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ABSTRACT Depending on the severity and spatial-temporal variability, droughts can have a wide range
of impacts such as crop failure, water shortages, and food insecurity. Accurate and timely forecasting is
necessary to mitigate the hazards of extreme weather events, such as droughts, brought on by climate change.
A district like Chitradurga in India, which typically receives around 450-600 mm of annual rainfall, will
require advanced drought mitigation strategies and plans before the onset of the drought. This research
focuses on 1-step lead time forecasting of meteorological drought episodes making use of the 6-month
Standardised Precipitation Index (SPI-6) as indicator. The fine resolution rainfall data (0.25◦

× 0.25◦)
obtained from the Indian Meteorological Department was used to derive the 6-month SPI data of 23 grid
stations. The 1-step lead time SPI-6 time series was forecast considering the antecedent SPI-6 time series
data as model input. The Mutual Information was used to determine the most relevant input features for
drought forecasting. The standard Artificial Neural Network, an advanced machine learning framework
- Multivariate Adaptive Regression Splines, and the ensemble learning-based CatBoost Regression and
Gradient Tree Boosting paradigms were employed to forecast drought episodes. Error and efficiency metrics
were employed for performance evaluation of the simulated models. The multivariate adaptive regression
splines and gradient tree boosting forecasts had slightly higher accuracy and lower error rates than the
artificial neural network model, which suggests that they may be more reliable for drought forecasting.
The root mean square error and normalized Nash-Sutcliffe efficiency ranges of the multivariate adaptive
regression splines model (during test phase) were 0.37–0.54 and 0.78–0.87, respectively. The thematic maps
that were created using spatial interpolation of model forecasts from all the stations also confirmed that the
district as a whole experienced drought in April 2019.

INDEX TERMS CatBoost regression, droughts, ensemble learning, gradient tree boosting, multivariate
adaptive regression splines, mutual information gain, standardized precipitation index.

I. INTRODUCTION
Drought is a highly persistent natural disaster that can
have effects ranging from subtle to severe over a range of
timescales in a specific region. Persistent precipitation deficit
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is the key factor contributing to different forms of droughts
[1], [2]. Region-specific factors such as topography, climate
change, temperature, rainfall distribution, etc. determine
both drought frequency and severity [3]. People and the
environment can be severely affected by droughts. They
can lead to water shortages, crop failures, wildfires, and
the spread of disease. Droughts can also have a significant

VOLUME 11, 2023

 2023 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ 141375

https://orcid.org/0000-0001-9511-8578
https://orcid.org/0000-0002-0482-1936
https://orcid.org/0000-0001-8445-3469
https://orcid.org/0000-0002-4590-7744
https://orcid.org/0000-0001-6448-4866


G. S. Hukkeri et al.: Drought Forecasting: Application of Ensemble and Advanced Machine Learning Approaches

economic impact, as they can lead to job losses and damage
to infrastructure [4].

The functional classification of droughts is based on
rainfall deficits that accumulate over different timescales.
These droughts can be permanent, seasonal, or contingent
[2], [5]. Agricultural, meteorological, hydrological, and
socio-economic droughts have compounding effects based
on their complexity, severity, and impact [6]. Meteorological
drought is classified based on the rainfall deficiency com-
pared to the long-term average. As per the Indian Meteoro-
logical Department, following are the classifications: slight
drought: rainfall deficiency of 25% or less; moderate drought:
rainfall deficiency of 26% to 50%; and severe drought: rain-
fall deficiency of more than 50% [7]. Meteorological drought
is usually a measure of the dryness of the atmosphere [8].
The intensity of a drought is measured by its magnitude,

and its severity is determined by its duration. In general,
droughts that last for longer periods tend to be more severe
than those that occur over shorter time scales. This is due to
the fact that prolonged droughts have more time to impact
the availability of water, vegetation, and other environmental
factors [9], [10]. The relationship between drought time scale
and magnitude is not always readily apparent [9]. Shorter-
term droughts can occasionally be just as severe as those
that last for a longer period of time. This is due to the fact
that a drought’s timing can be just as crucial as its duration.
For instance, a drought that strikes during a critical time
of year, such as the growing season, can be more severe
than a drought that occurs during a less critical time of
year [11]. The different drought time scales can also have
a different impact on different environments. For example,
droughts that occur in arid environments tend to be more
severe than droughts that occur in humid environments.
This is because arid environments have less water available
to begin with, so even a small reduction in precipitation
can have a significant impact. Droughts can also have a
significant impact on natural ecosystems, leading to changes
in vegetation, wildlife populations, and soil health [12].
Spatio-temporal forecasting of drought can have a pro-

found impact on the way we prepare for, monitor, and
respond to droughts [13]. By providing advanced warning
of drought, we can take steps to mitigate its effects, such
as conserving water, planting drought-resistant crops, and
creating firebreaks. Spatio-temporal forecasting can also help
us to compare the severity of previous droughts with the
existing ones, which can help us to better understand the risks
of drought and to develop more effective mitigation strategies
[14]. Arid and semi-arid regions are more likely to be affected
by drought because they receive less precipitation than other
regions. This means that they are more vulnerable to the
effects of drought, such as water shortages, crop failures, and
wildfires [15]. There exists a number of methods that can be
used to forecast droughts. Some of themost commonmethods
include: statistical methods [16], [17], [18], numerical
weather prediction (NWP)models [19], andmachine learning
methods [20]. The apt method for forecasting drought will

vary depending on the region and the specific application.
Spatio-temporal forecasting is a valuable tool that can
help us to better understand and respond to drought. The
Standardized Precipitation Index (SPI) is a versatile and
widely used index for quantifying meteorological drought.
It is based on the long-term precipitation record for any
particular location, and can be calculated for different time
periods. This makes it a valuable tool for assessing the
severity and impact of droughts, as well as for forecasting
the likelihood of them in the future [21]. The choice of
Standardized Precipitation Index (SPI) time scale depends
on the specific application and the type of drought impact
being assessed. For the purpose of evaluating medium-term
drought conditions and their effects on hydrological and
agricultural systems, time scales–such as six months–work
better. Hence, 6-month SPI (SPI-6) was chosen to better
reflect the cumulative effects of precipitation deficits on soil
moisture, streamflow, and baseflow levels. The 6-month SPI
is relatively insensitive to short-term precipitation variability.
Gridded and satellite indices can be valuable tools for
drought monitoring, but their accuracy and reliability can be
affected by various factors, including data scarcity, spatial
and temporal resolution, interpolationmethods, model biases,
and uncertainties in input data [22], [23]. Despite these
uncertainties, gridded SPI data can be a valuable tool for
drought monitoring.

A. RELATED LITERATURE
Drought characterization, analysis, and forecasting have been
the subject of many meta-analysis and systematic review
papers. The review panellists have addressed a wide range
of issues, including the challenges of drought analysis and
forecasting [24], [25], [26], the current state of scientific
knowledge and interdisciplinary analyses of drought events
[27], [28], drought effects on environmental systems [29],
multiple drought-related variables and multivariate drought
indices [30], [31], resilience and coping with transboundary
drought risks [32], [33].

In recent years, there has been a growing interest in using
machine learning (ML) to improve the forecast accuracy of
the SPI or other drought indices. Here we present a literature
review of some of the recent studies related to drought
forecasting using machine learning. A recent systematic
review by Gyaneshwar et al. [34] sheds insight on the
different types of deep learning (DL) models that have
been used for drought prediction, as well as the challenges
and limitations of those models. Further, an organized and
inclusive survey presented by Prodhan et al. [35] emphasize
on the basic concepts and the development of ML and DL
algorithms for efficient and effective drought forecasting
task. Recent research by Basak et al. [36] found that the
Prophet model was more accurate and robust than support
vector regression (SVR) and multiple linear regression
(MLR) models for short-term drought forecasting using
SPI. Likewise in another study by Elbeltagi et al. [37],
the Random Subspace (RSS) model was hybridized with
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FIGURE 1. Chitradurga District of Karnataka, India.

M5 Pruning tree (M5P), Random Tree (RT) and Random
Forest (RF) paradigms to estimate SPI. The RSS-M5P model
provided the most accurate SPI forecasts. TheM5P algorithm
improved the performance of the RSS model. The standard
ML models such as support vector machine (SVM), random
forest, additive regression, bagging, and random subspace
models were implemented for forecasting SPI for different
time-scales (3, 6, 9, and 12) of the Wadi Mina basin,
Algeria by Achite et al. [38]. The research by Gul et al.
[39] found that the Extreme Gradient Boosting (XgBoost)
model outperformed the Adaptive Boosting (AdaBoost), and
Gradient Boosting (GradBoost) models in forecasting SPI-
3, SPI-6 and SPI-12 timeseries of the Aegean region in
Türkiye. The hybrid ML models can be more interpretable
than standard ML models; considering this Mohammadi
[10] applied artificial neural network with firefly algorithm
(ANN-FA) to model SPI-3, SPI-6, SPI-18, and SPI-24 of
Lima meteorological station in Peru and obtained promising
forecasts with higher accuracy. The FA is a metaheuristic
algorithm that was used to optimize the parameters of the
ANN. To summarize the application of machine learning
(ML) for drought forecasting is advantageous in terms
of accuracy, robustness, interpretability, and scalability.
In general, ML models serve as valuable tools for drought
modeling. They help to improve the accuracy of drought
forecasts, simplify the handling of drought data, and provide
insights into the factors that contribute to droughts.

B. STUDY AREA
The study area chosen was Chitradurga, a district of
Karnataka state in the southern part of India. It is located
at an elevation of 732 meters above sea level, and has a
total area of 8,437 square kilometers covering about 4.4%

TABLE 1. Descriptive statistics of SPI-6 dataset derived from IMD
precipitation data (Station 1 - 12).

of the total area of the Karnataka state. The annual mean
temperature in Chitradurga is 25.4 ◦C, and the average annual
precipitation is 655 mm [40]. The major soil types in the
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FIGURE 2. Methodology flowchart.

district are deep and shallow black soil, mixed red and
black soil, red loamy soil, and sandy soil. The land usage
in Chitradurga includes a forest area of 737.17 square km
and a net sown area of 4,698.37 square km. The district
comes under the Krishna river basin and sub-basins of
Vedavathi, Janagahalli, Swarnamukhi, and Yakanahalli Nala
[41]. According to Koppen and Geiger’s classification, the
climate of Chitradurga is classified as ‘BSh’ (‘B’ denotes dry;
‘S’ denotes semi-arid or steppe; and ‘h’ denotes hot climate)
[42]. The monthly rainfall data of the study area was obtained

from the Indian Meteorological Department (IMD) for the
period from January 1980 to December 2019. The SPI was
determined for 23 grid locations within the study area using
the precipitation data from IMD. The location details of all
the grid locations are given in Figure 1.

C. MOTIVATION AND OBJECTIVES
In India, 68% of the country is drought-prone, with 35% of
that area receiving between 750 and 1125 mm of rainfall
annually, and 33% receiving less than 750 mm annually [43].
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FIGURE 3. Scatter plots of best performing models used for SPI-6 forecasting (Stations 1-12) (Test phase).

Chitradurga is a drought-prone district in Karnataka, India.
It receives an average annual precipitation of 655 mm, which
is well below the state average of 747 mm. Additionally,

the district experiences temperatures as high as 44◦C during
the summer season with low humidity, which makes it even
more susceptible to drought stress. Drought analysis and
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FIGURE 4. Scatter plots of best performing models used for SPI-6 forecasting (Stations 13-23) (Test phase).

forecasting aids to delineate the areas that are likely to
experience drought event. The forecast information could be
used to develop and hone drought mitigation and adaptation

strategies. The SPI-6 index, which is often used to foresee
reduced streamflow, water shortages, and crop failures,
was considered in the current research. The objective of
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FIGURE 5. Violin plots of ML models used for SPI-6 forecasting (Stations 1-8) (Test Phase).

the study was to quantitatively forecast the one-step lead
time meteorological drought (SPI-6) using Artificial Neural
Network, Gradient Tree Boosting, Multivariate Adaptive

Regression Splines and CatBoost Regressor paradigms,
compare the effectiveness of these models, and then endorse
the best model based on their performance.
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FIGURE 6. Violin plots of ML models used for SPI-6 forecasting (Stations 9-16) (Test Phase).

The selection of multivariate adaptive regression splines
(MARS), CatBoost regression (CBR), and gradient tree
boosting (GTB) paradigms was based on their ability to

handle complex non-linear relationships, their robustness
to noise and outliers, and their ability to produce accurate
predictions. Additionally, CBR and GTB are both relatively
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FIGURE 7. Violin plots of ML models used for SPI-6 forecasting (Stations 17-23) (Test Phase).
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FIGURE 8. Taylor diagram for comparative evaluation of ML models used for SPI-6 forecasting (Stations 1-8) (Test Phase).

FIGURE 9. Taylor diagram for comparative evaluation of ML models used for SPI-6 forecasting (Stations 9-16) (Test Phase).

fast and efficient. These algorithms are well-suited for non-
linear prediction tasks and have been shown to be effective in
a variety of other studies. As a benchmark model, a standard
artificial neural network was utilized to assess how well the
ensemble models performed.

II. THEORETICAL OVERVIEW
A. ARTIFICIAL NEURAL NETWORKS (ANN)
The fundamental principle underlying Artificial Neural
Networks is inspired (in part) by the way a person’s neural
system analyzes data as well as information in order to
learn and grasp knowledge. A neural network is a system
of interconnected processing units, called neurons, that work
together to arrive at optimal solutions. The input layer is
where the raw data is fed into the network, the hidden layers

process the data, performs all sorts of computation using
complex non-linear functions, and the output layer produces
the final results. The activation functions determine whether
or not a neuron should be activated, and backpropagation
wouldn’t be feasible without them. Activation functions
provide the gradients and error that are needed to update the
weights and biases of the network, and they also allow the
network to re-learn and update during training. Through a
chain rule mechanism, the backpropagation algorithm trains
the neural network more efficiently by minimizing the loss
function using the gradient descent optimization method.
A feedforward backpropagation network architecture was
implemented in the current study. Refer to [44] and [45] for
more details on ANN, its various architectures, the model
tuning process, and optimisation.
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FIGURE 10. Taylor diagram for comparative evaluation of ML models used for SPI-6 forecasting (Stations 17-23) (Test Phase).

FIGURE 11. The drought severity maps.

B. GRADIENT TREE BOOSTING (GTB)
Gradient Tree Boosting is an ensemble learning paradigm
that builds a final model from a set of individual models.
Usually, these individual models are decision trees, which

are weak learners. The prediction capability of these weak
models often leads to overfitting or underfitting issues, but
in collective/ensemble form produce a robust model [46].
To govern the contribution of each tree to the ensemble,
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TABLE 2. Descriptive statistics of SPI-6 dataset derived from IMD
precipitation data (Station 13 - 23).

TABLE 3. Input-output (I/O) structure identified by mutual information
criterion.

a learning rate is considered. This learning rate scales the
contribution of each tree, promoting stable and accurate
learning. Gradient Descent is employed to optimize the
ensemble’s loss function, which typicallymeasures the differ-
ence between actual target values and ensemble predictions.
The boosting process continues until a predefined number
of trees (boosting rounds) are built or until the model’s
performance on a validation set no longer improves. GTB
often utilize regularization techniques to prevent overfitting
issues. These methods, such as feature subsampling and
tree depth constraints, enhance the model’s generalization
capabilities. The ability of GTB to handle complex, non-
linear features and robustness against overfitting have made it
a favored choice among data scientists and machine learning
practitioners. The authors advise referring to [47] and [48] for
comprehensive information regarding GTB.

C. MULTIVARIATE ADAPTIVE REGRESSION SPLINES
(MARS)
MARS is a non-parametric regression technique capable
of modeling the relationship between a dependent variable

and multiple independent variables. It was introduced by
an American statistician, Jerome H. Friedman, where the
model is built using piecewise linear models, also known as
basis functions, obtained by iteratively searching through all
possible potential knots and across all variable interactions
[49]. The knot positions are automatically selected using
an adaptive regression method. The way the basis functions
are derived is significant in the MARS algorithm. There
are two phases here: first, the generation phase or forward
pass, followed by the pruning phase or backward pass. In the
forward pass, MARS searches for the best basis functions
to add to the model. It does this by performing a forward
stepwise search, greedily selecting the basis function that
reduces the model’s error the most. After the forward pass,
MARS enters the pruning phase, where it iteratively removes
basis functions from the model to reduce overfitting. The
output of each basis function is weighted by a coefficient,
and is a combinations of hinge functions. Basis functions are
produced by a combination of hinge functions and the output
of each basis function is often weighted by a coefficient.
By summing the weighted output of all of the basis functions,
the final output of theMARSmodel satisfying the generalised
cross-validation criterion is obtained. In essence, the MARS
model is an ensemble of linear functions. For further detailed
information on MARS algorithm, refer to [50] and [51].

D. CATBOOST REGRESSION (CBR)
CatBoost or Categorical Boosting is based on ensemble
learning strategy that uses gradient boosting and decision
trees to generate regression models. In CBR the features are
handled directly without being encoded. CatBoost also has
an array of extra functionalities such as the provisions for
early stopping and cross-validation, a variety of loss function
algorithms that users can select from, the potential to manage
missing data, and supports both L1 and L2 regularization
strategies to avoid overfitting. Prompting leaf-wise growth,
CatBoost builds trees in order to lower the loss function at
each and every leaf itself and thereby enhance the precision
of the model. CatBoost, in general, is a sophisticated and
versatile regression technique that applies a cross-validation
method internally to choose the optimal hyperparameters for
the model. Refer to the following literature [52] and [53] for
more details on the CatBoost algorithm.

III. METHODOLOGY
A. MODEL DEVELOPMENT
The Standardized Precipitation Index (SPI) developed by
McKee et al. [54] is widely used to detect and characterize
meteorological drought. It can be used to represent drought
conditions over a wide range of timescales (3, 6, 12, 24,
and 48 months), making it suitable for both short- and
long-term droughts. A long-term precipitation record at the
chosen station is fitted to a probability distribution (such
as the gamma distribution) in order to produce the SPI
(Standard Precipitation Index), which is then transformed
into a normal distribution with mean SPI as zero and unit
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TABLE 4. Model parameter settings used for calibration of the developed models (Station 1 - 12).

TABLE 5. Model parameter settings used for calibration of the developed models (Station 13 - 23).

standard deviation. Droughts can be detected and classified
using the SPI. Generally speaking, a drought is indicated
by an SPI value of -1.5 or less, with larger negative values
suggesting more severe drought conditions. The SPI can also
be used to compare drought conditions in various regions and
track the onset of a drought over time.

In the present study, SPI-6 was calculated from monthly
rainfall data of 1980-2019 (40 years) procured from IMD,
India. Further, the SPI-6 data was divided into two parts,
namely the training data (1980-2009) and testing data (2010-
2019). The descriptive statistics of SPI-6 timeseries of 23 grid
stations within the study area are presented in Tables 1 and
2. Descriptive statistics is a versatile tool used to summarize
and describe the main features of a dataset, such as the
central tendency and dispersion. Mutual Information (MI)
approach was employed to choose the best lag intervals of
SPI-6 timeseries so as to serve as inputs for forecasting 1-
step lead-time SPI-6 time series. The mutual information
between the original time series and the lagged version
of the time series (that accounts for temporal dependence)
is utilized in the selection of input features for building

models. The input-output structure of the models developed
for the SPI-6 data of 23 grid stations are presented in
Table 3. The input-output structure of an ML model is an
important factor to consider when designing and applying
the model. The input data should be relevant to the task
that the model is being used for, and map the output data.
The model hyperparameters of ANN, GTB, MARS and CBR
were optimized based on automated grid search approach.
Figure 2 illustrates themultiple steps followed in this research
methodology.

B. PERFORMANCE EVALUATION
The degree of agreement between the forecasted and actual
SPI-6 data was assessed using error and efficiency metrics.
Mean Absolute Error (MAE) is a non-parametric measure,
computed as the average of the absolute differences between
the forecasted values and the actual values. Similarly,
Root Mean Square Error (RMSE) is a measure of the
average squared difference between forecasted values and
actual values. RMSE is also more sensitive to outliers than
MAE, making it more susceptible to being influenced by a
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TABLE 6. Model performance evaluation using statistical metrics (Station 1 - 12).
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TABLE 7. Model performance evaluation using statistical metrics (Station 13 - 23).
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few extreme values. Normalized Nash–Sutcliffe Efficiency
(NNSE) is a dimensionless metric of the accuracy of
hydrological models. It is also a more sensitive measure of
accuracy than the coefficient of determination (R2), making
it more likely to detect large errors. The Willmott Index
(WI) can be used to compare the agreement between two
time series, regardless of their scales. A Willmott index of
1 indicates a perfect fit between the simulated and observed
values.

• Mean Absolute Error (MAE)

MAE =

n∑
i=1

∣∣yi − xi
∣∣

N
(1)

• Root Mean Square Error (RMSE)

RMSE =

√∑n
i=1(x i − yi)2

N
(2)

• Normalized Nash–Sutcliffe Efficiency (NNSE)

NSE = 1 −

[∑n
i=1(x i − yi)2∑n
i=1(x i − x̄)2

]
(3)

NNSE =
1

2 − NSE
(4)

• Willmott Index (WI)

WI = 1 −

∑n
i=1(x i − yi)2∑n

i=1 (|yi − x̄| + |xi − x̄|)2
(5)

where, xi represnts the observed value, yi represents themodel
estimated value, x̄ represents the mean of the observed data,
and N is the number of data points.

IV. RESULTS AND DISCUSSION
The study was conducted to forecast the one-step-ahead Stan-
dardized Precipitation Index (SPI-6) of 23 rainfall gauging
stations in the Chitradurga district of India. Four machine
learning models, namely ANN, GTB, MARS and CBR were
developed to generate the forecast. The performance of the
models was assessed using various performance indices, such
as MAE, RMSE, NNSE, and WI. The model parameters
were arrived at using an automated grid search approach that
systematically scans across a range of potential values. The
parameter settings of the calibrated models are presented in
Tables 4 and 5.

The results of one-step ahead SPI-6 forecasts using four
ML models revealed that the ensemble learning based
models showed superior performance than the typical ANN
considering all evaluation indices. Tables 6 and 7 presents the
performance statistics for comparative evaluation of all the
four ML models with reference to stations 1-23. Considering
all evaluation metrics, the MARS model outperformed GTB,
CBR, and ANN models. For instance, referring to station
4 testing results, the improvement in theMAE, RMSE, NNSE
and WI of the MARS as compared to the ANN was by
25.53%, 27.11%, 14.86% and 7.95%, respectively. However,

the corresponding statistics were 2.77%, 2.27%, 1.19% and
1.06%, respectively, when the MARS and GTB forecasts
were compared. The MARS performed relatively superior
than the GTB. TheMARSmodel is also an ensemble learning
model that combines multiple linear regression splines to
improve forecast accuracy. Looking at the testing results of
stations 11, 20 and 23, the additional input variable (SPI(t−5))
that was considered during the calibration of the ANN model
for these stations may have helped to reduce the noise in
the data and improve the performance of the ANN model.
As a result, the ANN model performed relatively similar
to that of MARS for stations 11, 20 and 23. The MARS
model produced the best SPI-6 forecasts among the four
implemented ML models, with the least error and higher
efficiency indices. The MARS model had the highest NNSE
values for 17 out of the 23 stations. The SPI-6 forecasts of
stations 8 and 12 were significantly accurate with the least
error criteria (MAE=0.29) compared to the other 21 stations.
With the exception of ANN model, the performance of the
GTB, MARS, and CBR paradigms was undeniably almost
similar for the all the stations.

The scatter plots presented in Figures 3 and 4 portray the
degree of association between the forecasted and observed
SPI-6 data. It could be observed that the points in the
scatter plots of the MARS and CBR models are more
tightly clustered around the line of perfect fit compared
to the other models. Having a coefficient of determination
(R2) between 0.7 and 0.9 indicates that the variables
(observed and forecasted) exhibit the highest degree of
association. The test phase results were considered for
plotting.

The violin plots, which are relatively easy to interpret,
prove to be a good choice for representing data and
communicate to a wider audience. A violin plot offers the
benefits of a box plot and a kernel density plot. The Figures
5, 6 and 7 portray the violin plots that represent the results
of SPI-6 forecasts from the ANN, GTB, MARS and CBR
models with respect to test phase. The violin plots also aid
in visualising and comparing the distributions of observed
and forecated SPI-6 data. Based on skew, symmetry, and
variability attributes, the violin plots of the observed SPI-
6 data and the MARS model estimates relatively mimic
each other. Referring to both tabular results and violin plots,
it could be inferred that the GTBmodel outperformedMARS
for station 8, and the CBR model forecasts were relatively
superior to those of MARS for stations 18 and 20.

The Taylor diagram [55] is a graphical tool employed for
comparing the performance of different models (in test phase)
considering three statistical metrics, namely the correlation
coefficient, the centered root-mean-square and the standard
deviation. The Taylor diagrams presented in Figures 8, 9
and 10 show that chronologically the MARS, GTB and
CBR models produced relatively accurate forecasts of the
SPI-6 timeseries for all 23 stations within the Chitradurga
district, India. From the viewpoint of Taylor diagrams, the
performance of the models varied from station to station.
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For example, the MARS model had the best performance for
stations 1, 2, 3, 4, 5, 6, 9, 10, 11, 12, 13, 14, 15, 16, 17, 19,
21, 22 and 23. The GTB model had the best performance
for station 8. The CBR model had the best performance for
stations 7, 18, 20. The performance of the MARS, GTB
and CBR models was relatively consistent across several
stations.

Here, we compare the performance of the proposed models
with other models that were identified in the literature. For
the SPI-6 forecast in the Aegean region of Türkiye, the
XgBoost model developed by Gul et al. [39] achieved WI =

0.901. Similarly, Basak et al. [36] conducted drought research
focusing on semi-arid regions of western India. According
to their findings, the test phase RMSE range of the Prophet
model for the SPI-6 forecast was 0.29–0.63. However,
according to the results obtained in the current case study, for
station 3, the SPI-6 forecasts from theMARSmodel achieved
WI = 0.96, and in most stations, WI > 0.94 was attained.
The RMSE and NNSE ranges of the MARS model (during
test phase) were 0.37–0.54 and 0.78–0.87, respectively.
Shahdad and Saber [56] investigated the efficiency of the
standalone Reduced Error Pruning Tree (REPT) model and
its integration with Bagging (BA), Additive Regression
(AR), Dagging (DA), and Random Committee (RC) for
modeling SPI-6 in the Karkheh watershed in Iran. They found
that hybrid algorithms improved the modeling capabilities
of the standalone REPT algorithm. The DA-REPT model
outperformed the other hybrid models with the lowest RMSE
of 0.387. Overall, the hybrid ML modelling approach is a
promising approach for SPI-6 forecasting. High accuracy can
be attained while being computationally efficient.

The thematic maps were developed to depict the spatial
extent of drought severity in the Chitradurga district. The
maps were developed for the observed SPI-6 and model
forecasted SPI-6 data. A spatial interpolation technique called
Ordinary Kriging was used to generate the thematic maps,
considering the data from all the 23 grid locations. The
drought severity map derived for April 2019 is presented in
Figure 11. The maps generated from MARS and GTB model
forecasts better emulate the observed SPI-6 map.

V. CONCLUSION
In a semi-arid climatic area like Chitradurga, droughts have
an devastating impact on living beings. So, the attempt of
alerting the local authorities to mitigate or counteract the
consequences is of vital importance. Hence, the objective was
to determine the most effective machine learning model for
forecasting meteorological drought. SPI was chosen due to
its very limited data requirement, that is precipitation, and
its wide temporal flexibility. Model complexity and com-
putational effort were reduced by using mutual information
to choose model input features. Among the implemented
models, MARS was found to have best performance in
forecasting the one-step lead-time drought using SPI-6 time-
series. The GTB and CBR models too showed satisfactory
values of NNSE with lower RMSE values as compared to

MARS in most of the grid locations. It is clear from the
thematic maps that, the entire district suffered drought in
the summer of 2019 (April 2019). In the drought severity
analysis using SPI-6 timeseries, the prediction maps from
the MARS and GTB models converged with the observed
SPI-6 map. The study only considered one-step lead-time
forecasting. It would be interesting to see how the MARS
model performs for longer lead times. The limitation of
parameter optimization in ML models could be overcome
by employing meta-heuristic techniques. To enhance the task
of drought forecasting, the parameter optimization of ML
models is feasible through the use of either evolution-based,
swarm-based, or physics-based approaches. Furthermore, the
use of SPI data in conjunction with other meteorological
variables as input could considerably improve modelling
performance.
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