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ABSTRACT Early-stage detection of lung tumors helps to reduce patient mortality rates. In this work,
we propose a method for diagnosing lung tumors in nude mice through combining laser-induced breakdown
spectroscopy (LIBS) with the Histogram of Orientation Gradients (HOG) and Support Vector Machine
(SVM). Firstly, the elemental spectral lines and elemental imaging maps for lung tissue are respectively
obtained by the LIBS system. Secondly, the HOG is used to obtain the gradient direction relationship
of multi-dimensional spectral intensity from LIBS images. The optimal spectral features based on HOG
for different biological tissue can be extracted. And then, the SVM model is adopted to determine lung
tumors. The results show that, compared to classification models based on SVM with full-spectrum emission
intensity and SVM with Principal Component Analysis (PCA), the identification accuracy of lung tumors
from the nude mice by using the HOG-SVM can be improved by 10.66% and 4.66%, the sensitivity can be
improved by 12% and 4%, and the specificity can be improved by 8% and 6%, respectively. In addition,
HOG-SVM is also used to differentiate inflammatory lung tissue from normal lung tissue in nude mice, and
achieves the ideal classification result. This work shows that the LIBS technique combined with HOG-SVM
provides a complementary method for the rapid detection of lung tumors, contributing to the successful
treatment of patients.

INDEX TERMS Laser induced breakdown spectroscopy (LIBS), lung tumor, histogram of orientation
gradients (HOG), support vector machine (SVM).

I. INTRODUCTION the National Cancer Center, 3 million people in China died

Cancer is the second leading cause of death worldwide.
According to the World Health Organization, in 2020 there
were 2.21 million new cases of lung cancer, while deaths
topped the list at 1.8 million [1]. From the latest data from
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of cancer in 2020. The number of lung cancer deaths was
710,000, accounting for 23.8% of the total cancer deaths [2].
Early symptoms of lung cancer are not obvious and usually
would not attract the attention of patients. When the cancer
cells spread and metastasize, indicating that the lung cancer
has developed to an advanced stage, the cure rate of patients
at this time will be very low. Early diagnosis of lung cancer
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is crucial in improving cure rates as well as patient survival
and quality of life.

To date, several screening methods have been applied in
clinical practice for the assistance in lung cancer diagnosis.
The internal condition of the lungs can be effectively visu-
alized by chest X-rays and electron computed tomography
(CT) scans of the lungs. However, early-stage lung cancer
may not be easily recognized on imaging, especially in
smaller diameter masses [3]. The most advanced method for
detecting lung tumors is positron emission tomography/X-
ray computed tomography (PET-CT), which can detect subtle
lesions without any clinical symptoms, and achieve early
detection of foci and diagnosis of the disease [4]. In addition,
the utilization of laboratory tests such as tumor markers is
also considered to support the diagnosis of lung tumors.
Randell et al. indicated that cytokeratin fragments could
help in the identification and diagnosis of lung tumors
[5]. Roth et al. applied the circulating DNA, microRNA
and cysteine asparaginase activity in blood for lung cancer
detection and risk assessment [6]. However, most tumor
markers are not specific to malignant tumors, and non-
tumorigenic lesions or side effects of treatments could also
give false-positive results. In clinic, the “gold standard™ for
diagnosis of lung tumors is the pathologic evaluation of tissue
samples [7]. The tissue samples taken from lung lesions by
means of the fiber-optic bronchoscopy can be conducted the
pathological examinations to obtain qualitative diagnosis of
the affected tissue. This method is limited by the subjectivity
of pathologists’ diagnosis, and cannot provide results timely,
affecting the timeliness of treatment decisions. Therefore,
there is an urgent need to find experimental techniques for
the rapid detection of lung tumor.

Laser induced breakdown spectroscopy (LIBS) is an
atomic emission spectroscopy technique based on qualitative
and quantitative chemical multi-element analysis [8], [9],
[10], [11]. This method allows for fast and simultaneous
multi-element analysis with remote, on-line and portable
capabilities [12]. Up to now, LIBS has been widely used in
geological exploration [13], industrial metallurgy [14], [15],
environmental monitoring [16], [17], food safety [18], [19]
and other fields [20]. Especially, LIBS has been gradually
applied to the biomedical field in recent years. For example,
chemical analysis by the aid of LIBS for differentiating
hard tissue such as bones and teeth of the human body as
well as calcified samples [21], and for the identification
of selected bacterial pathogens [22]. In terms of tumor
detection, El-Hussen et al. used the LIBS technique to
differentiate between tumor tissue and normal tissue in breast
and colon cancer, which demonstrated that the degree of
tumor metastasis was related to the degree of calcium and
magnesium enrichment [23]. Researchers have used LIBS
technology in combined with chemometrics methods for
the diagnosis and treatment of tumors. Gaudiuso et al.
utilized the LIBS technique for early diagnosis of mice with
melanoma, where direct analysis of LIBS spectra did not
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provide any conclusive results. But by combining machine
learning algorithms (SVM, Fisher Discriminant Analysis,
and Gradient Boosting), they achieved the differentiation
for the normal and diseased mice with 96% accuracy
[24]. In addition, Lin et al. applied the LIBS technique
combined with the Random Forest Boosting Tree model for
distinguishing lung tumors from border tissue, with 98.9%
classification accuracy acquired [25].

It is well known that there are differences in the kinds
and concentrations of chemical elements in biological tissue,
and such differences can provide the theoretical basis for
LIBS to differentiate between tissue types. Generally, the
most biological tissue only shows moderate trace element
variations, there is less variation between classes and
concentrations of characteristic spectral lines. Only relying
on the intensity characteristics of the spectral lines for
differentiation usually did not give satisfactory results.
Therefore, digging into the new features of the spectrum
is crucial for the application of LIBS technology for tumor
identification and diagnosis. The HOG feature is a feature
descriptor used in computer vision and image processing, and
the technique calculated the number of times the gradient
direction occurs locally in an image [26]. This technique has
been widely applied in the fields of computer vision [27],
[28] and machine learning [29], [30]. The Support Vector
Machines (SVM) classifier is a margin-based supervised
machine learning method [31] and has been widely used for
classification tasks [32], [33]. Dalal and Triggs proposed the
HOG feature extraction algorithm in 2005 and combined it
with SVM (HOG-SVM) for static pedestrian detection [34].
By means of SVMs and fully-connected neural networks,
Goharrizi et al. used HOG features to classify cardiac multi-
lead electrocardiogram (ECG) heartbeat with more than 99%
classification accuracy [35]. Additionally, based on the algo-
rithms of Real Adaboost and Random Forest, Iwahori et al.
utilized HOG features and Hessian filters to promote the
performance of automatic detection of polyp detection with
higher accuracy, realizing high-precision polyp identification
[36]. The studies above mentioned show that HOG features
combined with machine learning methods can effectively
discriminate similar biological tissue or biological signals.
Furthermore, we have noticed that, little work associated
with HOG and SVM methods has been applied to identify
biological tumor tissue in which the LIBS technique is
employed for the multi-element spectra. Unlike pathological
staining in the traditional medicine, the LIBS technique can
quickly and objectively distinguish the element differences
between the malignant tumor tissue and the normal tissue.
When spectra of the biological tissue are transmitted into
a 2D image, HOG features can simultaneous contain both
gradient magnitude and angle relationships between pixels of
the image. Hence, HOG features co-established by these two
constraint relations are richer and more stable than spectral
features consisting of only single-point spectral intensity.
For distinguishing malignant tumor from the normal tissue,
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the LIBS technique combining HOG and SVM will have
a promising way to achieve the improvement of tumor
identification from the normal tissue.

In this work, a method based on LIBS technology to
achieve lung tumor diagnosis in nude mice is proposed, and
the method of HOG feature extraction combined with SVM
(HOG-SVM) is applied to the identification of lung tumors.
Lung tumor, paraneoplastic tissue and muscle tissue are
differentiated in nude mice to validate the proposed method.
To further demonstrate the application of the proposed HOG-
SVM method in the field of biological tissue identification,
classification experiments are also performed on lung tissue
in the presence of inflammation and normal lung tissue in
nude mice.

Il. MATERIALS AND METHODS

A. EXPERIMENTAL SETUP

In this study, tissue samples of lung cancer from the nude
mice with the subcutaneous tumor formation are detected
using the LIBS technique. The principle is shown in Fig.1.
The laser light emitted from the Nd: YAG, Quantel, Big
sky, Ultra 100 laser (wavelength 1064 nm, frequency 10 Hz,
pulse width 6 ns, and maximum pulse energy 100 mlJ) is
focused on the sample surface by the reflector and convex
lens (focal length 100 mm), and the sample is rapidly ablated
to form a plasma. The optical signals generated by the
plasma spontaneous radiation are received by a light collector
(Ocean Optics, 84-UV-25, detection range 200-2000 nm),
and then transmitted through an optical fiber to a middle-
order grating spectrometer (Andor Tech., Mechelle 5000) for
spectroscopy detection which be connected to an intensified
charge-coupled detector (ICCD, Andor Tech., iStar DH-
334T). The ICCD converts the optical signals into electrical
signals and transmits them to a computer for generating
spectrograms.
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FIGURE 1. Schematic diagram of the LIBS experimental setup.

Three types of tissue including lung tumor, paraneoplastic
tissue and muscle tissue are obtained from the nude mice.
50 sections are prepared for each type of tissue, and the
corresponding spectra are collected at ten different locations
in each section, and the corresponding ten spectra are
averaged into one spectrum. And then, the fifty spectra
can be obtained for each type of tissue, and the final total
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spectral number is 150 for all tissue. In addition, elemental
mapping experiments will be carried out using the LIBS
technique, and the device used in this setup is the commercial
laser probe composition analyzer JGTZ-001 developed by
Huazhong University of Science and Technology. The device
has a built-in laser with a wavelength of 532 nm, which
focuses on the surface of the sample with a relatively small
spot. Purging argon is used to enhance the signal in the
experiment and meanwhile to prevent surface contamination
caused by the deposition of flying debris from laser ablation.
In order to get an optimized signal-to-noise ratio (SNR),
the experimental parameters are subtly adjusted, and the
experimental parameters used in this study are kept same
during the experiment, with the laser energy of 40 mlJ, the
acquisition delay of the ICCD detector of 0.7 us, and the
integration time of 10 us.

B. SAMPLE PRE-PROCESSING

The nude mice are entrusted to Wuhan Huayan Biotechnol-
ogy Co., Ltd., which can provide nude mice subcutaneous
tumor transplantation service, using five Specific Pathogen
Free (SPF) grade nude mice (male, 18-22 g). During the
experiment, three of these mice are used as the model
group (human non-small cell lung cancer cells [A-549] are
injected subcutaneously in the right lower abdomen with
the number of injected cells) and the remaining two mice
are as the control group (cultured at the same time, without
any treatment). The samples used here are the tumor tissue,
paraneoplastic tissue and nearby muscle tissue from the nude
mice in the tumor group. The obtained tissue blocks are
paraffin-embedded and the embedded tissue is cut into 5-pm-
thin sections. To avoid paraffin contamination of the samples
interfering with laser ablation, the samples are subjected to
hydration dewaxing and section drying.

Both biological tissue and common slides contain vulgaris
chemical elements such as potassium (K), calcium (Ca),
sodium (Na), and magnesium (Mg). Ultrathin tissue sections
during laser ablation unavoidably suffer from the interference
of slide elements. Therefore, quartz slides with 99.999%
silica content are applied as substrates in this experiment
to prevent interfering elements from affecting the accuracy
of the experimental results. In addition, a portion of the
obtained lung tumor tissue is used to perform LIBS elemental
mapping, one of the sections will be stained for histological
hematoxylin and eosin (H&E) staining, and the remaining
four adjacent slices are mainly used for imaging of the
elements K, Ca, Na, and Mg.

C. DATA ANALYSIS

1) HOG CHARACTERISTICS

The feature extraction is an important part of data pro-
cessing of biological tissue spectra. By extracting important
information from the data, and the good performance for
specific biological tissue may be applied in classification and
recognition. It is well known that the HOG feature is quite
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good at representing localized shapes in terms of intensity
gradient and orientation distributions, which can be achieved
by separating the whole image into small homogeneous units
[37]. The statistical properties possessed by HOG features
make the method highly descriptive and robust [38]. The steps
for extracting HOG features in this work are as follows:

a: CONVERT SPECTRA TO FEATURE IMAGES

The spectra collected by the spectrometer are the intensity
values of the elements in different wavelength ranges and
correspond to one-dimensional matrices. HOG features are
employed to deal with true color images or 2D grayscale
images. Therefore, the one-dimensional spectrum must first
be converted to a two-dimensional matrix of M x N.
The spectrometer has an effective acquisition range of
200.334 nm-856.513 nm with 23,552 effective pixels for
per spectrum. These pixels can be sequentially written into
the data structure of the image and saved as a 16-bit gray
scale image in Portable Network Graphics (PNG) format
[39]. Some pixels might be lost when converting pixels to
images. However, these missing pixels have no effect on the
results since there are almost no visible peaks at the end of
the spectrum. After parameter optimization, the columns and
rows of the image are set to 310 and 75, respectively.

b: CALCULATE THE GRADIENT OF THE IMAGE

The process of calculation for the image gradient is illustrated
in Fig. 2. Firstly, the spectrum is transformed into a 2D image
matrix as shown in the process (1) of Fig. 2. The generated
image matrix is divided into blocks, which contains several
cells of the same size but not overlaps each other. As shown
in the process (1) and (2) of Fig. 2, x and y are the row and
column coordinates in the matrix, respectively. I(x, y) is the
intensity at the position (x, y) in the matrix. By analogy, the
intensities of the pixels at al, a3, a5 and a7 can be obtained
from the corresponding information of the optical spectra.
Then the gradient of each pixel of the cell in the horizontal
and vertical directions can be calculated according to the
Pythagorean theory as shown in process (3). Note that the
gradient in the y-direction will be set to 0 if the pixel is located
at the top or bottom of the cell, and the gradient in the x-
direction will be set to O if the pixel is located at the left or
right border of the cell [40].

During the gradient calculation for the certain positional
coordinates in an image matrix, the horizontal and vertical
gradients need to be calculated firstly to get the gradient
histogram. The calculation formulas for the gradient G, (x,
y) in the horizontal direction and Gy(x, y) in the vertical
direction of the pixel I(x, y) are represented as Egs.
(1) and (2). Then the joint gradient including the magnitude
and direction information can be obtained. Accordingly, the
calculation formulas for the gradient magnitude G(x, y) and
direction 0 of the pixel are respectively represented as Egs.
(3) and (4),

Ge(x,y) =Ix+ 1,y) = I(x — 1, y), ey
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FIGURE 2. Calculate the gradient of the local image.
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where /(x, y) is the intensity at the position of (x, y) in the
matrix. x and y are the row and column coordinates in the
matrix, respectively [40].

According to the optimization results, the parameters
BlockSize (number of cells contained in each block), CellSize
(number of pixels contained in each cell), and BolckOverlap
(number of overlapping cells between neighboring blocks)
used are set to 2, 42, and 1, respectively.

¢: CONSTRUCT HISTOGRAM OF THE GRADIENT DIRECTION
OF THE CELLS

At first, 180° is evenly divided into several parts, and then,
the pixels in each cell are assigned to a fixed angular range
according to its gradient direction angle. Next, the gradient
values corresponding to the pixels in each angular range
are accumulated, and ultimately a histogram of the gradient
direction for that cell can be obtained. The average of the
histogram of each pixel is calculated to get the gradient
vector, and then the cells in the same block are normalized
according to this gradient vector. The Numbins (number of
directional histogram bins) parameter is set to 9.

d: OBTAIN HOG CHARACTERISTICS

The HOG feature descriptors of a block are obtained by
concatenating the gradient histograms of all cells within
the block. Accordingly, the HOG features of an image are
acquired by concatenating the HOG feature descriptors of all
blocks within the image.

2) MODELING AND ASSESSMENT INDICATORS

To build tumor discriminative models, several machine
learning methods such as Kernel Extreme Learning Machine
(KELM), Random Forest (RF), Fisher Discriminant Analysis
(FDA), and SVM have been proposed and implemented.
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Due to advantages of fast calculation and robustness to the
noise, the SVM model has better classification performance
and hence has been widely used in various fields as one
of the most effective and popular classification tools [41].
Essentially, SVM is to find an optimal hyperplane that
separates the two parts of the linearly divisible n-dimensional
data, maximizing the interval between the sample set and
the classification hyperplane [42]. Based on the “one-to-
all”’, tumor tissue and paraneoplastic tissue are considered as
one category for subsequent calculations [43]. A radial basis
function is used as the kernel function of the SVM model.
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FIGURE 3. Flowchart of model building.

The overall flowchart of model building is shown in Fig. 3.
Firstly, LIBS elemental distribution on lung tumor tissue
will be mapped and compared with the H&E staining case,
which will present the relationship between the differences in
elemental distribution and pathological areas. Secondly, after
the original spectra are preprocessed, KELM, RF, FDA and
SVM models will be built separately, from which the optimal
model is selected. To further improve the efficiency of the
algorithm, the traditional method PCA is chosen for feature
extraction of the LIBS optical spectra from the biological
samples. It is considered that the PCA model may suffer
from inefficiency in extracting principal components due
to the possibility of omitting important information about
biological sample differences. As previously mentioned, the
HOG method can segment a LIBS image into small connected
regions (cells), each of which produces a histogram of
directional gradients, and further features the image in terms
of a combination of histograms. At the same time, the
background and noise in the spectra can be removed and
important information is highlighted by means of HOG
feature extraction and multivariate analysis. So, the HOG
features have a great possibility to better distinguish small
differences in the spectra among biological tissue. The HOG
feature extraction is chosen to process the spectra and
combined with SVM for lung tumor tissue discrimination.
In addition, the applicability of the HOG-SVM algorithm will
be verified by the identification of inflamed lung tissue and
normal lung tissue at the end of this work. To evaluate the
stability of the model, a 5-fold cross-validation is utilized
in the model. Evaluation indexes of the classification model

VOLUME 11, 2023

including the accuracy, sensitivity, and specificity are taken
into account. Here, the accuracy is the ability to determine
if a disease tissue of a patient is precisely identified. The
sensitivity is the ability of the test to identify the presence of a
disease or illness correctly [44]. The higher the sensitivity is,
the fewer the false-negative results will be. So, the sensitivity
evaluation can contribute to the early detection and treatment
of diseases. The specificity is the ability of the test to
identify the absence of a disease or illness correctly [44]. The
higher the specificity is, the lower the rate of misdiagnosis
for patients will be. Through calculating and evaluating the
sensitivity and specificity, tumor tissue and paraneoplastic
tissue are correspondingly classified as tumor samples, and
muscle tissue is as normal tissue samples. In this study, the
accuracy, sensitivity, and specificity are calculated according
to Egs. (5), (6), and (7) as follow, respectively,

TP + TN
Accuracy = 5)
TP+ FP+ TN + FN
Sensitivi P ©)
s = —
ensitivity TP+ EN
Specificity = —— ™
ecificity = ————,
PeCiy = IN ¥ FP

where TP, FP, TN and FN represent the true positive, false
positive, true negative and false negative, respectively [45].

IIl. RESULTS AND DISCUSSION

A. SPECTRAL ANALYSIS

The average spectra of lung tumor, paraneoplastic tissue, and
muscle tissue are shown in Fig. 4. The elemental spectral lines
labeled in the spectra are based on the National Institute of
Standards and Technology database. Strong element spectral
lines for carbon (C), nitrogen (N), hydrogen (H), oxygen (O),
CN-band, Ca, Na, and Mg are clearly observed in all three
types of tissue in Fig. 4. The spectral line intensity of the
element K is very weak and almost cannot be observed in
the spectrum due to the low content of the element and little
ablation of the sample.
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FIGURE 4. Average LIBS spectra of the lung tumor tissue, paraneoplastic
tissue and muscle tissue after wavelet noise elimination.

141919



IEEE Access

Q--L. Lian et al.: Identification of Lung Tumors in Nude Mice Based on the LIBS With HOG and SVM

Accordingly, Figure 5 shows the local spectral differences
of the lung tumor, paraneoplastic tissue, and muscle tissue.
From this diagram, the spectral intensity of Na in lung tumor
tissue is obviously higher than that in paraneoplastic tissue
and muscle tissue, while Ca and Mg elements also exhibit
differences in the three types of tissue. It should be pointed
out that, during the experiment, the atomic emission lines of
the H, N, and O are not included in the analysis due to the
experiments environment performed in the atmosphere. It can
be seen in Fig. 4 and Fig. 5 that the tested biological tissue
displays small differences of the element spectral line, which
isn’t beneficial to the discriminative and diagnosis between
the focal tissue and normal tissue.

ryi Iy
Ff A
Lung tumor
Mg Il 279.55 nm Paraneoplastic tissue
- Mg 11 280.27 nm Muscle
=
g
z Ca 1 422.67 nm
g Na 11 588.99 nm
= Na Il 589.59 nm
b=
W
3
S
E
=
z
1 Y 1 ya 1
LA 4
279 280 422 423 589 590
Wavelength (nm)

FIGURE 5. Local spectral difference of the lung tumor tissue,
paraneoplastic tissue and muscle tissue.

B. ELEMENTAL MAPPING

Mapping the elements distribution of interest may reveal
differences in the content and spatial distribution of chemical
elements in tumors, which can pave the foundation for the
next step in tumor diagnosis [46]. By ablating samples of lung
tumor tissue sections using the JGTZ-001 analyzer developed
at Huazhong University of Science and Technology, LIBS
spectra can be obtained for the lung tumor tissue in which
the interest element is correspondingly located. The scanning
area of each sample is 7.6 mm x 7.6 mm, which provides a
sufficient range to contain the entire sample. The scanning
step is set to 100 um and 5776 spectra are collected for
each sample. The spectral line intensities of Na, Mg, K,
and Ca for the scanned samples are extracted, respectively,
and the one-dimensional spectral line intensities can be
converted to two-dimensional matrices. By aid of pseudo-
coloring, a contour plot associated with the two-dimensional
matrix for the special element distribution can be visualized.
During all experiments, the scanning power generated from
the laser in the LIBS system is set to the same level, and
the scanning acquisition delay and integration time of the
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experiment system are kept uniform, so that the acquired
elemental distribution maps for different element styles are
strictly comparable.

Comparing the pathologically stained images of the tissue
with the images of the LIBS feature elements can provide
the information of the element distribution. Figure 6 shows
the scanned images of LIBS elements of lung tumor tissue
from subcutaneously transplanted nude mice. As shown
in these diagrams, The H&E-stained image of lung tumor
tissue is displayed in Fig. 6(a), and the LIBS images of
Na, Mg, K and Ca elements are shown in Figs. 6(b), 6(c),
6(d) and 6(e), respectively. In Fig. 6(a), some identified areas
corresponding to the tumor tissue, normal tissue and muscle
tissue are respectively marked by capital letter T, N, and
M from the pathologist. As can be seen in Figs. 6(b)-6(e),
the concentrations of the elements Na, Mg and Ca in the
tumor tissue are higher than those in the normal tissue and
muscle tissue, while the concentration of the element K in the
tumor tissue is slightly lower than that in normal tissue as a
whole. In the internal region of the tumor tissue, the elemental
distributions for Na, Mg, and Ca also behave heterogeneous
in view of LIBS imaging maps. Note that, the concentration
of Na element in Fig. 6(b) is obviously stronger in the lower
right area of the T region than that on the left side of T region,
while the Mg and Ca elements shown in Fig. 6(c) and Fig. 6(¢)
are mainly aggregated in the bottom half of the tumor, and
demonstrate similar concentration variations within tumor
tissue, normal tissue, and muscle tissue. It can be seen that the
special element distribution can characterize the biological
tissue which may be considered as a way to identify the
tumor tissue. Furthermore, the pathological staining for the
lung tumor tissue do not reveal such differences described
above. These results show the tumor and the surrounding non-
tumor tissue can exhibit the different element distributions
and concentrations in the LIBS imaging maps. Compared to
the conventional histopathology, the highly complementary
nature of LIBS elemental imaging can contribute to a new
means for the auxiliary medical diagnosis.

FIGURE 6. Elemental imaging maps of LIBS of lung tumor tissue in nude
mice. (a) H&E staining map; (b) Na 1 588.99 nm; (c) Mg 1 285.21 nm; (d) K1
766.49 nm; (e) Ca | 422.67 nm.

C. DIAGNOSIS OF LUNG TUMOR TISSUE

1) SVM FOR TUMOR DIAGNOSIS

In order to further explore the better tactics for the
classification and identification of lung tumor, next the SVM
model is applied to differential diagnosis of lung tumor
tissue. As seen in subsection II-B, all of 150 spectra will be
collected for the SVM model. The raw spectral data from
the 150 spectra is transferred into the SVM classifier and the
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corresponding output accounts for the average classification
accuracy. In this work, the average classification accuracy
(sensitivity or specificity) is defined as the mean value from
the corresponding classification results of the lung tumor,
paraneoplastic tissue, and muscle tissue. To make a fully use
of the data, a 5-fold cross-validation method is employed
to train the discriminative model by dividing the data into
5 parts, where one part serves as the test set and the remaining
four parts are as training sets. During the calculation, the
test set will be replaced by one of the training sets for
each calculation. Ultimately, the calculation results for the
5 discriminative models can be obtained, and then the average
value is taken as the final result.

Figure 7 shows the classification results of SVM based on
the full-spectrum emission intensity from the 150 spectra data
belonging to 3 classes of tissue (lung tumor, paraneoplastic
tissue, and muscle). As a result, the way of SVM gives
the average classification accuracies of 84.67%, sensitivity
of 85%, and specificity of 84%. As shown in the diagram,
few tumor tissue samples are discriminated as paraneoplastic
tissue and muscle tissue, the incorrect number of classified
samples between the paraneoplastic tissue and muscle is
relatively high, in which some samples of the paraneoplastic
tissue are misidentified as the muscle tissue and vice versa.
Therefore, the classification accuracy of distinguishing these
two types of samples is unfavorable. The reason is that the
paraneoplastic tissue and muscle tissue have a high spectral
similarity, which is adverse to the accurate classification.
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FIGURE 7. Classification results of SVM for the lung tumor,
paraneoplastic tissue, and muscle.

2) PCA-SVM FOR TUMOR DIAGNOSIS

LIBS spectral data of lung tissue possesses the high-
dimensional and complex characteristics, but not all of the
data is the valid signals because there is a great deal of
background noise in the spectral data. When the LIBS
spectral data is modeled, the noise information will not
only aggravate the complexity of the model and cause a
“dimensional disaster’’, but also make the model to be
interfered with by the redundant information, which can
significantly reduce the classification effectiveness of the
lung tissue. Therefore, the extraction of important signals
from LIBS spectra is quite important for the recognition of
biological tissue. It is well known that the PCA recombines
the original variables into a new set of linearly uncorrelated
composite variables, which can reduce the influence of the
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noise signals. SVM divides the data into two parts based
on hyperplane, which is a supervised classification method
with good performance. In the previous report, the cervical
cancer tissue has been identified using a combined method of
PCA and SVM and demonstrated that there exists an obvious
spectra difference in trace element content between normal
and cancerous tissue. This result shows that PCA associated
with LIBS techniques can provide a convenient method for
real-time diagnosis of cancer tissues [47]. As a result, the
PCA is utilized for feature extraction of the dataset, followed
by SVM for identification and diagnosis of lung tumor tissue.
The principal component scores and cumulative contribu-
tions of the three types of samples are shown in Fig. 8. From
this diagram, the lung tumors are completely distinguished
from paraneoplastic and muscle tissue on the projection of
principal component 1 (PC1). However, the paraneoplastic
and muscle tissue are intertwined and indistinguishable on
the projections of principal components 2 (PC2), which well
verifies the problem found in the subsection III-C1. The PCA
is used to calculate the contribution rate of each eigenvalue,
and the 17 eigenvalues with a cumulative contribution rate
of 95% are taken as the final eigenvectors. Based on the
5-fold cross-validation results, the average classification
accuracy is obtained as 90.67%, and the sensitivity and
specificity are 93% and 86%, respectively. Compared with
SVM based on the full-spectrum emission intensity, the
classification accuracy for the three types of tissue is
evidently improved. Note that, the PCA implemented in the
classification for feature extraction reduces the complexity of
the model and shortens the modeling time. However, the high
dimensionality of spectral data requires a large number of
computations costs more time when using PCA for principal
component extraction. In addition, although the selection of
principal components with a cumulative contribution rate of
95% can represent most of the information, some principal
components with a smaller contribution rate may also contain
important information about the sample differences.
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FIGURE 8. PCA scores of lung tumor tissue, paraneoplastic tissue and
muscle tissue samples along PC1, PC2 (a); contribution of each principal
component as well as cumulative contribution (b).

3) HOG-SVM FOR TUMOR DIAGNOSIS

Although the PCA-SVM can improve the accuracy of the
classification to a certain extent, the related algorithms
of the PCA are time-consuming and information-losing.
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Due to better advantages of simplicity, fast calculation and
robustness to the noise, the HOG algorithm is desirable to
be an effective measure quantifier to evaluate quantitatively
the classification accuracy of biological tissue. By applying
the HOG algorithm in the spectral data of three styles
of tissue (tumor, paraneoplastic tissue, and muscle), the
small differences in the spectral can be detected by the
gradient or edge information from the LIBS image. Figure 9
displays the classification results of SVM based on the HOG
algorithm. During the calculation, extraction of features using
HOG for all data from 150 LIBS images of lung tumors,
paraneoplastic tissue, and muscle tissue according to the
method mentioned in the previous subsection II-CI, and
then 900 feature variables for the three styles of tissue can
be obtained. Next, under the five-fold cross-validation for
training of the model, the extracted features of the tissue are
as inputs into the SVM to assess the classification accuracy
of the different biological tissue. As shown in Fig. 9, the
classification accuracies of HOG-SVM reach a high level for
the lung tumor, paraneoplastic tissue, and muscle. Among
them, all the lung tumor tissue samples are successfully
discriminated and classified. The classification accuracies of
the paraneoplastic samples and muscle tissue samples are up
to 94% and 92%, respectively. The reasons for the improved
classification accuracy of HOG-SVM over PCA-SVM can
be explained that HOG algorithm can acquire the gradient
direction relationship of the normalized multidimensional
spectral intensities, which less affects the spectral stability
of the tissue. In addition, the multidimensional spectral data
derived from the HOG-SVM possesses the more effective
information than that for the one-dimensional spectral data
from the PCA-SVM.
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FIGURE 9. Classification results of HOG-SVM for the lung tumor,
paraneoplastic tissue, and muscle.

TABLE 1. Average classification accuracy of SVM, PCA-SVM and HOG-SVM
models for lung tumor discrimination.

Model Accuracy (%) Sensitivity (%) Specificity (%)
SVM 84.67 85 84
PCA-SVM 90.67 93 86
HOG-SVM  95.33 97 92

Combining with the average classification results of

SVM, PCA-SVM, and HOG-SVM presented in Table 1,
it can be seen that the average classification accuracy
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using HOG-SVM model is 95.33%, sensitivity is 97%, and
specificity is 92%. Comparing to the case of SVM, the
average classification accuracy, sensitivity, and specificity of
HOG-SVM have been improved by 10.66%, 12% and 8%
respectively. In contrast with the classification result of PCA-
SVM, the HOG-SVM is still able to provide the obviously
higher classification accuracy, sensitivity and specificity than
the case for the PCA-SVM. The above results indicate that,
for the lung tumor, paraneoplastic tissue, and muscle, the
HOG-SVM is preferred to obtain the precise identification
and classification, which may contribute to the auxiliary
diagnosis of lung tumor for clinicians.

4) DIFFERENTIATION OF INFLAMMATORY TISSUE FROM
NORMAL LUNG TISSUE

Without loss of generality, the HOG-SVM is further used
to distinguish the inflammatory tissue from the normal lung
tissue of nude mice through the model group and the normal
group. As is diagnosed by the pathologist based on the H&E
staining results of the lung tissue sections of the model
group, inflammatory infection exists in the lung tissue of
the model group of nude mice. Similar to the treatment of
the samples as described in 2.1, the inflammatory tissue
and normal lung tissue are provided, and the corresponding
number of sample sections is 100 for each tissue. By means
of the LIBS technique, 100 spectra are acquired for each type
of tissue. By comparison, the performance of spectral lines
from the lung inflammatory tissue and normal lung tissue
show little difference, which may be attributed to the similar
element composition of the two types of samples. Next,
the spectral data generated from the inflammatory tissue
and normal lung tissue is modeled using SVM with full-
spectrum emission intensity, PCA-SVM and HOG-SVM,
respectively. After the calculation of the five-fold cross-
validation, the finally results have been demonstrated in
Table 2. As seen in the Table, for the HOG-SVM, the
average classification accuracy is 93%, sensitivity is 95% and
specificity is 91%, respectively. Compared to the cases of
SVM with full-spectrum emission intensity and PCA-SVM,
the HOG-SVM can achieve the better classification results
in the identification of inflammatory and normal lung tissue.
The generalized effectiveness predicts that the HOG-SVM
method can be applied to the field of identification of different
lung tissue and diagnosis of inflammatory tissue from normal
lung tissue.

TABLE 2. Average classification accuracy of SYM, PCA-SVM and HOG-SVM
models for inflammatory lung discrimination.

Model Accuracy (%) Sensitivity (%) Specificity (%)
SVM 87.5 88 87
PCA-SVM 91.5 94 89
HOG-SVM 93 95 91
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The above results show that, the HOG method combined
with SVM based on LIBS spectral information can achieve
the identification of lung tumor tissue and inflammatory
lung tissue in nude mice, and acquire the relatively ideal
classification results. Based on previous research experience
on the identification of biological tissue under LIBS tech-
nique and classification algorithm, it can be predicted that,
the LIBS combined with HOG-SVM proposed in this work
has a potential in other types of tumor tissue identification.
This work proposes a theoretical and experimental basis for
the final application in human clinic, and the study results
provide a useful reference for real-time diagnosis of cancer
tissue.

IV. CONCLUSION

In summary, we combined the LIBS with the HOG-SVM
method to explore the discrimination and diagnosis of
lung tumors in nude mice. The results demonstrated that
the tested lung tumor, paraneoplastic tissue, and muscle
tissue display the small spectral differences of the chemical
elements, which is not suitable for the precise discrimination
of lung tumors. By converting LIBS spectra to elemental
imaging maps, the lung tumor and the surrounding non-
tumor tissue presented the different element distributions and
concentrations. Furthermore, compared to the cases for the
SVM based on full-spectrum emission intensity and SVM-
PCA, the HOG-SVM method can obviously improve the
average classification accuracy, sensitivity and specificity of
the different lung tissue, which can reach 95.33%, 97% and
92%, respectively. Besides, the differential classification of
inflammatory lung tissue in nude mice and lung tissue in
normal nude mice also verify the generalized effectiveness
of HOG-SVM method. After the 5-fold cross-validation,
the average classification accuracy can be up to 93%, the
sensitivity 95%, and the specificity 91% for the HOG-
SVM method. Although the HOG-SVM algorithm based on
LIBS spectra in this work achieves the discrimination of
lung cancer tissue and inflammation tissue in nude mice,
and finally reaches 95.33% and 93% accuracy, it still has
the following limitations: (1) The HOG-SVM extracts the
gradient features of an image to implement classification, but
the process of classification requires a relative more adequate
sample capacity. (2) The HOG-SVM model still belongs to
a semi-automatic model, which should be downscaled by
extracting image features in an artificial way. It is a necessary
requirement that the classification executor needs the model
design experience of the HOG-SVM. To conclude, this study
showed the potential of LIBS techniques combined with the
HOG-SVM for clinical diagnosis of lung tumors. Further
studies on the discrimination and diagnosis of human lung
tumors will be conducted in the future with the aim of reveal-
ing the link between lung tumors and chemical elements.
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