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ABSTRACT In dynamic environments, achieving accurate and robust Visual SLAM (Simultaneous
Localization and Mapping) remains a significant challenge, particularly for applications in robotic
navigation and autonomous driving. This study introduces YG-SLAM, an innovative approach that integrates
YOLOv8 and geometric constraints within the ORB-SLAM2 framework to adapt effectively to dynamic
scenarios.YOLOv8 is employed for instance segmentation and dynamic object detection, enriching the
semantic information while extracting image feature points. Geometric constraints, including epipolar
geometry algorithms and Lucas-Kanade optical flow methods, are utilized to filter out dynamic objects
effectively.The tracking thread exclusively relies on static feature points for camera pose estimation,
substantially improving the system’s localization accuracy. Experimental results on the TUM dataset
demonstrate that YG-SLAM significantly outperforms traditional ORB-SLAM2 in dynamic environments.
Specifically, the Root Mean Square Error (RMSE) of the absolute trajectory errors reduced by 96.51%
in comparison to ORB-SLAM2, and the RMSE of the relative pose errors decreased by 93.60% when
compared to the performance of ORB-SLAM2.These notable reductions in errors demonstrate the promising
performance enhancements of YG-SLAM over traditional ORB-SLAM2 in dynamic environments.

INDEX TERMS Dynamic environments, geometric constraints, instance segmentation, object detection,
visual SLAM.

I. INTRODUCTION
With the widespread application of robots in areas such
as social service, public safety, and disaster relief, Visual
Simultaneous Localization and Mapping (Visual SLAM)
has gained significant attention. This technology involves
the synchronized construction of a structural map and
self-localization of robots using visual sensors to perceive
the surrounding environment [1], [2], [3], [4]. However,
traditional SLAM algorithms based on geometric vision
often suffer from significant pose estimation errors, espe-
cially in the presence of dynamic objects in the environ-
ment. Concurrently, the combination of deep learning and
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geometric constraints offers a promising approach to address
this challenge.

While several Visual SLAMmethods like LSD-SLAM [5],
ORB-SLAM [6], [7], VINS-Mono [8], and DSO [9] have
achieved remarkable real-time performance and accuracy,
they are mainly effective in static environments. These
methods face challenges when dynamic objects introduce
inaccuracies in both mapping and localization [10], [11].
Recent advances in deep learning technologies have spurred
innovative research aimed at overcoming these limitations.
Specifically, semantic constraints have been employed to
resolve Visual SLAM challenges in dynamic settings. The
common approach is to leverage semantic information,
derived either from object detection methods such as [12]
and [13] or from semantic segmentation algorithms like [14],
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[15], [16], [17], [18], [19], [20], [21], [22], [23], and [24]
as prior knowledge. This information is then amalgamated
with geometric constraints to filter out dynamic objects from
the environment. While promising, each of these methods
comes with its own set of limitations. For instance, semantic
segmentation offers detailed, pixel-level object masks but
falls short in real-time performance. Efforts to improve its
accuracy often lead to significant computational overheads
[22]. Algorithms such as MID-Fusion [25] and [26] do offer
solutions for the detection of dynamic objects, but their
efficiency substantially declines when the dynamic objects
are large in scale. Other SLAM systems aiming to incorporate
dynamic object detection, such as Dynamic-SLAM [13]
and MVO [27], often suffer from lengthy detection times.It
becomes increasingly evident that the integration of deep
learning methods and geometric constraints in SLAM can
offer a robust solution for dynamic environments, reinforcing
the significance of our study.

In response to the challenges dynamic objects impose on
SLAM algorithms, this study introduces a cutting-edge front-
end visual odometry method specifically engineered for the
removal of dynamic objects. Our innovative approach seam-
lessly integrates YOLOv8’s real-time object detection and
image segmentation functionalities into the ORB-SLAM2
framework [7]. A newly incorporated instance segmentation
thread capitalizes on YOLOv8’s capabilities to extract rich
semantic information from the scene. This dual-pronged
strategy not only leverages state-of-the-art deep learning
techniques for precise object motion characterization but also
employs sparse optical flow to validate the dynamic states of
these objects.

1) This study successfully integrated real-time object
detection and image segmentation technologies from
YOLOv8 into the ORB-SLAM2 framework, introduc-
ing a new instance segmentation thread. As a result,
it achieved highly accurate and robust visual SLAM in
dynamic environments.

2) This study proposed a two-step dynamic point detec-
tion algorithm, including pre-detection and epipolar
constraint [28]. The algorithm utilizes feature point
matching and fundamental matrix computation using
LK optical flow [29] and the eight-point method. It then
accurately identifies dynamic points through epipolar
lines and threshold criteria.

3) This study further advanced the integration of semantic
information into visual SLAM by proposing a novel
algorithm for indoor map construction based on seman-
tic information. Building indoor maps enriched with
semantic details enhances the precision of mobile robot
localization and navigation, augmenting the robot’s
understanding of the environment.

4) Experimental evidence validates that our method sub-
stantially outperforms existing state-of-the-art visual
SLAM algorithms, particularly in terms of pose
estimation accuracy within dynamic environments.

II. RELATED WORK
A. VSLAM ROBUSTNESS AGAINST DYNAMIC
ENVIRONMENTS
Methods for addressing the challenges of dynamic scenes in
existing visual SLAM can be broadly categorized into three
classes, as outlined in [30].

1) GEOMETRIC CONSTRAINTS-BASED METHODS
In geometric methods, the assumption is that only static
features conform to geometric constraints, while dynamic
features do not. These methods often leverage the distinct
characteristics of dynamic objects moving against a static
backdrop. Li et al. [31] selected depth edge points for
correspondence and formulated a static weighting technique
to minimize the influence of dynamic points. Wang et al. [32]
employed the fundamental matrix to identify inconsistencies
in feature points and subsequently clustered the depth image;
areas with outlier counts exceeding a certain threshold were
flagged as containing moving objects. Cheng et al. [33]
introduced a sparse motion removal model that relies on the
similarities and differences between consecutive frames to
detect dynamic regions. However, geometric methods typi-
cally require a predefined threshold to distinguish between
dynamic and static feature points, which can lead to either
over-recognition or under-recognition.Palazzolo et al. [34]
introduced Refusion, a geometry-based method for robust
dense indoor mapping in dynamic environments, utilizing
geometric residuals and an empirical threshold to segment
dynamic objects without reliance on semantic interpretation
or object-specific detectors [35].Dai et al. use Delaunay
triangulation and point correlations to separate static and
dynamic elements in RGB-D SLAM.

2) OPTICAL FLOW-BASED METHODS
Optical flow estimates the pixel motion between two
consecutive frames in luminance mode, often serving as a
motion field to segment moving objects [36]. Scene flow,
considered as the 3D extension of optical flow, along with
2D optical flow, provides descriptions of various moving
objects in 3D point clouds and 2D images.Derome et al. [37],
[38] utilized the residual between predicted and observed
images from stereo cameras to calculate optical flow. By
transforming the current frame to the previous one using
estimated camera ego-motion, they detect moving objects in
the residual field.

Bakkay et al. employed scene flow estimation and used a
region-growing segmentation algorithm for dynamic object
segmentation, enabling real-time 3D static background map-
ping using a Kinect sensor [39].FlowFusion [40] employs
optical flow residuals and geometric information for dynamic
object segmentation and static background reconstruction
in RGB-D SLAM. It utilizes PWC-Net [41] for optical
flow estimation and calculates 2D scene flow for dynamic
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segmentation. Despite its accuracy, its real-time performance
could be improved due to computational demands

3) DEEP LEARNING-BASED METHODS
In recent years, deep learning-based image semantic seg-
mentation and object detection methods have made sig-
nificant advancements in both efficiency and accuracy.
Many researchers have attempted to address dynamic SLAM
challenges by using semantic labeling or object detection as
preprocessing steps to remove potential dynamic objects.DS-
SLAM [14]uses SegNet [42] for the purpose of semantic
segmentation and employs a moving consistency check to
eliminate dynamic elements from the scene, thereby gen-
erating a comprehensive semantic octo-tree map.In Detect-
SLAM [12], the system identifies objects within keyframes
and continuously propagates the motion probability of
keypoints to promptly mitigate the impact of dynamic
objects on the SLAM process.MaskFusion [43] incorporates
Mask R-CNN [44] to achieve instance-level segmentation
with semantic labeling, enabling the handling of moving
objects.DynaSLAM [15] employs Mask R-CNN [44] and
multiview geometric models to identify and process moving
objects, offering the added benefit of restoring backgrounds
that are obscured by dynamic elements.Vincent et al.
[19] conduct semantic segmentation of object instances
within the image and employ an Extended Kalman Filter
(EKF) to recognize, track, and eliminate dynamic objects
from the scene.DP-SLAM [20] integrates the outcomes of
geometric constraints and semantic segmentation, tracking
dynamic keypoints within a Bayesian probability estimation
framework.Ji et al. [21] conduct semantic segmentation
exclusively on keyframes. They then cluster the depth
map and utilize this information in conjunction with the
re-projection error to detect and eliminate both known and
unknown dynamic objects.Blitz-SLAM [22] reconstructs the
BlitzNet [45] mask by incorporating depth information and
employs epipolar constraints to differentiate between static
and dynamic matching points within potential dynamic
regions.DGS-SLAM [46] presents a dynamic RGBD SLAM
system that integrates geometric and semantic information,
employing a dynamic object detection module based on a
multi-residual model and a camera pose tracking strategy
with feature point classification to extract potential moving
objects.

Ran et al. [47] proposed a novel RGB-D-inertial dynamic
SLAM method that enables accurate localization even when
a significant portion of the camera’s view is obstructed
by multiple dynamic objects for an extended period.SVD-
SLAM [48] has incorporated an improved YOLACT++

lightweight instance segmentation network and calculates
the motion probability of each potential moving object
based on the camera pose and polar constraints.DIG-
SLAM [49] utilizes YOLOv7 instance segmentation to
extract object contours, while optimizing line features
through line segment detection and K-means clustering.

It employs motion consistency checks to identify dynamic
areas and removes points and line features within them.
DYS-SLAM [50].

Current literature mainly leans towards combining geo-
metric constraints and deep learning for Visual SLAM in
dynamic settings. These methods, while effective in remov-
ing dynamic objects, often compromise between real-time
performance and localization accuracy. To address these
limitations, our study introduces a streamlined approach that
tightly integrates YOLOv8’s real-time object detection with
geometric techniques like epipolar constraints and LK optical
flow. This innovation not only reduces computational load but
also enhances accuracy, offering a more practical and stable
SLAM system for dynamic environments.

III. PROPOSED METHOD
A. FRAMEWORK OF SYSTEM
In our proposed system, we seamlessly integrate the robust
SLAM capabilities of ORB-SLAM2 with a parallel-running
instance segmentation thread. This architecture is specifically
designed for dynamic environments, focusing on camera pose
estimation and point cloud map construction. The system
comprises two main threads: the tracking thread and the
instance segmentation thread. The tracking thread takes RGB
and depth images as input and is responsible for estimating
the camera pose, deciding whether to insert keyframes. It
employs a series of advanced techniques, including ORB
feature extraction and matching, optical flow calculation
of the sparse feature set using the Lucas-Kanade [29]
method, and fundamental matrix computation for the filtered
optical flow points. These points are then validated through
epipolar constraints, and those not meeting the constraints
are identified as dynamic points. Concurrently, the instance
segmentation thread employs YOLOv8 to perform instance
segmentation on RGB images, identifying potential dynamic
objects and then collaborating with a motion consistency
check algorithm to eliminate them. These two threads work
in tandem to construct a semantically rich map, where the
instance segmentation thread enhances the expressiveness of
keyframes, and the tracking thread improves pose estimation
accuracy through motion consistency checks.The overall
framework of the proposed method is shown in Fig.1.

B. INSTANCE SEGMENTATION BASED ON YOLOv8
The YOLOv8model structure is designed to achieve efficient
and accurate instance segmentation. Its core idea is to
divide the image into grids and predict the category,
location, and segmentation mask of the target in each grid.
The model consists of a Backbone network and a Head.
The Backbone network is responsible for extracting the
features of the image, while the Head is responsible for
predicting the category, location, and segmentation mask
of the target. The Backbone network uses Darknet as its
basis, which is a lightweight convolutional neural network
structure. Darknet consists of multiple convolutional layers
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FIGURE 1. The framework of our approach consists of four threads. The tracking thread and instance segmentation thread based on YOLOv8 run in
parallel, while local mapping and loop closure are the same as ORB-SLAM2. After removing dynamic points, a point cloud map with semantic information
is created.

and pooling layers, and by stacking these layers, it achieves
effective feature extraction. YOLOv8 improves upon Darknet
by introducing residual connections and skip connections,
thereby enhancing the network’s feature expression ability
and perception range.

To improve the accuracy of the model, YOLOv8 also intro-
duces an attention mechanism and multi-scale feature fusion.
The attention mechanism adaptively adjusts the weights in
the feature map, making the model focus more on important
feature regions. Multi-scale feature fusion enhances the
model’s ability to perceive targets of different scales by fusing
feature maps at different levels. The training process of the
YOLOv8 model structure consists of two stages: first, target
detection is performed to generate candidate object boxes by
predicting the category and location of the target. Then, in the
instance segmentation stage, the model uses these candidate
object boxes to generate segmentation masks and optimizes
these masks to obtain more accurate segmentation results,
as shown in Fig. 2.

The design of the YOLOv8 instance segmentation model
structure takes into account key issues such as feature
extraction, target prediction, and segmentation optimization.
By introducing technical means like residual connections,
skip connections, attention mechanisms, and multi-scale
feature fusion, the model’s accuracy and robustness are
enhanced. YOLOv8 has broad application prospects in the

FIGURE 2. Target detection and instance segmentation based on YOLOv8.

field of instance segmentation andwill provide strong support
for the research and application of instance segmentation
tasks.

C. MOTION OBJECT DETECTION BASED ON OPTICAL
FLOW
Optical flow serves as a mechanism to capture the motion
dynamics between two consecutive frames by correlating
individual pixels. Unlikemethods that rely on feature descrip-
tor computation and feature matching for tracking pixels,
optical flow boasts superior real-time performance. In this
study, we employ the Lucas-Kanade optical flow technique to
monitor feature points and compute the fundamental matrix,
thereby facilitating the identification of dynamic feature
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FIGURE 3. Lucas-Kanade optical flow diagram.

points. A schematic representation of the Lucas-Kanade
optical flow approach is illustrated in Fig.3.

In the Lucas-Kanade (LK) [29] optical flow, we consider
images from the camera to be time-varying. An image can be
considered as a function of time: I(t). The gray level of a pixel
at coordinates (x, y) at time t can be represented as I(x, y, t).
Assuming that the gray level of a point in space projected
onto all images is constant, then at time t + dt , if the pixel
moves to (x+ dx, y+ dy). Based on the brightness constancy
assumption, we have:

I(x + dx, y+ dy, t + dt) = I(x, y, t) (1)

Assuming that the motion between two image frames is
relatively small, we perform a Taylor expansion on the left-
hand side, retaining the first-order term:

I(x + dx, y+ dy, t + dt)

≈ I(x, y, t) +
∂I
∂x
dx +

∂I
∂y
dy+

∂I
∂t
dt (2)

According to the brightness constancy assumption:

∂I
∂x
dx +

∂I
∂y
dy+

∂I
∂t
dt = 0 (3)

Dividing both sides by dt , we get:

∂I
∂x

dx
dt

+
∂I
∂y

dy
dt

= −
∂I
∂t

(4)

where u = dx/dt represents the velocity component of the
pixel along the x-axis, and v = dy/dt represents the velocity
component along the y-axis. Let Ix and Iy be the image
gradients in the x and y directions, respectively. The equation
can be rewritten as: [

Ix Iy
] [u
v

]
= −I t (5)

To compute u and v, the Lucas-Kanade optical flow
algorithm assumes that pixels within an image block of size
w× w have the same motion, resulting in w2 equations:[

Ix Iy
]
k

[
u
v

]
= −I tk , k = 1, . . . ,w2 (6)

Let A and b be defined as:

A =

[Ix , Iy]1...

[Ix , Iy]k

 , b =

I t1...
I tk



The entire equation becomes:

A
[
u
v

]
= −b (7)

Using the traditional least squares solution, we get:[
u
v

]∗

= −(ATA)−1AT b (8)

Finally, this gives us the motion velocity u; v of pixels
between images. When t takes discrete moments instead of
continuous time, we can estimate the position of a block
of pixels in several images. Since the pixel gradient is only
locally valid, iterating this equation several times can obtain
the motion of pixels in the image, thereby achieving pixel
tracking.

D. MOTION CONSISTENCY DETECTION ALGORITHM
This paper addresses the issue of low accuracy in dynamic
feature point recognition in high-dynamic scenes based on the
motion consistency checking method proposed by Yu et al.
[14]. Building upon their approach, we introduce a novel
motion consistency checking method.

Yu et al. proposed a motion consistency checking method
that primarily relies on geometric information for dynamic
feature point extraction, with the following concise steps:

1) Employing optical flow pyramids to obtain matching
feature points between consecutive frames.

2) Estimating the fundamental matrix using the RANSAC
(Random Sample Consensus) [51] method to mitigate
the influence of outliers and noise.

3) Utilizing epipolar geometry constraints to assess the
motion properties of feature points, where dynamic
feature points typically fail to satisfy epipolar geometry
constraints.

In scenes with few dynamic objects, RANSAC effectively
estimates model parameters and minimizes the impact of a
limited number of dynamic feature points. However, in highly
dynamic sceneswith numerous dynamic points, this approach
is less suitable. To address this, we propose an improved
motion consistency detection method that combines image
priors and optical flow, building upon the [14] method. The
algorithm has two main steps: First, we accurately estimate
the fundamental matrix F based on the motion characteristics
of feature points in the previous frame’s image. Then,
we use geometric constraints to identify dynamic points. See
Algorithm 1 for an overview of the workflow.Specific steps
are as follows:

1) In this process, we did not employ the Harris corner
detection method as used in [14]. Instead, we directly
utilized the ORB features extracted by the ORB-
SLAM2 system. This approach eliminates the need
for additional computation of Harris corners. Subse-
quently, we applied the pyramid-based Lucas-Kanade
optical flow algorithm to track all ORB feature points
extracted from the previous frame, including both
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dynamic and static feature points, in order to obtain
feature correspondences between the two frames.

2) In the process of selecting reliable feature corre-
spondences, we rely on the feature points from the
previous frame, which have been categorized into
two groups: dynamic feature points and static feature
points. Therefore, in this paper, we exclusively utilize
feature correspondences involving static feature points
from the previous frame to compute the fundamental
matrix. Additionally, we perform filtering by discard-
ing feature correspondences that are either too close
to the image edges or have pixel differences within
the 3 × 3 image block center exceeding a predefined
threshold.

3) Matching and estimating the fundamental matrix F
are performed using reliable static feature points from
the previous frame. In this research, we employ the
RANSAC method to compute the fundamental matrix
F with the aim of minimizing the interference caused
by outliers.

4) After obtaining the fundamental matrix between adja-
cent frames, dynamic point extraction is performed
based on epipolar line constraints.

1) FUNDAMENTAL MATRIX ESTIMATION BASED ON IMAGE
PRIOR
After obtaining the feature matching relationships between
adjacent frames using the Lucas-Kanade optical flowmethod,
it is necessary to estimate the fundamental matrix between
the two frames for subsequent determination of the motion
attributes of feature points based on epipolar geometry
constraints. Due to the presence of numerous dynamic points
in the scene, directly computing the fundamental matrix
between the two camera frames based on the featurematching
obtained from the optical flow method can result in poor
accuracy. This, in turn, leads to errors in filtering dynamic
feature points based on epipolar geometry constraints,
ultimately significantly affecting the localization accuracy
of the ORB-SLAM2 algorithm. Therefore, in this paper,
we leverage the motion attribute information of feature points
in the previous frame to compute the fundamental matrix
solely based on the matching of static feature points from the
previous frame to the current frame.

The Fundamental Matrix F with elements fi is given by

F =

f1 f2 f3f4 f5 f6
f7 f8 f9

 . (9)

It has 5 degrees of freedom and can be computed from at
least 5 feature point pairs. In this paper, we use the eight-point
method, resulting in a linear algebraic problem.

Given a matching pair p1 and p2 with homogeneous
coordinates P1 = [u1, v1, 1] and P2 = [u2, v2, 1], the
epipolar constraint is

PT2 FP1 = 0. (10)

Algorithm 1 Modified ProcessMovingObject
Algorithm
Require: Gray Image (imgray), Previous Gray Image

(imGrayPre)
Ensure: Filtered Key Points (F2_prepoint , F2_nextpoint),
Anomalies (T_M )
Initialize and clear old data: F_prepoint , F_nextpoint ,
F2_prepoint , F2_nextpoint , T_M ;
Extract ORB features from imGrayPre and store them in
F_prepoint;
Use Pyramidal Lucas-Kanade method to track ORB
features in imgray, resulting in nextpoint;
for each prepoint i do
if state[i] ! = 0 then

Check if the points are within the image boundary;
if points are outside the boundary or other criteria
not met then
state[i] = 0;

else
Add prepoint[i] to F_prepoint;
Add nextpoint[i] to F_nextpoint;

end if
end if

end for
Use RANSAC to compute the Fundamental Matrix F
only based on static feature points from imGrayPre and
their matches in F_nextpoint;
for each point in F_prepoint and F_nextpoint do

Calculate distance to the epipolar line;
if distance <= τ then
Add point to F2_prepoint and F2_nextpoint;

end if
end for
for each point in nextpoint do
if state[i] ! = 0 then
Calculate distance to the epipolar line;
if distance > limitτ then
Add point to T_M ;

end if
end if

end for

Rewriting the constraint yields

(u1, v1, 1)F

u2v2
1

 = 0. (11)

Let

f = (f1, f2, f3, f4, f5, f6, f7, f8, f9)T (12)

then

(u1u2, u1v2, u1, v1u2, v1v2, v1, u2, v2, 1)f = 0. (13)
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FIGURE 4. Epipolar constraint relationship between two images.

With 8 point pairs, we formulate a system of equations to
solve for F . To account for outliers, we employ the RANSAC
algorithm to refine the Fundamental Matrix computation.

2) DYNAMIC FEATURE POINT DISCRIMINATION BASED ON
EPIPOLAR CONSTRAINT
The feature points from the previous frame, when mapped
to the current frame area through the fundamental matrix,
form the epipolar line. The epipolar constraint can be used
to inspect the static and dynamic attributes of a point. When
there are dynamic objects in the scene, the spatial points on
the dynamic objects corresponding to two pixel coordinates
and the fundamental matrix F will not satisfy the epipolar
constraint relationship. The pixel point and its corresponding
epipolar line will have a distance deviation, as shown in Fig.4.

Let the featurematching points in the previous frame image
and the current frame image be represented as p1 = [u1, v1]
and p2 = [u2, v2] respectively, where u, v are the image
pixel coordinate values. The homogeneous coordinates of the
feature point can be expressed as P1 = [u1, v1, 1],P2 =

[u2, v2, 1]. If the fundamental matrix is represented asF , then
the epipolar constraint is expressed as:

PT2 FP1 = 0 (14)

For the epipolar line l of the featureP1 in the current frame,

l = FP1 = [A,B,C]T (15)

Then, for the point P2 in the current frame, the distance to
the corresponding epipolar line is computed as:

D =
|PT2 FP1|

√
A2 + B2

(16)

For each feature point in the current frame, if its distanceD
to the corresponding epipolar line is greater than a threshold
τ , it is added to the set of potential dynamic feature points.

IV. EXPERIMENTAL RESULTS
To validate the localization accuracy of our proposed visual
SLAM algorithm that removes dynamic objects, tests were

conducted using the TUM RGB-D dataset [52]. The TUM
RGB-D dataset is comprised of 39 sequences, captured with
a Microsoft Kinect sensor in a variety of indoor settings at a
full frame rate of 30Hz. A detailed description of the TUM
dataset sequences is presented in Table 1. This dataset offers
a range of typical SLAM scenarios, such as Handheld SLAM
and Robot SLAM, making it particularly suited for our study
focused on indoor dynamic motion scenes. For the purpose
of these tests, we specifically utilized the dynamic object
datasets available within the TUM RGB-D dataset.

Based on the speed and nature of characters in the
scene, datasets were classified into two categories: low
dynamic (sitting) and high dynamic (walking). In the low
dynamic or ‘sitting’ (s) sequences, two people are seen sitting
in front of a desk, engaged in speaking and gesticulating,
thereby exhibiting a low degree of motion. On the other hand,
the high dynamic or ‘walking’ (w) sequences feature two
people walking both in the background and the foreground,
later sitting down at the desk, making these sequences highly
dynamic and challenging for standard SLAM systems. Each
category consists of several typical camera motion patterns
such as halfsphere, r-p-y (roll-pitch-yaw), static, and x-y-
z. In the figures presented, the dataset’s name adopts a
specific format: ‘‘Dataset Name + Algorithm Type.’’ High
dynamic walking scenarios are abbreviated as ‘‘w,’’ while
low dynamic sitting scenarios are abbreviated as ‘‘s.’’ For
instance, the sequence fr3_w_h refers to a walking scenario
with halfsphere camera motion in rgbd_datase_freiburg3.

A. ERROR METRICS
For quantitative evaluation of the algorithm’s performance,
the metrics Absolute Trajectory Error (ATE) and Relative
Pose Error (RPE) [52] are utilized. ATE assesses the
global consistency of the trajectory, while RPE focuses
on the algorithm’s translational and rotational drift over
time.Here we define the predicted trajectory and the true
trajectory as P1:n and Q1:n respectively. Through Singular
Value Decomposition, a transformation matrix T aligns the
predicted trajectory with the true trajectory, and pose error is
then computed. If Fi := Q−1

i TPi, where Qi and Pi represent
the true and predicted trajectories of the i-th keyframe
respectively, ATE is defined as:

RMSE(F1:n) :=

√√√√(1
n

n∑
i=1

∥trans(Fi)∥2
)

(17)

Relative Pose Error (RPE) measures the local accuracy
of the estimated trajectory over a fixed time interval 1t ,
including both translational and rotational errors. The relative
pose error at the i-th point, Fi, is:

Fi :=

(
Q−1
i Qi+1t

)−1 (
P−1
i Pi+1t

)
(18)
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TABLE 1. TUM dataset sequence descriptions.

The Root Mean Square Error (RMSE) over all time points
serves as the RPE:

RMSE(E1:n, 1t) :=

√√√√( 1
m

m∑
i=1

∥trans(Fi)∥2
)

(19)

where trans(Fi) denotes the translational elements within the
relative pose error Fi.
The algorithm was developed using C++ on a system

running Ubuntu 20.04. Hardware specifications include
32GB of RAM, an Intel i7-11800H CPU with a clock speed
of 2.3GHz, and a GeForce GTX 3060 graphics card.

B. DYNAMIC FEATURE POINT REMOVAL
Fig.5 presents a comparison between the motion consistency
check method proposed by Yu et al. [14] and the improved
method introduced in this paper. In the figure, red points
indicate dynamic feature points detected by the algorithm,
while green points represent static feature points. From
left to right, the figure sequentially displays the tracking
results for frames 44, 68, 216, 499, 663, and 759 from
fr3_walking_xyz dataset. The top row shows the tracking
performance of the traditional motion consistency check
algorithm, the middle row showcases the efficacy of the
improved method proposed in this paper, and the bottom
row illustrates the comprehensive tracking results achieved
by combining the improved algorithm with the YOVOv8
semantic segmentation network. Compared to the method
by Yu et al. [14], our improved method more accurately
detects dynamic feature points on human bodies and has
a lower false detection rate for static feature points in the
background. This comparison validates the effectiveness of
the method proposed in this paper. By integrating semantic
segmentation and LK optical flow, we can not only identify
dynamic humans but also more accurately remove dynamic
points, as shown in the bottom row of Fig. 5.

C. EVALUATING TUM RGB-D DATASET PERFORMANCE
In this section, we benchmark our proposed YG-SLAM
algorithm against ORB-SLAM2 [7] and other state-
of-the-art dynamic scene SLAM algorithms, including

Dyna-SLAM [15], DS-SLAM [14], and Blitz-SLAM [22].
All these algorithms, like ours, are built upon the enhanced
ORB-SLAM2 framework.

Quantitative comparison results across different sequences
and algorithms are presented in Table 2, 3, and 4. The best
performance on each evaluation metric is highlighted in bold,
and the second-best results are underlined. Data for Dyna-
SLAM, DS-SLAM,and Blitz-SLAM are sourced from their
respective publications, and a forward slash indicates that
the data was not provided in the original papers. In this
paper, we focus on RMSE (Root Mean Square Error) and
S.D. (Standard Deviation) as they are more indicative of
the system’s robustness and stability. RMSE measures the
deviation between the estimated and true values, while S.D.
gauges the dispersion of the estimated camera trajectory.
We also showcase the improvement of YG-SLAM over the
original ORB-SLAM2, calculated as:

η =
α − β

α
× 100% (20)

Here, η represents the improvement, α is the value for
ORB-SLAM2, and β is the value for YG-SLAM.

From Tables 2 to 4, it is evident that YG-SLAM
significantly outperforms ORB-SLAM2 in terms of ATE
(Absolute Trajectory Error) and RPE (Relative Pose Error),
achieving a reduction in overall localization error ranging
from 89% to 98%.Specifically, for the ATE values presented
in Table 2, in the high-dynamic sequence fr3_walking, the
improvement in RMSE and S.D. can reach up to 98.09% and
98.13%, with average improvements of 96.51% and 94.46%,
respectively. In the low-dynamic sequence fr3_sitting_static,
the improvement is less pronounced, at 29.79% and
31.19%, due to the already competent performance of ORB-
SLAM2 in low-dynamic scenarios, leaving limited room for
improvement.

Tables 3 and 4 extend the quantitative analysis to
include translational and rotational drift in RPE. In this
context, it’s worth noting the significance of the time
interval parameter 1t . For multi-frame tracking systems like
YG-SLAM, a larger 1t is often more effective. As an
example, a 1t value of 30 allows us to assess drift on a
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FIGURE 5. Displays the tracking comparison results of different algorithms. From left to right are the results of frames 44, 68, 216, 499, 663 and 759.The
top row presents the tracking results obtained using the traditional motion consistency check algorithm. The middle row showcases the performance of
the improved motion consistency check algorithm proposed in this paper. The bottom row represents the comprehensive tracking results achieved by
combining this improved algorithm with the YOVOv8 semantic segmentation network.

TABLE 2. Analysis of absolute trajectory error (ATE[m]) metric.

TABLE 3. Analysis of translational drift (RPE[m]) metric.

TABLE 4. Analysis of rotational drift (RPE[deg]) metric.

per-second basis in sequences captured at a rate of 30Hz [52].
The relative trajectory errors observed are in line with the
absolute errors. In high-dynamic sequences, our method

achieves an average RMSE and average S.D. reduction of
94.86% and 96.04%, respectively, for translational drift. For
rotational drift, the average RMSE and average S.D. are
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FIGURE 6. ATE and RPE from ORB-SLAM2.The diagram in the first row represents the absolute trajectory error (ATE), while the diagram in the second row
illustrates the relative pose error (RPE).

FIGURE 7. ATE and RPE from ORB-SLAM2.The diagram in the first row represents the absolute trajectory error (ATE), while the diagram in the second
row illustrates the relative pose error (RPE).

reduced by 92.35% and 95.75%, respectively. Conversely,
in the low-dynamic fr3_sitting_static sequence, where static
features are predominant, the robust camera pose estimation
by ORB-SLAM2 leaves little room for further improvement.
In this case, our method manages to reduce the RMSE for
translational and rotational drift by 45.11% and 17.70%,
respectively, and the S.D. for translational and rotational drift
are reduced by 43.26% and 25.86%, respectively.

Fig.6 depicts the ATE and RPE calculated based on the
original ORB-SLAM2 system. Fig.7 depicts the ATE and
RPE calculated based on our proposed YG-SLAM system.
The relative translational errors are visually represented by
the length of the red lines. Qualitatively, it is evident that
YG-SLAM estimates a camera trajectory that more closely
aligns with the ground truth, significantly reducing errors.
Our method keeps both ATE and RPE at a much lower
level.Fig.8 shows the 3D trajectory of the camera motion
estimated by YG-SLAM.

In summary, both qualitative and quantitative results are
in agreement, demonstrating that our algorithm significantly
enhances the localization accuracy of ORB-SLAM2 in both
high-dynamic and low-dynamic environments.

D. TIMING ANALYSIS
In practical applications, real-time performance is a critical
factor for evaluating the quality of SLAM (Simultaneous
Localization and Mapping) systems. In this section, tests
were conducted on the TUM dataset to assess the tracking
time of each system. Table 5 displays the time costs for
different SLAM systems. YG-SLAM has an average tracking
time of approximately 42ms per frame, which is significantly
better than DynaSLAM. YG-SLAM utilizes the yolov8n-
seg model of YOLOv8 for instance segmentation, with an
average instance segmentation time per frame of 21.10 ms,
greatly reducing the computational burden.
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FIGURE 8. Comparison of experimental trajectories and real trajectories of YG-SLAM on different data sets. (a) fr3_w_x (b) fr3_w_s
(c) fr3_w_r (d) fr3_w_h.

FIGURE 9. Dense 3D semantic map construction. (a) Sequences from fr3_w_h. (b) Sequences from fr3_w_x. Comparison of ORB-SLAM2 results
(Left) and YG-SLAM results (Right) after dynamic object removal.

E. DENSE 3D SEMANTIC MAP CONSTRUCTION
In this section, we introduced the YG-SLAM method to
effectively filter and eliminate dynamic objects from the

environment, generating a dense point cloudwithout dynamic
elements. We validated this approach on two sequences
(fr3_w_h and fr3_w_x) from the TUM dataset. As illustrated
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TABLE 5. Time evaluation.

in Fig.9, the left image demonstrates the result obtained using
ORB-SLAM2 without dynamic object removal, exhibiting
numerous double-shadow artifacts. In contrast, the right
image displays the outcome after applying YG-SLAM
for dynamic object removal, successfully eliminating all
dynamic objects from the scene. This technique not only
removes feature points on the dynamic mask in visual
odometry, eliminating the impact of dynamic objects on
pose estimation and improving trajectory accuracy but also
employs a dynamic object mask during mapping, preventing
the incorporation of moving targets into the map, thereby
enhancing map accuracy.

V. CONCLUSION
This paper introduces a novel SLAM system called YG-
SLAM, designed tomitigate the impact of dynamic objects on
localization. YG-SLAM is built on the foundation of ORB-
SLAM2 and comprises two designed threads: a tracking
thread and an instance segmentation thread. For the instance
segmentation thread, a lightweight version of YOLOv8n
is proposed to provide essential semantic information in
dynamic environments. By combining real-time semantic
segmentation using YOLOv8 and improved motion consis-
tency checks, the system filters out the dynamic elements
in the scene, such as pedestrians, enabling SLAM to
perceive environmental information. Subsequently, matching
feature points are removed from the detected dynamic areas,
enhancing robustness and accuracy in dynamic scenarios. The
constructed point cloud and semantic map do not include
dynamic point cloud information, resulting in minimal
information redundancy and rich semantic data. Experiments
were conducted on the TUM public dynamic dataset [52],
and the results demonstrate significant improvements in
localization accuracy compared to traditional methods in
dynamic environments.

However, YG-SLAM still faces ongoing work. In the
future, we plan to utilize the results of semantic segmentation
to build a semantic octree map, improving the robot’s
ability to navigate around moving obstacles in dynamic
environments to meet broader requirements. Additionally,
the system’s performance may be affected when objects in
target detection appear irregularly, such as when the camera
captures people walking at a 45-degree angle, and when there
is a significant amount of occlusion. Future work will focus

on addressing missed detection issues, which is one of our
research directions.
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