATION SYSTEM
The operation of the batch distillation process could be
reviewed in Fig. 5. The boiler consists of a certain amount of
solvent (water and ethanol) which is denoted as the amount
of solvent (MB), concentration (XB), and composition of
steam in boiler (YB) [37]. The temperature in the boiler will
be increased to a certain value, wherein in this study the
temperature in the boiler was set to around 780 to 800 Celsius.
This is because the purpose of this heating is to separate the
vapor phase of ethanol from water. Where the boiling point
of ethanol is at 780. Then the solvent vapor has then flowed
into condenser 1 and condenser 2. In the initial phase, ethanol
with a lower boiling point will evaporate more than water.
The amount of ethanol will decrease as the boiling point of
the solvent continues to rise and only water will remain in the
boiler. Whereas, the distillate concentration which remains in
the product tank is denotedwithXD. To regulate the amount of
reversal mixture which is distributed to the distillate, we have
to control the reflux valve. It could be done by controlling
the amount of on or off (duty cycle) of the reflux valve.
To implement this idea of the closed-loop system, a controller
is needed in this system to keep the results of the distillate
concentration as desired. In the schematic above, vapor (V ),
reflux (R), distillate (D), R0 (constant) is the initial condition
for reflux flow rate when the valve is closed. The reflux ratio
is developed with a range of 0 − 1 which represents the 0%
until 100% PWM. The identification system for the second
case study was already published on [38].The state, input, and
output matrices is define in Eq. (49).

xk+1 = Axk + Buk
yk = Cxk (49)

The state, input, and output matrices denoted as A, B, and C
are defined in Eq. (50).

A =


1.14 −0.78 −0.41 −0.93
1.05 1.02 0.52 0.55
−0.77 0.74 −0.83 2.68e− 03
1.18 0.95 −0.65 −0.79



B =


−1.37
0.45
1.08
−0.38


C =

[
0.73 −0.78 0.97 −0.34

]
(50)

In this 2nd case study, the system is fully observable and
controllable (see Eq. (49) and (50)). The control signal
trajectories in Fig. 6 shows the fastest convergence time
achieved when using the DRQN based on LSTM which is
illustrated with a magenta graph. In addition. In addition,

FIGURE 5. Batch distillation column schematic diagram.

the maximum peak of the control signal generated from the
DRQN based on LSTM is also the smallest (see Table 2).
Meanwhile, the output signal returns the same result in
Fig. 6b. The implementation of the DRQN based on LSTM
also proves that the resulting output signal holds the fastest
convergence time (see the magenta graph). In this case study,

FIGURE 6. Performance comparison in which the blue, red, and magenta
graphs represent the control and output signal trajectories for the 2nd
case study obtained from model-based, Q-Learning, and DRQN based on
LSTM, respectively for (a) control signal trajectories (b) output signal
trajectories.

comparisons can be made with previous research [22]. In this
research, the design of the control method is based on the
informationmodel of the system.Meanwhile, in this research,
we do not need a plant model. We only rely on system input
and output signals to generate optimal control signals.
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3) 3RD CASE STUDY: AN UNSTABLE PLANT
Consider an unstable DT system is formulated in
Eq. (51) [17]. The open loop eigenvalues for this system is
unstable, but controllable and observable. The eigenvalues of
the open-loop system are 0.7 and 1.1.

xk+1 =
[
1.8 −0.77
1 0

]
xk +

[
1
0

]
uk

yk =
[
1 −0.5

]
xk

(51)

FIGURE 7. Performance comparison where the blue, red, and magenta
graph are represent the control and output signal trajectories for the 3rd
case study that obtain from model-based, Q-Learning, and DRQN based
on LSTM, respectively for (a)control signal trajectories (b)output signal
trajectories.

The control signal trajectories in Fig. 7a points out that
the fastest convergence time is achieved when using the
DRQN based on LSTM illustrated in the magenta graph.
Additionally, the maximum peak of the control signal
generated from the DRQN based on LSTM is also the
smallest (see Table 2). The output signal shown in Fig. 7b
achieves the same result. The implementation of the DRQN
based on LSTM also produces the resulting output signal
that holds the fastest convergence time (see the magenta
graph). In the third case study, comparisons can be made
with previous research [17]. In this research, the control
method design is based on system state information, so it is
assumed that all states can be observed, which is certainly
difficult to find in practice. Meanwhile, in our research,
we have implemented the use of measured output signals
from the system to generate optimal control signals in the

third iteration. Meanwhile, in the [17], the optimal solution
was obtained in the fourth iteration.

TABLE 2. The Maximum peak comparison based on the convergence time
is denoted as Conv. Time, the maximum of control signal is denoted as
Mp(uk ), and the Case study 1:cart-pole; Case study 2:batch distillation;
Case study 3:unstable plant, and the Method 1: Model-based, Method
2:Q-Learning, Method 3: DRQN based on LSTM.

4) 4TH CASE STUDY: SATELLITE ATTITUDE
The focus of this study is on a compact spacecraft featuring
three reaction wheels. Two prevalent methods for charac-
terizing the spacecraft’s orientation (e.g. Euler angles and
quaternion) can be converted between each other. The math-
ematical depiction of the spacecraft’s orientation is achieved
through kinematic equations that connect angular position to
angular velocity, along with dynamic equations that elucidate
the change in angular velocity or, equivalently, angular
momentum over time. The details modeling of satellite
altitude motion was developed in [39]. The linear DT satellite
dynamics are formulated in Eq. (52) where the input and out-
put signals is Multiple Input Multiple Output (MIMO) case.

xk+1 = Axk + Buik , ∀i = 1, . . . , 3

yjk = Cxk , ∀j = 1, . . . , 6 (52)

The state, input, and output matrices are defined in where
A ∈ R6×6, B ∈ R6×3, and C ∈ R6×6 were represented in
Eq. (53)-(55), as shown at the bottom of the next page.
Table 3 show for the 4th case study, the fastest convergence

time of the control signals were obtain from DRQN based
LSTM method. Empirically, the least maximum peak of
the control signals were obtain from DRQN based LSTM
method.

B. PERFORMANCE ANALYSIS
In this section we try to analyze the performance based on the
empirical results. In this research, we use the average cost
associated with the policy uk = Kyk which represented in
Eq. (56) [15].

�(K ) = lim
τ→∞

1
τ

τ∑
t=1

r(yt , ut ) (56)

The Eq. (57) is used to obtain the average cost associated with
the optimal controller gain K∗ for deterministic discrete-time
system.

�(K∗) = Tr((K∗)TBTPBK∗)+ Tr(P)

− Tr((A+ BK∗)TP(A+ BK∗)) (57)
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TABLE 3. The maximum peak comparison for the 4th case study based
on the convergence time is denoted as Conv. Time, the maximum of
control signal is denoted as Mp(uk ) for the 4th case study: satellite
attitude control, and the Method 1: Model-based, Method 2:Q-Learning,
Method 3: DRQN based on LSTM.

The performance analysis for the three methods are obtained
using the relative error |�(K∗)−�(K )|

�(K∗) where the control
gain obtained from the conventional Q-Learning or the
DRQN based on LSTM are denoted as K [15]. In this
study, we assess the relative error numerically, and the
result is not significantly different from the control signal
obtained from the conventional Q-Learning or the DRQN
based on LSTM. The relative errors for the first until
fourth case study are 99.89E-02, 99.91E-02, 99.96E-02, and
99.99E-02, respectively. The result show us that empirically,
the model-free RL algorithm have been success to substitute
the model-based algorithm to obtain the optimal policy.

C. LEARNING STABILITY RESULT OF LSTM NETWORKS
In this test, the learning results are as shown in Table 4 for
the 1st until 4th case studies. This test is conducted to review

the value of the norm infinity or the supremum function of
recurrence weights at the input gate, output gate, forget gate
and cell gate complied with the Eq. (42)-(44). Empirically,
it can be observed that the value of the recurrent weights
of learning results based on LSTM networks can meet the
requirements of LSTM stability. The computational process
of the supremum function in this study uses Algorithm 2 as
in Appendix.

The convergence test of the LSTM network in this study
summarized in Table 4. In the second and third rows, namely
the supremum function of the repeated weights at the input
gate and output gate is less than 1−||f ||∞. Then, in the fourth
row, the highest function of the repeated weights on the cell
gate is also less than 1/4 from 1 − ||f ||∞. In the last line,
the value of the supremum function of the recurrent weight
of the forget gate is also smaller than the quadratic value of
1− ||f ||∞. These results apply to all case studies.

TABLE 4. The supremum function of recurrent weights in input gate,
output gate, cell gate, and forget gate denoted as Ri , Ro, Rc , and Rf ,
respectively.

D. Q-FUNCTION COMPARISON
The trajectories of Q-function for the the 1st, 2nd, 3rd, and 4th
case study are shown in Fig. 9, 10, 11, and 12, respectively.
The process, subsequently, computes the Q-function trajec-
tory using Eq. (7). The blue graph represent the Q-function
that is obtained model-based method and denoted as

A =


0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

6.21E − 07 2.01E − 08 7.73E − 08 −2.62E − 04 5.74E − 02 5.72E − 02
7.38E − 08 8.69E − 07 −1.71E − 07 −5.82E − 02 2.63E − 04 −5.79E − 02
1.19E − 07 −2.22E − 08 1.03E − 06 −4.38E − 02 4.38E − 02 −1.45E − 06

 (53)

B =


0 0 0
0 0 0
0 0 0

5.74E − 03 1.49E − 05 1.12E − 05
1.49E − 05 5.81E − 03 1.14E − 05
1.12E − 5 1.14E − 05 4.37E − 03

 (54)

C =


1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 (55)
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FIGURE 8. Performance comparison where the blue, red, and magenta
graph are represent the control and output signal trajectories for the 4th
case study that obtain from model-based, Q-Learning, and DRQN based
on LSTM, respectively. (a)control signal trajectories (b)output signal
trajectories.

QM(yk , uk ). These trajectories are executed by implementing
the control signal uk achieved from model-based method into
the system and computing the output signal yk . While the
red graph represents the Q-function trajectory is achieved
from Q-Learning method and denoted as QL(yLk , uk ). The
red graph in Fig. 9-12 are carried out after implementing
the control signal obtained from Q-Learning based on the
measured data which is formulated in Eq. (24). The magenta
graph in Fig. 9-12 represents the Q-function trajectory
which is achieved from the DRQN based on LSTM (see
Algorithm 1) and denoted as QD(yDk , uk ).

Performance comparison where the blue, red, and magenta
graph are represent the Q-Function trajectories that obtain
from model-based, Q-Learning, and DRQN based on LSTM,
respectively for (a)1st case study (b)2nd case study (c)3rd
case study (d)4th case. The next performance criterion from
the proposed framework obtained the norm of Q-function
in Eq. (7). The norm of Q-function in 1st case study
are 4.72E-02. 2.03E-04, and 2.11E-08, respectively. The
trajectory of Q-function from 1st case study from model-
based, Q-Learning, and DRQN based on LSTM are converge

TABLE 5. Performance comparison based on the convergence time
denoted as Conv. Time and the norm of Q-function denoted as
||Q(yk , uk )|| where the Case study 1:cart-pole; Case study 2:batch
distillation; Case study 3:unstable plant; Case study 4:satellite attitude,
and the Method 1: Model-based, Method 2:Q-Learning, Method 3: DRQN
based on LSTM.

FIGURE 9. Q-Function trajectory of 1st case study.

FIGURE 10. Q-Function trajectory of 2nd case study.

on the 4th, 6th, and 1st time-step. The norm of Q-function
in 2nd case study are 2.20E-02. 4.08E-01, and 3.15E-06,
respectively. The trajectory of Q-function from 2nd case
study from model-based, Q-Learning, and DRQN based on
LSTM are converge on the 5th, 4th, and 3rd time-step. The
norm of Q-function in 3rd case study are 4.94E-02, 5.93E-05,
and 3.79E-09, respectively. The trajectory of Q-function from
3rd case study from model-based, Q-Learning, and DRQN

141570 VOLUME 11, 2023



A. N. Putri et al.: Output Feedback Control for Deterministic Unknown Dynamics DT System

FIGURE 11. Q-Function trajectory of 3rd case study.

FIGURE 12. Q-Function trajectory of 4th case study.

based on LSTM are converge on the 4th, 4th, and 3rd time-
step. The trajectory of Q-function from 4th case study from
model-based, Q-Learning, and DRQN based on LSTM are
converge on the 4th, 4th, and 3rd time-step. Meanwhile, the
norm of Q-function in 4th case study are 6.00E-03, 2.27E-07,
and 1.59E-13, respectively.

VI. CONCLUSION
The control signal trajectory generated from DRQN
based on LSTM is the smallest than model-based and
Q-Learning method. The control signal trajectory generated
from the DRQN based on LSTM is the smallest among the
model-based and the Q-Learning method. The maximum
peak value of the proposed algorithm carries the smallest
value compared to other methods (model-based and
Q-Learning). For the 1st, 2nd, and 3rd case studies,
the maximum peak of the control signals are 3.02E-05,
1.78E-05, 1.65E-06, in corresponding order. The same results
also apply to the 4th case study which is MIMO where the
smallest value of the maximum peak of the control signals
are obtain from DRQN based LSTM method. This result
empirically indicates that our proposed algorithm can be
applied to find the optimal control gain that minimizes the
energy of its control signal.

The fastest convergence time in Q-function trajectories
are carried out with the DRQN based on LSTM shown in
Fig. 9-12. It is empirically discovered that the same result
is proven by the norm values resulting from the Q-function
trajectory. The norm of Q-function trajectory for our pro-
posed algorithm on the 1st, 2nd, 3rd, and 4th case studies are
2.11E-08, 3.15E-06, 3.79E-09, and 1.59E-13, respectively.

APPENDIX
ALGORITHM FOR SUPREMUM FUNCTION
Supremum function is used to represent the ||f ||∞ that used
to obtain the stability of LSTM (see Eq. (42)-(44)). The
Algorithm 2 was used to do the numerical computation of the
supremum function to define the learning stability in LSTM
networks.

Algorithm 2 Supremum Function
Initialization: N ← Set of numbers

if N =={} then
S = NaN

else
S = max(N )

end if
Output: S ← supreme function
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