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ABSTRACT Recently, an extensive implementation of the recent Internet of Things (IoT) model has resulted
in the development of smart cities. The network traffic of smart cities using loT systems has developed
rapidly and established novel cybersecurity problems later these loT devices are linked to sensors that are
directly linked to huge cloud servers. Unfortunately, IoT systems and networks can be identified as extremely
exposed to security attacks that aim at service accessibility and data integrity. Additionally, the heterogeneity
of data gathered in distinct IoT devices, composed of the disturbances acquired in the IoT systems, renders
the recognition of anomalous performance and threatened nodes very difficult related to typical Information
Technology (IT) networks. Accordingly, there is a critical requirement for reliable and effectual anomaly
detection (AD) for identifying malicious data to promise that it could not be utilized in IoT lead to decision
support systems (DSS). This manuscript offers an Improved Radial Movement Optimization with Fuzzy
Neural Network Enabled Anomaly Detection (IRMOFNN-AD) technique for IoT Assisted Smart Cities. The
main purpose of the IRMOFNN-AD algorithm lies in the accurate and automated detection of the anomalies
that exist in the IoT environment. For the feature selection process, the IRMOFNN-AD technique uses the
IRMO system to elect an optimum set of features. Additionally, the IRMOFNN-AD algorithm applies the
FNN model for the detection and classification of anomalies. Besides, the sine cosine algorithm (SCA) has
been employed for the parameter tuning of the FNN algorithm. The simulation value of the IRMOFNN-AD
system has been tested on benchmark IDS datasets. The extensive results illustrate the better detection
outcomes of the IRMOFNN-AD system interms of different measures.

INDEX TERMS Anomaly detection, smart cities, fuzzy neural network, Internet of Things, security, feature
selection.

I. INTRODUCTION
The Internet of Things (IoT) has become a crucial module of
several Information and Communications Technology (ICT)
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systems [1]. It has carried new servicemodels through various
domains namely diverse smart city applications, wearable
medical devices, and autonomous transportation. IoT-based
devices are embedded with sensors, which transfer data to
the cloud for performing data analytics and producing con-
trol solutions relevant to cyber-physical systems (CPS) [2].
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In accordance with the current statistics, it is presently
above 26 billion interconnected and dynamic IoT devices
all over the world. Various IoT devices can be predicted
to rise and attain 75 billion in 2025. Several IoT devices
have been employed by organizations for improving produc-
tivity and security [3]. For instance, manufacturers utilize
IoT-based solutions for analyzing massive quantities of data
taken by sensor devices incorporated into manufacturer’s
tools to allow analysts and data scientists to prevent and
predict serious and real-world issues like engine failures and
other cases [4]. It permits manufacturers to considerably
improve security and productivity. Recently, the security of
IoT devices has involved enormous research work [5]. IoT
systems are utilized for processing, collecting, and generating
data that major cases including sensitive data, making them
mainly vulnerable to major security attacks that are employed
by attackers [6]. As a result, the reliability of the information
collected by IoT devices must be secure in the real world,
generating the development of efficient anomaly detection
(AD) methods highly significant.

Several novel anomalies (both new and the mutation of a
previous anomaly) are often produced because of the exis-
tence of a large quantity of data [7]. Therefore, an intrusion
detection system (IDS) could be performed as another line
of defence, which offers more safety to an IoT network
against security threats. IDS is categorized depending on
the identification technique and deployment approach [8].
IDS has a host-based IDS (HIDS) and network-based IDS
(NIDS) relies on its utilization however, it also includes
AD-based, specification-based, signature-based or hybrid
detection dependent upon the identification technique. In this
study, attention is to offering safety to the IoT at access
points by modifying the NIDS by employing the AD-based
identification approach [9]. The major issues in existing IDSs
are improved in the False Alarm Rate (FAR) for identifying
the zero-day anomalies. Researcher workers are currently
examining the probability of utilizing DL andML algorithms
for enhancing identification accurateness and decreasing the
FAR for NIDS. Researchers can determine both DL and ML
approaches are effective tools to learn useful models from
the network traffic for classifying the flows as normal or
anomalies [10]. The DL method exhibited the effectiveness
of learning useful features from the raw data because of their
deep framework with no human intervention, emphasizing
their important application within NIDS for IoT networks.

This manuscript offers an Improved Radial Movement
Optimization with Fuzzy Neural Network Enabled Anomaly
Detection (IRMOFNN-AD) technique for IoT Assisted
Smart Cities. The main purpose of the IRMOFNN-AD sys-
tem lies in the accurate and automated detection of the
anomalies that exist in the IoT environment. For the feature
selection (FS) process, the IRMOFNN-AD technique uses the
IRMO system to elect an optimum set of features. Moreover,
the IRMOFNN-AD methodology applies the FNN model for
the identification and classification of anomalies. Addition-
ally, the sine cosine algorithm (SCA) can be employed for

the parameter tuning of the FNN algorithm. The simulation
value of the IRMOFNN-AD algorithm has been tested on
benchmark IDS datasets.

In summary, the key contributions of the IRMOFNN-AD
technique are given as follows.

• Develop an automated anomaly detection approach
named the IRMOFNN-AD technique to accurately
detect anomalies in IoT-assisted Smart Cities. To the best
of our knowledge, the IRMOFNN-AD technique never
existed in the literature.

• Design a new IRMO technique to select highly related
and useful features from the IoT data, decreasing dimen-
sionality and improving the efficiency of the anomaly
detection process.

• Apply the FNN model for the identification and clas-
sification of anomalies, which is appropriate to handle
uncertainty and non-linearity in data, which is mainly
related to the IoT environment where data can be noisy
and complex.

• To further enhance the performance of the FNN
algorithm, the manuscript introduces the use of SCA for
parameter tuning for better anomaly detection results.

II. RELATED WORKS
Khayyat [11] presented an Improved Bacterial Foraging
Optimizer with optimal DL for AD (IBFO-ODLAD) from
the IoT network. For the FS method, the IBFO-ODLAD
approach develops the IBFO method to select optimum
feature subsets. Additionally, the IBFO-ODLAD approach
utilizes amultiplicative LSTM (MLSTM) algorithm for intru-
sion recognition and classification methods. Moreover, the
BOA could be implemented for optimum hyperparameters by
choosing the MLSTM technique. In [12], a new architecture
was developed for AD through edge-assisted IoTs. A new
effective and unsupervised DL approach was established to
equalize accuracy and resource utilization for AD dependent
upon the integration of an adversarial training and convolu-
tional autoencoder (CAE).

Ragab and Sabir [13] designed the IoTs Assisted-DL
Enabled AD approach for Smart City Infrastructures
called (IoTAD-SCI) method. Furthermore, the IoTAD-SCI
algorithm contains a Deep Consensus Network (DCN) frame-
work developed for identifying the anomalies in input video
frames. Additionally, AOA has been implemented for tuning
the hyperparameters of the DCN framework. In [14], to over-
come the IoT cybersecurity attacks in a smart city, the authors
presented an AD-IoT technique, which has intelligent AD
relies on RF and ML methods. This presented outcome can
effectively recognize compromised IoT devices at allocated
fog nodes.

The authors [15] introduced a novel green energy-efficient
routing with a DL-based AD (GEER-DLAD) method for
IoT applications. Additionally, the moth flame swarm opti-
mizer (MSO) method was implemented for optimally select
routes from the network. Further, the DLAD procedure
occurs through the RNN-LSTM technique for AD from the
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IoT communication networks. In [16], the authors focus
on the AD issue of smart city facilities and differentiate
various anomalies of communication in an efficient man-
ner that has targeted to secure the data confidentiality of
users. Besides, the authors introduced an AI-based Improved-
LSTM (I-LSTM)-NN to enhance the time aspect and utilize a
new smooth activation function that could increase the effec-
tiveness of multi-classification for AD. Hazman et al. [17]
suggested AD, robust IDS for IoT-based smart settings that
employ Ensemble Learning. In general, the model provided
an optimal AD technique, which integrates AdaBoost and
combines numerous FS methods Boruta, mutual data, and
correlation. Islam et al. [18] proposed an effective and robust
system for identifying anomalies in monitoring huge video
data. The CNN could be utilized as feature extraction in the
input videos that are further stored to AE for feature enhance-
ment and then ESN for anomalous activities detection and
sequence learning.

Ullah et al. [19] examine an effectual and robust struc-
ture for recognizing anomalies in surveillance Big Video
Data (BVD) utilizing AI of Things (AIoT). Smart surveil-
lance is a vital application of AIoT and it can be presented
as a 2-stream NN in this way. He et al. [20] present an
Attention-based Convolution Recurrent Encoder-Decoder
(ACRED) that is effective for addressing anomaly detection
and predicting problems in time sequences. Chen et al. [21]
proposed GTA, a novel structure for multiple variate
time-series AD that automatically learns a graph design,
graph convolutional, and modeling temporal dependency uti-
lizing a transformer-based structure. In [22], the authors
develop and design new anomaly-based IDS for IoT net-
works. Primarily, a CNN approach can be utilized for creating
a multiple-class classifier model. The presented approach is
then executed utilizing CNNs in 1D, 2D, and 3D.

Even though numerous techniques exist in the literature,
a prominent research gap in the field of AD within the IoT
platform is the serious requirement for efficient feature selec-
tion (FS) methods and superior parameter tuning algorithms.
However, IoT systems produce massive quantities of data;
the complex nature of these data streams often overcomes
standard AD approaches. Recent techniques often shortage
the ability to automatically select the major important fea-
tures from this data overflow, which leads to computational
inefficiency and possibly hiding genuine anomalies in the
noise. Additionally, parameter tuning is a significant issue,
as fine-tuning the hyperparameters of identification methods
to ensemble the dynamic and variety of IoT data sources is a
difficult and time-consumingmethod. Connecting this gap by
evolving innovative approaches for FS and parameter tuning
is essential for improving the effectiveness and accuracy of
AD in IoT platforms, eventually confirming the security and
reliability of interconnected devices and systems in the IoT.

III. THE PROPOSED MODEL
In this manuscript, we have devised an automated AD
utilizing the IRMOFNN-AD algorithm for IoT Assisted

Smart Cities. The main purpose of the IRMOFNN-AD
approach lies in the accurate and automated detection of
the anomalies that exist from the IoT platform. It com-
prises 3-phases of operations namely IMRFO feature subset
selection, FNN classification, and SCA-based parameter
tuning. Fig. 1 demonstrates the entire procedure of the
IRMOFNN-AD algorithm.

FIGURE 1. Overall flow of IRMOFNN-AD system.

A. STAGE I: IRMO-BASED FS APPROACH
For the FS process, the IRMOFNN-AD method uses the
IRMO system to elect an optimum set of features. IRMO
approach simulates a group of particles [XM ,N ] that moves
with the centre particle towards the best location sponta-
neously [23]. The particles situated in the search space
is N-dimensional vector assessed by fitness function (FF).
IRMO can automatically update the centre and larger
particles by comparing all the fitness values as genera-
tion upsurges. The outcomes are always upgraded as the
generation increases and moves in the global optimum
direction.

1) GENERATION OF THE INITIAL PARTICLE GROUP
In IRMO, a primary M particle, N-dimensional vectors are
represented as a matrix

[
XM ,N

]
for storing the location infor-

mation of the particles about the FF variable. According to
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Eq. (2) every dimension is generated randomly, where the
upper limit max and xj lower limit minxj (1 ≤ j ≤ N ) are
set beforehand. By comparing and calculating the fitness
values of initial particles, the optimum location in the primary
particle group has been considered as the first global optimum
location Gbest and the initial centre Centre1.

XM ,N =


x1,1 x1,2 . . . x1,N−1 x1,N
x2,1 x2,2 . . . x2,N−1 x2,N
...

...
. . .

...
...

xM ,1 xM ,2 . . . xM ,N−1 xM ,N

 (1)

xij = minxj + rand (0, 1) ×
(
maxxj−minxj

)
(2)

Update the particle group
Two random parameters r1 & r2 determine whether the

newest particle location can be updated by the central loca-
tion or directly inherited to optimize the self-feedback of
particles. If r1 < MRorr1 < wk/w, the newest position is
generated by Eq. (3); or else, by Eq. (4). Evaluate the fitness
value f

(
X ki
)
of xki,j, and the optimum fitness values of the

novel group are kept as Rbestk . If it can be greater than
the present Gbest value, then upgrade the global optimum
location Gbest .

xki,j = wk · rand (−0.5, 0.5) ×
(
maxxj−minxj

)
+ Centrejk−1 (3)

xkij = xk−1
ij (4)

In Eq. (3), wk refers to the inertia weight reducing with the
increasing generation, and k indicates the present generation.

Radial movement of central position
The central location Centrek moves with the current opti-

mum location Rbestk−1 and global optimum location Gbest ,
the coefficients C1 and C2 affect the accuracy and conver-
gence rate of the model., C1 and C2 are set to 0.4 and
0.5 correspondingly.

Centrek = Centrek−1
+ C1

(
Gbest − Centrek−1

)
+ C2

(
Rbestk−1

− Centrek−1
)

(5)

The computation stops once the final generation has been
evaluated. The fitness values of global place Gbest are
the optimum solution, with the fitness value and optimum
location data.

2) DYNAMIC INERTIA WEIGHT APPROACH
The optimizing and searching solution of the model is usually
controlled by inertia weighted. In the beginning, the model
aims at global searching, while it achieves the best results
in radial searching with the decreasing inertia weighted.
The iterative procedure of implicit expression of slope FS
depends on the Rigorous Janbu technique is nonlinear and
very challenging. Such a dynamic inertia-weighted model
was introduced to replace the linearly reducing inertia-weight

model as follows.

wk+1
= wmax − (wmax − wmin) ·

[
2k
G

−

(
k
G

)2
]

,(
f (Gbest)

f
(
Rbestk

))≥W (6)

wk+1
= wmax − (wmax − wmin) ·

(
k
G

)2

,
f (Gbest)

f
(
Rbestk

) < W

(7)

whereG indicates the overall iterations,wmax andwmin denote
the upper and lower limits of inertia weight, f (Gbest) shows
the fitness values of global optima, Rbestk represents the
fitness value of current optimal in existing generation k,W
shows the judgment co-efficient set.

If the f (Gbest) /f
(
Rbestk

)
value is greater than judgment

co-efficient W , then the particle group can be positioned in
the best location. Using the dynamic inertia weight model,
it adjusts the optimizing approach for adapting the nonlinear
complex variation in resolving objective function in IRMO to
enhance the optimization outcome for the multi-dimensional
complex objective function.

In the IRMO algorithm, the average dimensions of the
dataset for classification (viz., supervised learning) are
NS×NF , where NS represents the overall amount of samples,
andNF denotes the amount of features. To achieve this, the FS
model first splits the NF subset of features into small set (S)
whose combined dimension is smaller than NF :

Fit = λ × γ s+
(
1 − λ

)
×

(
|S|

NF

)
(8)

In Eq. (8), The selected feature is represented as |S|, and the
classification error can be represented as γS . The parameter
λ is chosen between zero and one, and the balance between(

|S|

NF

)
and γS .

B. STAGE II: FNN-BASED CLASSIFICATION
At this stage, the FNN model is used for the classification
of anomalies. FNN is a powerful and effectual mechanism
to recognize supervised learning and modelling [24]. FNN
contains of membership function (MF) layer, rule layer,
input layer, and output layer. Fig. 2 depicts the infrastructure
of FNN.

Input layer: The input layer receives x = [x1, x2, . . . ,xn],
and the size of the input vector signifies the neuron counts
from the input layer.

Membership function layer: In the MF layer, all the neu-
rons are lingual variables which evaluate the degree of
membership. The MF layer is as follows:

fij = e
−

(xi−cij)
2

σ2ij , (9)

Here cij and σij represent the center and width of the jth

membership Gaussian function of xi, correspondingly. The
MF fij represents the ith input belonging to the jth fuzzy set.

VOLUME 12, 2024 143063



F. S. Alrayes et al.: Improved Radial Movement Optimization

FIGURE 2. Architecture of FNN.

Rule layer: All the neurons are a fuzzy rule, where the
outcome is activation intensity as follows:

aj = f1j (x1) f2j (x2) · · ·fnj (xn) , (10)

aj =
aj∑r
j=1 aj

, (11)

where a is the normalized value, andr refers to the neuron
counts from the rule layer.

Output layer: The output layer identifies the last output
computation, it can be expressed as:

y =

r∑
j=1

wjaj (12)

In Eq. (12), y refers to the resultant of FNN, and wj indi-
cates the weighted connection rule and output layers.

In this work, the objective is to train the weight-connected
rule and resultant layers wj, center cij and width σij of jth

membership Gaussian function of xi.

C. STAGE III: PARAMETER TUNING USING SCA
Lastly, the parameter tuning of the FNN method takes place
using the SCA. SCA follows an SC oscillate function is vital
to determining the optimum position of the solution [25]. The
following random variable is used to express SC operations.

• The direction of motion.
• The position of the movements.
• Emphasize/de-emphasize the destination effects.
• The swapping amongst the sines and cosines modules.

Using the following equation, the updating procedure of the
candidate solution is performed.

P (t + 1) =

{
P (t) + r5.sin(r6).

∣∣r7S∗ (t) − S (t)
∣∣

P (t) + r5.cos(r6).
∣∣r7S∗ (t) − S (t)

∣∣
rr44 ≥ 0.5 < 0.5 (13)

In Eq. (13), t denotes the number of search iterations . This
method tracks two significant performances: the best per-
formance, represented as S∗, and the current performance,

represented as S. Random parameters r4, r6, and r7 are
assigned values within [0, 1]. As they affect the solution’s
position, this random variable plays an essential role in the
algorithm. Particularly, the equation shows that the position
of the obtained best solution affects the present solution.
This impact enables the exploration of searching space and
upsurges the probability of converging toward an optimum
performance. In the iteration process, the values of r4 are
updated dynamically based on Eq. (14), further improving the
search process.

r4 = a−
a×t
tmax

(14)

In Eq. (14), a refers to a constant, t and tmax correspond-
ingly indicates the existing and maximal iterations.

The SCA is a resilient meta-heuristic technique that uses a
single optimum solution for guiding the other solutions. This
method contributes toward a noticeable decline in memory
usage and convergence time, which distinguishes it from
other approaches.

The fitness optimal is a key aspect of the SCA algorithm.
Solution encoding has been employed to assess the better of
candidate results. Presently, the accuracy value is the major
condition deployed to design an FF.

Fitness = max (P) (15)

P =
TP

TP+ FP
(16)

whereas, FP and TP denote the false and true positive values.

IV. RESULTS AND DISCUSSION
The simulation validation of the IRMOFNN-AD approach
has been tested using the UNSWNB-15 database [26] and the
UCI SECOMdatabase [27]. The data contains 42 features and
the proposed approach elected a group of 16 features. Also,
the data takes 10 classes composed of 1 normal and 9 attacks.
Afterwards, the UCI SECOM database was collected in
semiconductor industries. The data take 1567 instances with
591 features. The data contains 2 class labels that fail and pass
with 104 and 1463 instances. The proposed methodology has
elected a group of 198 features in the data.

Table 1 and Fig. 3 represent the AD outcome of the
IRMOFNN-AD system on the dataset1.

The result highlighted the proficient recognition of all
anomalies. On the 70%TR set, the IRMOFNN-AD technique
offers average accuy,precn, recal , Fscore, and AUCscore of
99.06%, 95.29%, 95.29%, 95.28%, and 97.38% respectively.
Also, on the 30% TS set, the IRMOFNN-AD system attains
average accuy,precn, recal , Fscore, and AUCscore of 98.93%,
94.70%, 94.64%, 94.66%, and 97.03% respectively.

Fig. 4 shows the training accuracy TR_accuy andVL_accuy
of the IRMOFNN-AD technique on dataset1. The TL_accuy
is determined by the assessment of the IRMOFNN-AD
approach on the TR database while the VL_accuy is calcu-
lated by evaluating the outcome on a discrete testing database.
The outcomes exhibit that TR_accuy and VL_accuy increase
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FIGURE 3. Average of IRMOFNN-AD methodology on dataset1.

TABLE 1. AD outcome of IRMOFNN-AD system on dataset1.

with an upsurge in epochs. As a result, the performance of
the IRMOFNN-AD technique improves on the TR and TS
database with an upsurge in the count of epochs.

In Fig. 5, the TR_loss and VR_loss results of the
IRMOFNN-AD technique on dataset1 are shown. The
TR_loss defines the error between the predictive performance
and original values on the TR data. The VR_loss represent the
measure of the performance of the IRMOFNN-AD method-
ology on separate validation data. The results indicate that

FIGURE 4. Accuy curve of IRMOFNN-AD methodology on dataset1.

FIGURE 5. Loss curve of IRMOFNN-AD methodology on dataset1.

the TR_loss and VR_loss tend to decrease with rising epochs.
It represented the better solution of the IRMOFNN-AD
method and its ability to create a correct classification. The
lesser value of TR_loss andVR_loss reveals the enhanced out-
come of the IRMOFNN-AD technique on capturing designs
and relationships.

Table 2 and Fig. 6 represent the AD outcome of the
IRMOFNN-AD algorithm on the dataset2. The simulation
value denoted the proficient detection of all anomalies.
On 70% TR set, the IRMOFNN-AD system attains average
accuy,precn, recal , Fscore, and AUCscore of 98.26%, 98.31%,
98.26%, 98.28%, and 98.26% correspondingly. Similarly,
on the 30% TS set, the IRMOFNN-AD approach gains
average accuy,precn, recal , Fscore, and AUCscore of 99.02%,
98.96%, 99.02%, 98.99%, and 99.02% correspondingly.

Fig. 7 illustrates the training accuracy TR_accuy and
VL_accuy of the IRMOFNN-AD algorithm on dataset2. The
TL_accuy is defined by the estimate of the IRMOFNN-AD
approach on the TR database but the VL_accuy is calcu-
lated by evaluating the outcome on a distinct testing dataset.
The outcomes exhibit that TR_accuy and VL_accuy increase
with an upsurge in epochs. Consequently, the solution of
the IRMOFNN-AD system improves the TR and TS database
with an upsurge in the count of epochs.
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TABLE 2. AD outcome of IRMOFNN-AD system on dataset2.

FIGURE 6. Average of IRMOFNN-AD methodology on dataset2.

FIGURE 7. Accuy curve of IRMOFNN-AD methodology on dataset2.

In Fig. 8, the TR_loss and VR_loss outcomes of the
IRMOFNN-AD method on dataset2 are exposed. The
TR_loss determines the error between the predictive outcome
and original values on the TR data. The VR_loss signify
the measure of the performance of the IRMOFNN-AD
algorithm on individual validation database. The results indi-
cate that the TR_loss and VR_loss tend to decline with rising
epochs. It depicted the higher solution of the IRMOFNN-AD
algorithm and its ability to generate exact classification. The
lesser value of TR_loss and VR_loss exhibits the enhanced

FIGURE 8. Loss curve of IRMOFNN-AD methodology on dataset2.

outcome of the IRMOFNN-AD technique on capturing pat-
terns and relationships.

Fig. 9 illustrates the classifier performance of IRMOFNN-
AD methodology on dataset1 and dataset2. Figs. 9a-9c
defines the PR outcome of the IRMOFNN-AD model on
dataset1 and dataset2. The result demonstrated that the
IRMOFNN-AD algorithm performs in increasing PR val-
ues. Afterwards, it can be clear that the IRMOFNN-AD
approach reaches superior values of PR values on all class
labels. Finally, Figs. 9b-9d exhibits the ROC outcome of
the IRMOFNN-AD system on dataset1 and dataset2. The
simulation value defined that the IRMOFNN-AD technique
resulted in greater values of ROC. Next, it could be clear that
the IRMOFNN-AD methodology achieved greater values of
ROC on all class labels.

FIGURE 9. Dataset1: (a-b) PR and ROC curve, Dataset2: (c-d) PR and ROC
curve.
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The comparison results of the IRMOFNN-AD technique
on dataset1 are reported in Table 3 and Fig. 10 [11].
The outcome value signifies that the ANN and SVM
approaches report lesser results whereas the LR, KNN, DT,
and SSA-CRNN models achieve considerable performance.
Along with that, the IBFO-ODLAD model reaches near-
optimal outcomes with precn, recal , accuy, and Fscore of
94.34%, 94.46%, 98.89%, and 94.28%, the IRMOFNN-AD
technique gains maximum outcomes with precn, recal ,
accuy, and Fscore of 95.29%, 95.29%, 99.06%, and 95.28%
respectively.

TABLE 3. Comparative outcome of IRMOFNN-AD system with other
methods on dataset1.

FIGURE 10. Comparative outcome of IRMOFNN-AD algorithm on
dataset1.

The comparison outcomes of the IRMOFNN-AD method-
ology on the dataset1 are reported in Table 4 and Fig. 11. The
simulation value signifies that theDNNLayer2 and Ensemble
Models report lesser outcomes while the DNN Layer1, DNN
Layer3, PSO Ensemble, and SSA-CRNN approaches accom-
plish considerable performance. Next, the IBFO-ODLAD
system reaches near optimum outcomes with precn, recal ,
accuy, and Fscore of 96.81%, 97.88%, 98.66%, and 95.47%,
the IRMOFNN-AD methodology obtains maximal outcomes
with precn, recal , accuy, and Fscore of 98.96%, 99.02%,
99.02%, and 98.99% correspondingly.

TABLE 4. Comparative outcome of IRMOFNN-AD algorithm with other
methodologies on dataset2.

FIGURE 11. Comparative outcome of IRMOFNN-AD algorithm on
dataset2.

These outcomes confirmed the better solution of the
IRMOFNN-AD methodology for the anomaly detection
process.

V. CONCLUSION
In this manuscript, we have devised an automated AD using
the IRMOFNN-AD system for IoT Assisted Smart Cities.
The main purpose of the IRMOFNN-AD system lies in the
accurate and automated detection of the anomalies that exist
in the IoT environment. It comprises 3-phases of operations
namely IMRFO feature subset selection, FNN classification,
and SCA-based parameter tuning. For the FS process, the
IRMOFNN-AD technique uses the IRMO system to elect an
optimum set of features. Furthermore, the IRMOFNN-AD
methodology applies the FNN model for the detection
and classification of anomalies. Furthermore, the SCA
can be employed for the parameter tuning of the FNN
algorithm. The simulation validation of the IRMOFNN-AD
algorithm illustrates the improved detection performances
of the IRMOFNN-AD methodology with maximum accu-
racy of 95.28% and 99.02% on UNSW NB-15 and UCI
SECOM datasets, respectively. Future work can examine the
computation complexity of the proposed model. Besides,
the scalability and real-time abilities of the IRMOFNN-AD
model can be boosted to accommodate the increasing
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complexity and volume of data created by IoT devices in
ever-expanding smart cities. Besides, future work can focus
on the interpretability of the DL model. The integration of
fault frequencies as prior knowledge into the model, partic-
ularly in offshore wind turbine applications, highlights the
significance of this aspect. Acknowledging the critical role of
interpretability could find a suitable place in the introduction
section, underlining its relevance in real-world scenarios.
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