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ABSTRACT The emergence of large language models (LLMs) has marked a significant milestone in the
evolution of natural language processing. With the expanded use of LLMs in multiple fields, the development
of domain-specific pre-trained language models (PLMs) has become a natural progression and requirement.
Developing domain-specific PLMs requires careful design, considering not only differences in training
methods but also various factors such as the type of training data and hyperparameters. This paper proposes
MediBioDeBERTa, a specialized language model (LM) for biomedical applications. First, we present several
practical analyses and methods for improving the performance of LMs in specialized domains. As the initial
step, we developed SciDeBERTa v2, an LM specialized in the scientific domain. In the SciERC dataset
evaluation, SciDeBERTa v2 achieves the state-of-the-art model performance in the named entity recognition
(NER) task. We then provide an in-depth analysis of the datasets and training methods used in the biomedical
field. Based on these analyses, MediBioDeBERTa, was continually trained on SciDeBERTa v2 to specialize
in the biomedical domain. Utilizing the biomedical language understanding and reasoning benchmark
(BLURB), we analyzed factors that degrade task performance and proposed additional improvement methods
based on intermediate fine-tuning. The results demonstrate improved performance in three categories:
named entity recognition (NER), semantic similarity (SS), and question-answering (QnA), as well as in
the ChemProt relation extraction (RE) task on BLURB, compared with existing state-of-the-art LMs.

INDEX TERMS Language model, fine-tuning, domain-specific modeling, natural language processing.

I. INTRODUCTION
The emergence of large language models (LLMs) marked

corpora, such as Wikipedia, news articles, and books [2], [4],
[5], [6], [7]. This knowledge transfer to downstream tasks is

a significant milestone in the evolution of natural language
processing (NLP) [1], [2], [3]. LLMs have been utilized to
build a universal knowledge of a language by pre-training
on large amounts of data and then being fine-tuned for spe-
cific downstream tasks. Typical transformer encoder-based
language models (LMs) have been pre-trained to acquire
general knowledge and contextual characteristics from large
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the cornerstone of the successful application of a pre-trained
language model (PLM) to many problems. The advantage of
transfer learning has been robustly validated in many NLP
applications.

However, it is premised on the assumption that the
language features of the downstream task are similar to
those used in pretraining. Language features vary in terms
of language type, style, terminology, etc.; the larger the gap
between the pretraining information and the downstream
problem, the more difficult it is to take advantage of them [8],
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[9], [10], [11], [12]. This culminated in the development of
domain-specific PLMs that relied on domain-specific data
for pretraining. This trend also manifests in generative LMs
employing transformer decoders. OpenAI’s GPT model [13],
as a representative example, utilizes in-context learning
to acquire general task knowledge through prompts. This
allows it to demonstrate proficiency across a wide range
of tasks without the need for fine-tuning. However, its
performance on specialized domains for which it hasn’t been
trained is comparatively less effective. Even when fine-tuned,
it cannot surpass the performance of domain-specific pre-
trained models [14].

Regarding the development of PLMs for specific domains,
two primary approaches have been identified. One is
continuous learning, which involves learning specialized
datasets in addition to PLMs that have already learned
general knowledge, and the other involves learning models
from scratch using only specialized data [8], [9], [10],
[11], [12], [15]. In the first method, only a relatively small
specialized dataset is utilized for training, considering that
general knowledge has already been acquired. This approach
is particularly suited to scenarios in which computational
resources are limited or specialized datasets are rare.
Conversely, the second approach requires training models
entirely from scratch, using only domain-specific data. This
technique requires a significantly larger dataset and an
extended training period, increasing computing resource
requirements. However, the benefit of the latter strategy lies
in its potential to yield highly domain-specialized models that
often surpass the performance of the former, which is refined
using a continuous learning approach [9], [11].

As Large Language Models (LLMs) have found increased
use across multiple fields, the development of domain-
specific Pre-trained Language Models (PLMs) has emerged
as both a natural progression and a necessity.

The main contribution point of this paper can be summa-
rized as follows:

o The proposed PLM, SciDeBERTa v2, which is trained
from scratch on the S20RC dataset [9], encompasses
full text and outperforms the previous version, SciDe-
BERTa [12]. SciDeBERTa v2 achieves the state-of-the-
art model on the NER task in the SciERC dataset [16].

o This study provides guideline for the development a
bio-medical domain-specific LM using the BLURB
benchmark, which consists of 6 categories and 13 tasks.
The process consists of pre-training, domain-specific
pre-training, inter-mediate fine-tuning according to the
task,and fine-tuning.

o The proposed model, MediBioDeBERTa-IFT, surpassed
the existing state-of-the-art models of the same size in
three kinds of categories (NER by 0.28%, SS by 0.2%,
QnA by 1.29%) and one task (ChemProt RE by 14.96%)
in BLRUB.

The remainder of the paper is structured as follows: In

Section II we present a brief review of previous studies.
Section III outlines the procedure of pretraining to develop an
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optimized PLM for a specialized domain. Section IV details
further improvement techniques. We show experimental
results and discussion in Section V, and finally, we conclude
in Section VI.

Il. RELATED WORK

Transformer-based LMs have recently been used to improve
language comprehension and generation. The representative
transformer-based LM, BERT [2], outperformed humans in
the 2019 GLUE benchmark [17]. RoBERTa [4] optimized
BERT by including as many documents as possible in a batch
by excluding sentence-relationship matching. DeBERTa [7],
an extension of ROBERTa, introduces disentangled attention,
enhanced masked decoder, and accounts for the relative posi-
tions of tokens, achieving superior results in the SuperGLUE
benchmark [18], despite its comparatively smaller size.

Specialized domain adaptation further enhances language
comprehension. SciBERT [8] and S20RC-SciBERT [9],
trained from scratch using science and technology datasets
exemplify this. SciDeBERTa [12], a DeBERTa extension
tailored for computer science through continuous learning,
demonstrates leading performance in specific tasks. In the
biomedical field, BioBERT [10] leverages transfer learning
from BERT pre-trained in the general domain, while Pub-
MedBERT [11], trained from scratch using biomedical liter-
ature, excels in the BLURB benchmark. BioLinkBERT [19],
with its focus on linked documents, currently leads in the
BLURB leaderboard [11].

The emergence of generative LMs like BioGPT (1.5B) [15],
and MedPalm (540B) [20] in the biomedical domain has
shown promising results, particularly in the PubMedQA
task. A comprehensive survey of medical domain-specific
LLMs [3] analyzed the overall process of the LLMs as pre-
training, medical-domain fine-tuning, and prompting. The
prompting process is the case when LLMs(over 10B) are used
with in-context-learning characteristics.

Our study leverages DeBERTa-v2 (100M), in conjunc-
tion with the SentencePiece tokenizer [21]. Our approach
advances beyond the continuous learning methodology of
the SciDeBERTa [12] to yield an optimized LM within the
biomedical domain. This study’s methodology reveals that
a biomedical LM based on DeBERTa, trained progressively,
mirrors the specialized trajectory typical in biomedical
education, resulting in optimal performance.

Ill. PRETRAINING PROCEDURE OF MEDIBIODEBERTA

Domain-specific PLM development requires a careful design
that considers the above differences in training methods
and various factors such as the type of training data and
hyperparameters. This study aims to provide guidelines for
the development of domain-specific PLMs. We analyze
factors critical for optimizing PLMs to specific domains
and assess the impact of each factor on performance.
We specifically demonstrate the development process of
MediBioDeBERTa, a biomedical domain-specific PLM.
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FIGURE 1. Summary of the MediBioDeBERTa training process.

The development process of MediBioDeBERTa, as illus-
trated in Fig. 1, encapsulates the following three key steps:
o Choosing DeBERTa as the base large language model
(LLM), balancing computational cost and performance.
o Designing a domain-specific pretraining strategy by
analyzing PLM performance changes based on pretrain-
ing methods and datasets.
o Optimizing performance for each task, leveraging
results from the domain-specific PLM.
A survey in medical domain-specific LLMs [22] supports
our process, which includes pre-training, medical-domain
fine-tuning, and prompting.

A. BASE MODEL AND PRETRAINING MECHANISM
Pretraining approaches typically fall into two categories. The
first involves training a randomly initialized model from
scratch. The second method is to continue training a PLM
that has already been pre-trained with other knowledge. The
latter is often considered when developing a specialized
LM because of the difficulty in securing data. In terms
of performance, a PLM trained from scratch is generally
expected to yield better performance due to its high domain-
specific knowledge. Analyzing representative results in
the biomedical field, PubMedBERT [11], which pretrains
BERT from scratch, exhibited better overall performance
than BioBERT [10], which pretrains BERT continuously.
However, BioLinkBERT [19], which also pretrains BERT
continuously, demonstrated that enhanced performance can
be achieved by refining the pretraining algorithm.

Our study compares PLMs across different pretraining
methodologies to establish an optimized process for biomed-
ical PLMs. The comparative analysis, detailed in Section V,
reveals that scratch-based training using domain-specific
data typically outperforms continuous learning, as shown by
PubMedBERT and BioBERT. Nonetheless, the most effective
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approach was training from scratch with general science data,
followed by continuous learning in the biomedical domain
(see Fig. 1).

In developing MediBioDeBERTa, we initially evaluated
existing LMs, selecting DeBERTa as the foundation due
to its balance of performance and computational efficiency.
Our analysis, detailed in Table 5 in Section V, indicated
that SciDeBERTa was less suitable as a base model.
Thus, we refined SciDeBERTa’s pretraining process to
create SciDeBERTa v2, which, when further trained with
a biomedical subset from the S20RC dataset, led to the
development of MediBioDeBERTa, a PLM tailored for the
biomedical field.

Our findings suggest that choosing a domain-specific
base model enhances performance compared to a general
domain model. MediBioDeBERTa, for instance, benefits
from a graduated training approach, mirroring the progressive
specialization typical in biomedical studies. For an in-depth
exploration of these experiments, see Section V-C.

B. ANALYSIS OF SCHOLARLY CORRELATION IN DATASET
It is crucial to perform analysis while constructing a dataset
corresponding to a specific domain. In the experiment,
we constructed a biomedical domain dataset by selectively
extracting papers included in the ‘biology’ and ‘medicine’
categories from the S20RC dataset [9] based on human
intuition. However, the experimental results showed that the
biomedical knowledge from this set was insufficient to solve
the BLURB tasks. Therefore, we performed data analysis to
construct an optimally refined dataset.

Our study utilized the S20RC dataset, which consists of
81.1M scientific papers accompanied by detailed metadata
tags. This dataset encompasses 19 science and technology
disciplines, with each paper often classified under multiple
disciplines. In our analysis, we aimed to identify disciplines
that frequently overlap with the ‘medicine’ category.

The results of the correlation analysis across the 19 cat-
egories are shown in Fig. 2. We defined the disciplinary
correlation C;; between i row and j column as:

Nj _ Ni(N;

YN T UM

i i Vij
where Cj; quantifies the proportion of papers in discipline i
that are associated with discipline j. Here, N; denotes the
total count of papers in discipline i, and N;; represents the
number of papers that span both disciplines i and j within
the S20RC dataset’s ‘mag field of study’. Ny;, for i == j,
represents the proportion of research conducted within a
single discipline, as depicted on the diagonal of Fig. 2.
The mathematical notation Cj; also indicates the degree of
interdisciplinary collaboration research between the field of

discipline in region i and the field of discipline in region j.

In summary, the categories most frequently associated with
‘medicine’ were ‘biology, ‘chemistry,” and ‘psychology.’
The correlations between these four fields are shown in Fig. 3.
We therefore extracted the subset of data related to these four

ey
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FIGURE 2. Confusion matrix of scholarly correlation for the 19 categories in the semantic scholar open
research corpus(S20RC) dataset.
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FIGURE 3. Confusion matrix of scholarly correlation for medicine-related
categories in S20RC.

disciplines (a combined volume of 52 GB post-deduplication)
as the dataset for continuous learning, as illustrated in
Fig. 1. That is, we developed MediBioDeBERTa from
SciDeBERTa v.2 through continual learning on an extracted

FIGURE 4. Category distribution of the S20RC dataset and classification
results.

subset of data, i.e., a Medicine-related dataset. Fig. 4 demon-
strates the distribution of the 19 categories in the S20RC
dataset and the medicine-related, mathematics-related, and
other categories classified in our study. When dividing the
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three types of major academic disciplines in Fig. 4, the fields
of Medicine and Mathematics, which have a high proportion
of interdisciplinary research, were extracted. The propor-
tion of each major discipline in the total academic fields was
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calculated using the union operation for the interdisciplinary
research areas. Mathematically, the major academic disci-
pline B; is defined as B; = | ; Cij, representing the aggregate
interdisciplinary research areas related to discipline i.

IV. INTERMEDIATE FINE-TUNING FOR TASK
KNOWLEDGE TRANSFER

Pretrained language models (PLMs), which learn general
language representations, are typically fine-tuned with task-
specific datasets to solve the downstream tasks. A key
challenge in transfer learning is aligning the domain of the
pretraining dataset with the target task. Previous studies
have focused primarily on linguistic domains. This section
discusses transfer learning improvements, focusing on
enhancing the task knowledge of PLMs through intermediate
fine-tuning (IFT).

A. TASK KNOWLEDGE IN PLMS

PLMs acquire task and linguistic knowledge during pre-
training, which subsequently impacts the performance of
downstream tasks. Therefore, it’s essential to account for
the task knowledge of the base model during this phase.
DeBERTa [7] embraces the RoBERTa [4] structure but
excludes the next sentence prediction (NSP). Additionally,
it refines the masked language model (MLM) mechanism
to consider the relative positions between tokens. Such a
modification improves performance in tasks emphasizing
token-to-token relations, closely mirroring MLM tasks.
However, it has demonstrated limited efficacy for tasks that
emphasize sentence-to-sentence or document-to-document
correlations. DeBERTa suggests that for sequence pair
tasks in the GLUE benchmark [17], better performance is
achievable through IFT, particularly in tasks like multi-genre
natural language inference (MNLI) for similarity prediction
(STS-B), paraphrase identification (MRPC), and NLI (RTE).

B. INTERMEDIATE FINE-TUNING

Intermediate fine-tuning (IFT) has proven effective in
enhancing downstream task performance, as demonstrated
by DeBERTa [7]. Our study concentrates on intermediate
tasks that leverage the task knowledge embedded in the base
PLM. Initially, we evaluated task knowledge at the sentence
level within the PLM. Table 1 compares the performance of
each PLM on BIOSSES, the sentence similarity (SS) task of
the BLURB [11]. Both BERT [2] and LinkBERT [19], pre-
trained with NSP and its improved method, exhibited higher
performance than DeBERTa. This difference is attributed to
the varied task knowledge related to sentence relationship
identification developed during pretraining. DeBERTa, when
fine-tuned with MNLI, achieved comparable performance to
BERT. Consequently, we employed IFT to augment the task
knowledge of our model, MediBioDeBERTa.

BIOSSES, a semantic sentence similarity estimation task
in the biomedical domain, and MNLI, an intermediate task
from the general domain, demonstrate that IFT using general
domain datasets can be effectively enhance performance in
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TABLE 1. Performance of the BIOSSES task (micro F1).

BERT | LinkBERT | DeBERTa DeBERTaym N1
83.21 87.19 76.14 83.15
T Our experimental results are average values of five runs.

specialized domains. This approach is particularly useful in
fields where acquiring domain-specific datasets is challeng-
ing. Table 2 summarizes the tasks and datasets for the IFT
used in the experiments. Experimental results are presented
in Section V-E.

C. INTERMEDIATE FINE-TUNING BY MULTITASK AND
MULTI-FORMAT

Different perspectives of a task can reveal various aspects.
Employing different metrics for the same dataset eluci-
dates different classifications and similarities. According to
SciRepEval [23], integrating varied task types during the
training process enhances LM performance. Additionally,
combining multitask learning with multi-format learning
further improves results. In other words, enhancing sentence
comprehension through tasks like NER, RE, and co-reference
resolution (Coref), as well as incorporating regression tasks
that use different metrics, such as report references frequency,
can lead to performance gains. We attempted to apply these
principles in our IFT approach. Table 2 outlines the target
tasks for performance enhancement via IFT, along with their
respective datasets and evaluation metrics. For the hallmarks
of cancer (HoC) task involving document classification, the
IFT was conducted using both regression with Kendall’s t
metric and classification with the macro F1 metric. For
the PubMedQA task, which involves QA, IFT combined
proximity and search tasks. For the detailed experimental
results, please refer to Section V-E and Table 7.

V. EXPERIMENT AND RESULTS

We utilized the DeBERTa-v2 (12-layer base model) [7]
with 128K SentencePiece [21] tokens. Unlike DeBERTa-v1
which adopts RoBERTa’s byte pair encoding (BPE),
it employs SentencePiece due to memory constraints
associated with byte-level tokenization. In this experiment,
SentencePiece was used to train both SciDeBERTa v2
and MediBioDeBERTa. It took approximately 40 days to
train SciDeBERTa v2 from scratch using a 256GB S20RC
scholar dataset on an A100 2-node connected by 40GB 8
NVLinks. Approximately, 67 hours were required to train
MediBioDeBERTa using a 52GB medibio dataset based on
SciDeBERTa v2 in a continuous-learning manner using an
A100 3 node connected by 80GB of 8 NVLinks for 10K steps.
See Section III for details on the dataset selection.

A. HYPERPARAMETERS OF SCIDEBERTA V2 AND
MEDIBIODEBERTA

The hyperparameters used for pretraining follow the training
conditions of DeBERTa [7]. Table 3 provides further details.
For MediBioDeBERTa, the training batch size per device
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TABLE 2. Summary of the tasks and dataset for IFT.

Task Dataset Name Format{ | Train Used/Total | Dev Used/Total | Eval Metric
BIOSSES | Clinical semantic textual similarity CLF 2392/2392 730/730 Pearson
BIOSSES MNLI semantic textual similarity CLF 5750/5750 1501/1501 Pearson

cita.tior? count RGN 175K/175K 26K/26K kendall’s

HOC publication year 198K/198K 19K/19K

mesh descriptors CLF 600K/2069K 40K/258K Macro Fl
field of studies 500K/541K 40K/67K
citation prediction PRX 600K/676K 50K/143K MAP
PubMedQA search . 453K/453K 75K/75K
same author detection SRCH 67K/67K 8.9K/8.9K nDGC
highly influential citation 58K/58K TK/TK

1 Format abbreviation: classification (CLF), regression (RGN), proximity (PRX), adhoc search (SRCH)

TABLE 3. Hyperparameters for pretraining of SciDeBERTa v2 and
MediBioDeBERTa.

Hyperparameter Assignment
SciDeBERTa v.2 | MediBioDeBERTa
max training steps 500K 10K
warmup steps 50K 1K
batch size 8,192 49,152
learning rate 0.0001 0.0005
optimizer AdamW AdamW
weight decay 0.01 0.01
learning rate decay linear linear

TABLE 4. Comparison of the test performances (F1-score) of SciDeBERTa
and SciDeBERTa v2.

SciERC
Model
NER JRE Coref
SciDeBERTa [12] | 71.1 £0.6 | 46.04+0.8 | 574+ 0.6
SciDeBERTa v2 724+04 | 474+1.2 | 569+0.8

1 Our experimental results are average values of five runs.

was 4,096; 3 nodes were used, and the accumulated updates
were performed 4 times. Thus, the total batch size is 49,152
(4,096 x 3 x 4). The warmup was performed 1,000 times,
which was 10% of the total steps.

B. PERFORMANCE COMPARISON OF SCIDEBERTA AND
SCIDEBERTA V2 IN SCIERC DATASET

SciDeBERTa [12] is a model trained through continual
learning on the S20RC abstract dataset based on the
DeBERTa architecture. In contrast, SciDeBERTa v2 is a
domain-specific knowledge model trained from scratch on
the S20RC full dataset. We evaluated and compared the
performances of SciDeBERTa [12] and SciDeBERTa v2 on
the SciERC dataset. As shown in Table 4, SciDeBERTa v2
outperforms SciDeBERTa on the SciERC NER and JRE
tasks.

C. PERFORMANCE COMPARISON OF DOMAIN-SPECIFIC
PLMS BASED ON TRAINING METHODS AND DATASETS

In this section, we compared the model performance
according to the pretraining algorithm and corpus type
of medicine-related data, as detailed in Section III-B and
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illustrated in Fig. 4. We examined the influence of the
pretraining algorithm, the base model, and the type of
training data, given their pivotal roles in the development
of domain-specific LMs. Table 5 summarizes each model’s
configuration and average performance on the BLURB
benchmark. The detailed results for each task are presented in
Table 6. We selected the #1 model as the MediBioDeBERTa
from the experimental results.

The performance results of models #2 and #3 align with
those of the existing PubMedBERT [11] and BioBERT [10],
indicating that training specialized domain data from scratch
yields better results than fine-tuning on top of a general
domain model. The most favorable outcome was observed in
model #1, in which the base LM for continuous learning was
also specialized in the language domain. Based on these find-
ings, we utilized MediBioDeBERTa with SciDeBERTa v2
as the base model for continuous learning.

In models #3 and #4, we observed variations in per-
formance depending on the type of corpus. When dealing
with papers predominantly used in specialized fields, it is
crucial to decide whether to rely solely on relatively simpler
abstracts or to integrate comprehensive full-text encompass-
ing various formats and contents. Previous study [11] showed
that full-text data yield better performance when trained
sufficiently to acquire complex knowledge.

However, our empirical observations did not corroborate a
significant enhancement in performance. Moreover, adjusting
the corpus type to abstracts and pursuing additional continu-
ous learning diminished performance. This suggests that the
efficacy of the study [11] is contingent on the adequacy of the
training data volume.

Conclusively, the comparative experiments presented in
Table 5 substantiate that biomedical language models mani-
fest optimal performance when trained in a graduated manner,
similar to the progressive specialization in biological or
medical studies built upon a broad science education.

D. PERFORMANCE COMPARISON OF MEDIBIODEBERTA
IN THE BLURB BENCHMARK

As described in Table 7, the MediBioDeBERTa achieved
the best performance in three tasks, named entity

141041



IEEE Access

E. Kim et al.: MediBioDeBERTa: Biomedical Language Model

TABLE 5. PLM configuration and its average performance of the BLURB benchmark.

Pretraining Algorithm Base model Corpus Type | Training Steps | BLURB Avg.
#1 continual learning SciDeBERTa v2 abstract 90,000 78.03
#2 continual learning DeBERTapq V3 abstract 100,000 76.65
#3 from scratch DeBERTa-v2 abstract 125,000 77.38
#4 from scratch DeBERTa-v2 fulltext 125,000 76.46
#5 continual learning #4 abstract 50,000 76.38

1 Learning data is the medicine-related subset of S20RC dataset described in III-B.
1 Our experimental results are average values of five runs.

TABLE 6. Comparison of the test performances of the BLURB benchmark for PLM for Table 5.

Task Dataset #1 #2 #3 #4 #5
BC5-chem 93.04 | 93.11 | 92.39 | 91.79 | 92.05
BC5-disease | 85.13 | 82.18 | 84.51 | 84.21 | 84.68
NER NCBI-disease | 89.08 | 89.19 | 89.05 | 88.78 | 88.23
BC2GM 83.94 | 84.10 | 83.27 | 83.20 | 83.46
JNLPBA 80.23 | 80.13 | 79.76 | 79.80 | 79.79
PICO EBM PICO | 73.73 | 74.12 | 73.59 | 73.67 | 73.75
Chem Prot 77.80 | 74.27 | 75.53 | 74.02 | 74.95
RE DDI 80.47 | 80.75 | 79.35 | 79.81 | 80.07
GAD 82.23 | 81.79 | 78.32 | 80.17 | 79.93
SS BIOSSES 57.68 | 66.56 | 62.78 | 48.39 | 42.52
DC HOC 61.09 | 68.74 | 70.28 | 69.13 | 66.93
QnA PubmedQA | 56.84 | 49.84 | 52.00 | 59.36 | 58.12
BioASQ 93.14 | 71.71 | 85.14 | 81.71 | 85.57
BLURB Avg. 78.03 | 76.65 | 77.38 | 76.46 | 76.38
1 Our experimental results are average values of five runs.
TABLE 7. Comparison of the test performances of MediBioDeBERTa with other models in the BLURB benchmark.
Task Dataset BioLinkBERT | SciDeBERTa v2 | MediBio MediBio
(metric) (base) (full-ES) DeBERTa | DeBERTa-IFT
BC5-chem 93.38 92.75 93.04
BC5-disease 85.45 84.27 85.13
NER(F1) NCBI-disease 88.12 89.89 89.08
BC2GM 84.39 83.97 83.94
JNLPBA 78.78 66.2 80.23
NER Avg. 86.02 83.42 86.28
PICO(Macro F1) | EBM PICO 74.2 73.69 73.73
Chem Prot 78.1 76.86 93.04
REMicro F1) DDI 81.12 78.75 80.47
GAD 82.51 80.2 82.23
RE Avg. 80.81 78.60 80.17
SS(Micro F1) BIOSSES 92.5 59.54 57.68 92.7
DC(Micro F1) HOC 84.73 61.42 61.09 71.49
PubmedQA 58.32 51.99 56.84 59.33
QnA(Accuracy) BioAS% 91.57 67.86 93.14
QnA Avg. 74.95 59.93 74.99 76.24
BLURB Avg. 82.61 74.41 78.03 81.72

1 Our experimental results are average values of five runs.

recognition (NER), sentence similarity (SS), and question &
answering (Q&A), with average scores of 86.28%, 92.7%,
and 76.32%, respectively. However, BioLinkBERT, which
accommodates extensive document cross-references, out-
performed the patient intervention comparison outcomes
(PICO), relation extraction (RE), and document classification
(DC) tasks. MediBioDeBERTa, encompassing not only
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‘medicine’ and ‘biology,” but also ‘chemistry’ category
articles, showed a significant improvement of 14.94% over
BioLinkBERT [19] in the ChemProt RE task, with an
F1 score of 93.04%. Furthermore, the IFT of MediBioDe-
BERTa enhanced the performance by 35.02%, 10.4%, and
1.49% in the BIOSSES, HOC, and PubmedQA tasks,
respectively.
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E. EXPERIMENTS FOR IFT OF MEDIBIODEBERTA

We demonstrated the results of the IFT to improve the
performance of sequence pair tasks. We aimed to transfer
task knowledge through the IFT and tested both general
and biomedical domain datasets to investigate dependencies
based on the domain of the dataset used for the IFT. We used
the Semantic Textual Similarity Benchmark (STSB) task of
GLUE benchmark and ClinicalSTS datasets as the general
and biomedical domain datasets, respectively. ClinicalSTS
used both the ClinicalSTS2018 [24] and ClinicalSTS2019
datasets [25]. The IFT using both datasets improved the
performance of the BIOSSES task, which is a sentence
similarity task of the BLURB leaderboard, as shown in
Table 2. An interesting observation from the experimental
results was that using a general domain dataset led to
better performance than using a biomedical domain dataset.
This suggests that using a target domain dataset for task
knowledge transfer through the IFT is not always necessary.
This is predicted because domain knowledge has already been
sufficiently learned during pretraining.

As suggested in SciREpEval models [23], we utilized both
regression and classification formats for the IFT of the HOC
task, which is a document classification task. The regression
format consisted of the citation count and year of publication
and the classification format included mesh descriptors and
fields of study as described in Table 2.

Comparing the HOC performance of model #1 in Table 6
before applying IFT and MediBioDeBERTa in Table 7 after
applying IFT, the performance increased by 10.4%. Similarly,
four tasks in two different formats, prediction, and search,
were employed to enhance the performance of PubMedQA.
The prediction format utilized a citation prediction dataset
and the search format involved searching for the same
author and high-influence citations. This approach led to a
performance improvement of 1.49%, as shown in Table 7.

VI. CONCLUSION

This study first presented SciDeBERTa v2, an LM trained
from scratch on a scientific domain-specific S20RC dataset
using DeBERTa. SciDeBERTa v2 achieved superior perfor-
mance compared to its predecessor, SciDeBERTa. To adapt
the model to the bio-medical domain, we extracted biomed-
ical data from S20RC using correlation analysis and trained
MediBioDeBERTa. Applying IFT enabled us to improve
domain-specific task performance simply and effectively.
Our model, MediBioDeBERTa, outperformed the state-of-
the-art models in categories such as NER, SS, and Q&A
and the ChemProt RE task, ranking 11th in the BLURB
leaderboard with an average score of 81.72. Recently,
generative language models like BioGPT [15] have been
employed to directly pose questions and evaluate responses.
In contrast, this study leverages an MLM-based NLU
model, evaluating the QA task performance as a sequence
classification task. Nevertheless, MediBioDeBERTa remains
valuable for medical information processing applications,
such as NER and sequence classification-based QA. These
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applications are crucial for extracting features in paragraphs
through language understanding. Future work will involve
scaling up MediBioDeBERTa to a 24-layer model based on
the recent deberta v3 architecture [26] and integrating spe-
cialized biomedical news data. We anticipate improvements
in applications related to infectious diseases.

REFERENCES

[1] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
L. Kaiser, and I. Polosukhin, “Attention is all you need,” in Proc. Adv.
Neural Inf. Process. Syst., vol. 30, 2017, pp. 5999-3009.

[2] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “BERT: Pre-training
of deep bidirectional transformers for language understanding,” in Proc.
NAACL-HLT, 2019, p. 2.

[3] W. X. Zhao et al., “A survey of large language models,” 2023,

arXiv:2303.18223.

Y. Liu, M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen, O. Levy, M. Lewis,

L. Zettlemoyer, and V. Stoyanov, “RoBERTa: A robustly optimized BERT

pretraining approach,” 2019, arXiv:1907.11692.

[5] Z. Lan, M. Chen, S. Goodman, K. Gimpel, P. Sharma, and R. Soricut,
“ALBERT: A lite BERT for self-supervised learning of language
representations,” 2019, arXiv:1909.11942.

[6] M. Joshi, D. Chen, Y. Liu, D. S. Weld, L. Zettlemoyer, and O. Levy,
“SpanBERT: Improving pre-training by representing and predicting
spans,” Trans. Assoc. Comput. Linguistics, vol. 8, pp. 64-77, Dec. 2020.

[71 P. He, X. Liu, J. Gao, and W. Chen, “DeBERTa: Decoding-

enhanced bert with disentangled attention,” in Proc. Int. Conf. Learn.

Represent., 2021, pp. 1-21. [Online]. Available: https://openreview.net/

forum?id=XPZIaotutsD

I. Beltagy, K. Lo, and A. Cohan, “SciBERT: A pretrained language

model for scientific text,” in Proc. Conf. Empirical Methods Natural

Lang. Process., 9th Int. Joint Conf. Natural Lang. Process. (EMNLP-

IJCNLP), 2019, pp. 3615-3620.

[9] K. Lo, L. L. Wang, M. Neumann, R. Kinney, and D. Weld, “S20RC:
The semantic scholar open research corpus,” in Proc. 58th Annu. Meeting
Assoc. Comput. Linguistics, 2020, pp. 4969-4983.

[10] J. Lee, W. Yoon, S. Kim, D. Kim, S. Kim, C. H. So, and J. Kang,
“BioBERT: A pre-trained biomedical language representation model for
biomedical text mining,” Bioinformatics, vol. 36, no. 4, pp. 1234-1240,
Feb. 2020.

[11] Y. Gu, R. Tinn, H. Cheng, M. Lucas, N. Usuyama, X. Liu, T. Naumann,
J. Gao, and H. Poon, “Domain-specific language model pretraining
for biomedical natural language processing,” ACM Trans. Comput.
Healthcare, vol. 3, no. 1, pp. 1-23, Jan. 2022.

[12] Y. Jeong and E. Kim, “SciDeBERTa: Learning DeBERTa for science
technology documents and fine-tuning information extraction tasks,” IEEE
Access, vol. 10, pp. 60805-60813, 2022.

[13] T.B.Brownetal., “Language models are few-shot learners,” in Proc. Adv.
Neural Inf. Process. Sys., vol. 33, 2020, pp. 1877-1901.

[14] E. Lehman, E. Hernandez, D. Mahajan, J. Wulff, M. J. Smith, Z. Ziegler,
D. Nadler, P. Szolovits, A. Johnson, and E. Alsentzer, “Do we still need
clinical language models?”” in Proc. Mach. Learn. Res., Conf. Health,
Inference, Learn., vol. 209, 2023, pp. 578-597.

[15] R.Luo, L. Sun, Y. Xia, T. Qin, S. Zhang, H. Poon, and T.-Y. Liu, “BioGPT:
Generative pre-trained transformer for biomedical text generation and
mining,” Briefings Bioinf., vol. 23, no. 6, p. bbac409, Nov. 2022.

[16] Y. Luan, L. He, M. Ostendorf, and H. Hajishirzi, “Multi-task identi-
fication of entities, relations, and coreference for scientific knowledge
graph construction,” in Proc. Conf. Empirical Methods Natural Lang.
Process., 2018, pp. 3219-3232.

[17] A. Wang, A. Singh, J. Michael, F. Hill, O. Levy, and S. R. Bowman,
“Glue: A multi-task benchmark and analysis platform for natural language
understanding,” in Proc. Int. Conf. Learn. Represent., 2019, pp. 1-20.

[18] P-E. Sarlin, D. DeTone, T. Malisiewicz, and A. Rabinovich, “SuperGlue:
Learning feature matching with graph neural networks,” in Proc.
IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), Mali, Jun. 2020,
pp. 4937-4946.

[19] M. Yasunaga, J. Leskovec, and P. Liang, “‘LinkBERT: Pretraining language
models with document links,” in Proc. ICML 2nd Al Sci. Workshop, 2022,
pp. 1-13.

[4

=

[8

—

141043



IEEE Access

E. Kim et

al.: MediBioDeBERTa: Biomedical Language Model

[20]

[21]

[22]

[23]

[24]

[25]

[26]

K. Singhal et al., “Large language models encode clinical knowledge,”
Nature, vol. 620, no. 7972, pp. 172-180, 2023.

T. Kudo and J. Richardson, *“SentencePiece: A simple and language
independent subword tokenizer and detokenizer for neural text process-
ing,” in Proc. Conf. Empirical Methods Natural Lang. Process., Syst.
Demonstrations, 2018, pp. 66-71.

H. Zhou, F. Liu, B. Gu, X. Zou, J. Huang, J. Wu, Y. Li, S. S. Chen, P. Zhou,
J. Liu, Y. Hua, C. Mao, X. Wu, Y. Zheng, L. Clifton, Z. Li, J. Luo, and
D. A. Clifton, “A survey of large language models in medicine: Principles,
applications, and challenges,” 2023, arXiv:2311.05112.

A. Singh, M. D’Arcy, A. Cohan, D. Downey, and S. Feldman, “SciRepE-
val: A multi-format benchmark for scientific document representations,”
2022, arXiv:2211.13308.

Y. Wang, N. Afzal, S. Liu, M. Rastegar-Mojarad, L. Wang, F. Shen,
S. Fu, and H. Liu, “Overview of the BioCreative/OHNLP challenge 2018
task 2: Clinical semantic textual similarity,” in Proc. BioCreative/OHNLP
Challenge, 2018, p. 575.

Y. Wang, S. Fu, F. Shen, S. Henry, O. Uzuner, and H. Liu, “The 2019
n2c2/OHNLP track on clinical semantic textual similarity: Overview,”
JMIR Med. Informat., vol. 8, no. 11, Nov. 2020, Art. no. e23375.

P. He, J. Gao, and W. Chen, “DeBERTaV3: Improving DeBERTa
using ELECTRA-style pre-training with gradient-disentangled embedding
sharing,” in Proc. Int. Conf. Learn. Represent. (ICLR), 2023, pp. 1-16.

EUNHUI KIM (Member, IEEE) received the
B.S. degree in information communication engi-
neering from Chungnam National University,
South Korea, in 2000, and the M.S. and Ph.D.
degrees in electrical engineering from the Korea
Advanced Institute of Science and Technology
(KAIST), South Korea, in 2009 and 2015, respec-
tively. From 2000 to 2007, she was a Researcher
with Samsung Electronics, Seoul, South Korea.
From 2015 to 2018, she was a Postdoctoral

|

Researcher with KAIST. In 2018, she was an invited Professor with the
National Center of Excellence in Software, Chungnam National University.
Since 2019, she has been a Senior Researcher with the Data Al Center, Korea
Institute of Science and Technology Information. Her research interests
include machine learning, recommendation systems, lightweight deep neural
network modeling in vision and language processing, and language modeling
and its applications.

141044

natural language processi

YUNA JEONG received the B.S. degree in
computer engineering from Korea Polytechnic
University, in 2012, and the Ph.D. degree in com-
puter engineering from Sungkyunkwan University,
in 2019. She is currently a Senior Researcher with
the Open XR Platform Research Center, Korea
Institute of Science and Technology Information
(KISTI). Her main research interests include
computer graphics, deep learning, and natural
language processing.

MYUNG-SEOK CHOI received the B.S., M.S.,
and Ph.D. degrees from the Department of
Computer Science, Korea Advanced Institute of
Science and Technology (KAIST), South Korea,
in 1996, 1998, and 2005, respectively. Since
2005, he has been with the Korea Institute of
Science and Technology Information (KISTI),
where he has held various roles and is currently
the Director of the AI Data Research Center.
His research interests include machine learning,
ng, and open science.

VOLUME 11, 2023



