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ABSTRACT This paper aims to provide an automatic analysis of music emotion, enhancing users’ ability
to perceive and comprehend the emotional nuances conveyed in music intuitively. It first reviews the
limitations of traditional music emotion analysis methods, and highlights the transformative potential of
Internet of Things (IoT) technology in addressing these limitations. Subsequently, the paper employs the
Long Short-Term Memory (LSTM) network to model time series data in music, integrating it with the
Sequence-to-Sequence (STS) framework to construct an advanced music emotion analysis model. Finally,
several machine learning algorithms are adopted to train and evaluate the system. The findings underscore
the efficacy of themusic emotion analysis model based on the LSTMnetwork fused with STS, demonstrating
notable success in the task of music emotion prediction. Specifically, the fusion model achieves an average
absolute error of Arousal value of 0.921, a root mean square error (RMSE) of 0.534, and an R square of
0.498. The average absolute error in the Valence value is 0.902, the RMSE is 0.575, and the R square is
0.478. This paper holds significant implications for a deeper understanding of music emotion and provides
guidance for music recommendation and creation.

INDEX TERMS Music emotion, Internet of Things, long short-term memory network, sequence-to-
sequence model, music emotion prediction.

I. INTRODUCTION
A. RESEARCH BACKGROUND AND MOTIVATIONS
As an artistic form of emotional expression, music can
evoke emotional resonance, influencing individuals’ psy-
chological states and behaviors. Therefore, delving into the
understanding and analysis of music emotion holds profound
significance for fields like music psychology, the entertain-
ment industry, and personalized recommendation systems
[10], [21], [34]. However, the traditional music emotion
analysis methods exhibit certain limitations, characterized
by pronounced subjectivity and restricted accuracy. These
challenges primarily emanate from the reliance of tradi-
tional methods on manual annotation or feature extraction
based on audio signals, lacking the capacity to model the
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dynamic and sequential nature inherent in music [32]. Pre-
dicting music emotions is a complex and challenging task,
primarily shaped by the limitations of traditional meth-
ods and contemporary challenges. Traditional approaches
encounter difficulties in handling time-series data, struggling
to accurately capture the rich and intricate emotional expres-
sions embedded in music. Typically, these methods cannot
effectively handle the dynamic changes and intricate emo-
tional information present inmusic, resulting in shortcomings
in providing a comprehensive understanding of emotions.
Simultaneously, the subjectivity and diversity inherent in
music emotions add complexity to achieving accurate pre-
dictions. Music, being a highly subjective and culturally
dependent art form, can elicit significantly different emo-
tional experiences among individuals listening to the same
piece. Moreover, modern music often encompasses a spec-
trum of emotions, and the expression of emotions may evolve
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over time. Hence, comprehensively capturing and predicting
these nuanced emotional changes is challenging. However,
with the rapid advancement of Internet of Things (IoT) tech-
nology, the wide application of various sensors and devices
provides more data sources for music emotion analysis
[52]. Using IoT technology enables the acquisition of mul-
timodal data, encompassing audio, text, and images, thereby
offering a more comprehensive and multi-dimensional per-
spective on musical information. Analyzing and visualizing
music emotions with rich data is a complex and challenging
task [33].

The fusion of the Long Short-Term Memory (LSTM)
network has made remarkable achievements in sequence
modeling, especially in natural language processing and
speech recognition. LSTM network has a memory unit and
gating mechanism, enabling it to effectively model long-term
dependence and is suitable for processing time series data
in music [22], [26]. Modern solutions tend to employ deep
learning (DL) models when facing the challenges of predict-
ing musical emotions. This trend reflects an acknowledgment
of the limitations of traditional methods, as DL excels in han-
dling complex and multi-dimensional emotional information
in music. However, current DL approaches still encounter a
series of challenges, especially in the field of music, where
the dynamic nature of time-series data and the complexity
of emotional information require more nuanced handling.
For the processing of time-series data, LSTM has become
a popular choice. LSTM is renowned for its effective mod-
eling of temporal relationships, enabling better capture of
emotional changes in music. Nevertheless, further innova-
tion is needed in music emotion analysis to enhance the
DL model’s ability to extract and understand emotional
information. Additionally, modern solutions are gradually
integrating multimodal information to achieve a more com-
prehensive understanding of musical emotion. In this regard,
the fusion of Sequence-to-Sequence (STS) LSTM networks
presented serves as an innovative approach. By integrat-
ing information from different modalities, this model can
comprehensively grasp the emotions in music, improving
the comprehensiveness of emotion analysis. It can over-
come the limitations of traditional methods, enhancing the
accuracy and comprehensiveness of music emotion analysis.
Therefore, combining the IoT technology with the inte-
grated LSTM network can effectively capture the emotional
changes and contextual information in music, and improve
the accuracy and effect of music emotional analysis and
visualization.

This paper aims to explore a new framework for music
emotion analysis and visualization by integrating the IoT
and the LSTM network. It is hoped that the multimodal
data collected by the IoT technology, combined with the
sequence modeling ability of the LSTM network, can under-
stand the emotional connotation of music more comprehen-
sively. Moreover, it can provide more accurate and detailed
emotional analysis results, and enable users to perceive

and understand the emotional expression of music more
intuitively.

This paper has made several significant contributions to
addressing issues in the field of music emotion predic-
tion. First, by comprehensively examining the limitations of
traditional methods for music emotion analysis, it clearly
identifies challenges in handling time-series data and extract-
ing emotional information. Then, this paper innovatively
introduces IoT technology into the field of music emotion
analysis, offering a fresh perspective on addressing these
challenges. Methodologically, it proposes a music emotion
analysis model that combines STS with LSTM networks,
further emphasizing the importance of integrating multi-
modal information. This model considers time-series data
and integrates information from different modalities, enhanc-
ing its comprehensive understanding of musical emotion.
Ultimately, system training and evaluation validate the supe-
riority of the proposed LSTM-based music emotion analysis
model in emotion prediction tasks. Experimental results
demonstrate the model’s outstanding performance in predict-
ing Arousal and Valence values, providing a novel approach
for research and applications in the field of music emotion
analysis. The research findings of this paper hold signif-
icant theoretical and practical value for gaining a deeper
understanding of musical emotions, offering music recom-
mendations, and facilitating music composition.

This paper is organized into six sections. Section I serves as
an introduction, outlining the research objectives, addressing
issues in predicting music emotion, discussing the short-
comings of existing models, and explaining the research
motivation, contributions, and research framework. Section II
provides the background, detailing the theoretical content
of the LSTM model and STS model to offer comprehen-
sive background knowledge. Section III presents a literature
review, explaining and discussing relevant past research to
provide motivation for the current study. Section IV outlines
the research methods, including the establishment process
of the STS-based LSTM music emotion analysis model.
Section V covers experimental design and performance eval-
uation, encompassing the dataset, experimental environment,
parameters, results, and discussions. SectionVI concludes the
study, highlighting research contributions, limitations, and
future prospects.

B. RESEARCH OBJECTIVES
This paper aims to realize the automatic analysis and visu-
alization of music emotion by using the integrated LSTM
network supported by the IoT. The specific objectives are as
follows:

1. Develop an end-to-end music emotion analysis system,
which can automatically identify the emotional content in
music, including happiness, sadness, and excitement.

2. Multi-modal data, including audio, text and images, are
fused to improve the comprehensive effect of music emotion
analysis and visualization.
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3. Experiments are conducted to evaluate the system’s
performance, and the differences between the fusion LSTM
network and the traditional method in music emotion analysis
and visualization are compared.

II. BACKGROUND
LSTM is a Recurrent Neural Network (RNN) variant
designed to process and predict sequence data [1], [38]. Its
core innovation lies in the introduction of a memory cell
and three gates (input gate, output gate, and forget gate)
[39]. The memory cell captures and stores information over a
long period, enabling LSTM to excel in handling dynamic
temporal changes in music and better capture the evolu-
tion of emotions over time. Gangwani et al. presented a
method using LSTM STS encoder-decoder neural network
structure to predict geothermal energy production, explaining
LSTM structure and providing technical insights for this
paper [36]. LSTM incorporates a special cell state respon-
sible for preserving long-term information, which can be
precisely controlled, avoiding the issues of gradient vanishing
or exploding. The gate mechanisms, comprising input gate,
forget gate, and output gate, control the flow of informa-
tion, allowing LSTM to selectively forget and remember
information and effectively handle long-term dependencies
in sequences. Thus, in music emotion analysis, LSTM can
better capture the emotional evolution in music.

The STS model is a DL model consisting of an encoder
and a decoder. It was initially designed for machine transla-
tion tasks and later successfully applied to various sequence
generation tasks. The encoder receives input sequences and
maps them to a fixed-length vector representation, capturing
the semantic information of the input sequence. The decoder
accepts the vector representation generated by the encoder
and maps it to the output sequence, which is the ultimate
target. Inmusic emotion analysis, STSmodels can be used for
the generation task of mapping music sequences to emotion
labels. The model’s flexibility in handling sequence data
makes it possible to comprehensively understand musical
emotion. Through training, STS models can learn complex
mapping relationships between input and output sequences,
automating music emotion analysis.

A model that integrates LSTM and STS is employed in
music emotion analysis here. LSTM processes the input
sequence (music features), while the STS model contributes
to a better understanding and interpretation of the complex-
ity of musical emotion. By leveraging the strengths of both
LSTM and STS, the LSTM network learns patterns and
rules in time-series data to extract emotional information
from music. The introduction of the STS model allows for
a more comprehensive consideration of multimodal infor-
mation, such as additional data from IoT technology. This
integrated architecture aims to address the shortcomings of
traditional methods in handling music emotion, enabling
the model to more accurately and comprehensively pre-
dict the emotional expression of music. The integration of
LSTM and STS models enhances the accuracy of music

emotion analysis, making it better suited for the complex and
multi-dimensional nature of musical emotions.

III. LITERATURE REVIEW
A. RESEARCH IN THE FIELD OF MUSIC EMOTION
ANALYSIS
On the research of musical emotion, Hizlisoy et al. reviewed
the application of DL in musical emotion recognition. They
introduced various DL models, including the convolutional
neural network (CNN), RNN, attention mechanisms, and
their applications in music emotion analysis. The review also
summarized current research challenges and future direc-
tions [41]. Pan et al. explored the method of identifying
emotion frommusic by using time and frequency domain fea-
tures. They extracted different features and utilized machine
learning algorithms for music classification and emotion
recognition [23]. Abdullah et al. combined audio and lyrics
information and used multimodal emotion recognition tech-
nology to identify emotions in music. They proposed a
DL-based approach that combined LSTM with other models
to achieve more accurate emotion recognition [42]. Salakka
et al. used LSTM networks to extract audio features, and used
the emotional participation model to evaluate the emotional
impact of background music on listeners [17].

B. DL ALGORITHMS
In the application of DL algorithms, Dai employed an
improved CNN to infer the source and determine the des-
tination of monetary funds. The findings revealed that the
prediction accuracy of the proposed method had reached the
expected level [50]. Chen and Du used adaptive momen-
tum estimation to optimize the LSTM model. This paper
found that the Adam-LSTM model presented the smallest
Mean Relative Errors (MRE) in Online Public Sentiment
(OPS) [28]. Chen et al. used the particle swarm optimization
(PSO) algorithm to optimize the DL neural network, which
enabled the company to make decisions according to market
changes. Through experimental analysis, the trend parameter
of the optimal normal distribution of the algorithm was deter-
mined to be 0.4433 [27].

C. THE APPLICATION OF IOT TECHNOLOGY
About the application of IoT technology, Meng et al. inte-
grated big data to precisely assess the credit assets of
enterprises under the influence of social stability risks.
They proposed that the prediction accuracy of the integrated
algorithm model could reach 83.5%, with a small standard
deviation in data prediction, highlighting the model’s high
stability [47]. Lei et al. explored the relationship between
the quality of accounting information and the innovation
investment efficiency of enterprises. They found that the qual-
ity of accounting information could improve the innovation
investment efficiency of enterprises with low information
environments [57]. Wang and Dai built a centripetal force
model of industrial clusters to examine the influence of
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various factors on the development of the e-commerce
industry [19]. Liu and Chen proposed the latent feature
topic model, addressing the limitations of the traditional
LDAA model in identifying topics in complex environments
[54]. Feng and Chen analyzed the factors affecting the ser-
vice quality of cross-border import e-commerce, identifying
responsiveness as the most critical factor through Artificial
Neural Network analysis [56]. Zhang et al. analyzed the early
warning indicators of enterprises through the DL algorithm,
and found that the procurement management process caused
certain risks to the financial management level of enterprises
[16]. Feng et al. explored the internal relationship between
information sharing and investment performance in the ven-
ture capital network community. They found that information
sharing in the venture capital network community was pos-
itively correlated with investment performance [4]. Ye and
Chen introduced information processing theory into the study
of team improvisation and contributed to effective team
improvisation [46].

D. SUMMARY
The above literature highlights significant progress in the
research domains of music emotion analysis, DL algorithm,
and IoT technology. However, certain shortcomings per-
sist in the current research. First, while researchers have
experimented with various DL models for music emotion
recognition, challenges remain, including issues with the
efficacy of data preprocessing and feature extraction and
concerns about the accuracy and consistency of emotion
tags. Second, regarding the application of the DL algorithm,
researchers have proposed some improved models and opti-
mization methods. However, problems persist in terms of
the training efficiency, the model’s generalization ability, and
the parameter tuning’s complexity. In addition, regarding the
application of IoT technology, researchers have used big
data and integrated algorithms to realize the evaluation and
prediction of enterprise credit assets and industrial develop-
ment. Nevertheless, there are some problems, such as data
security, privacy protection, interpretability, and operability
of the algorithm. To sum up, this paper deeply explores the
application of IoT technology in music emotion analysis
and visualization, and further improves the efficiency and
robustness of the LSTM algorithm. It explores models and
methods more suitable for music emotion analysis to improve
the accuracy and effect of music emotion understanding and
presentation.

IV. RESEARCH METHODOLOGY
A. APPLICATION OF INTERNET OF THINGS TECHNOLOGY
IN MUSIC EMOTION ANALYSIS AND VISUALIZATION
IoT is a technology that connects various physical devices,
sensors, and objects to the Internet through a network con-
nection and communication technology [8], [31]. Figure 1
displays the application process of IoT technology in music
emotion analysis.

The concrete application of IoT technology in music emo-
tion analysis and visualization in Figure 1 can improve the
accuracy and effect of analysis and presentation by collecting,
processing, and utilizing multimodal data [37], [43]. Figure 2
illustrates the detailed implementation of IoT technology in
music emotion analysis and visualization.

The IoT technology in Figure 2 collects multimodal
music-related data through various sensors and devices,
encompassing audio, text, and images. The IoT technol-
ogy fuses the collected multimodal data and extracts the
characteristics of music emotion. More comprehensive and
multi-dimensional musical emotional information can be
obtained by converting audio signals into spectrograms or
extracting audio features, combining the emotional content of
lyrics and the emotional expression of images. An emotion
classification model is constructed using the data collected
by the IoT technology and the characteristics of fusion, and
applying the DL algorithm. The model can automatically
identify the emotional content in music, such as happiness,
sadness, and excitement, and analyze the emotion of music.
Through the classification and analysis of music emotion,
people can better understand the influence of music on peo-
ple’s mood and psychological state [11], [35], [44], [45].

B. EDGE AUDIO PROCESSING IN MUSIC EMOTION
ANALYSIS
With the rapid evolution of IoT technology, the application of
edge computing in various fields has gradually emerged [13].
As a part of edge computing, edge audio processing provides
a new perspective and method for music emotion analysis.
In traditional music emotion analysis, audio data typically
undergo transmission to a central server over the network
for analysis and processing. However, this method introduces
a certain delay, impacting users’ immediate perception of
music emotion. Edge audio processing realizes faster and
real-time data analysis by transferring audio data processing
and analysis tasks from the central server to the edge devices
[18], [20]. In the context of music emotion analysis, this
implies that users can experience the emotion conveyed by
music more instantaneously, and have a richer experience
for music appreciation. By using edge computing resources,
audio data can be processed on edge devices in real-time,
without transmitting a large number of audio data to the cen-
tral server for analysis, thus reducing transmission delays and
improving the data analysis efficiency. However, edge audio
processing faces challenges, including limited computing
resources on edge devices that may struggle with com-
plex audio analysis tasks. Consequently, algorithm design
optimization is necessary to ensure efficient audio emotion
analysis on edge devices. In addition, energy consumption is
a critical concern. Edge devices usually have limited battery
life, necessitating effective energy use during task handling.

In the practical application ofmusic emotion analysis, edge
audio processing holds considerable promise. For instance,
the intelligent music player can analyze the music emotion
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FIGURE 1. Application process of IoT technology in music emotion analysis.

FIGURE 2. Application of IoT technology in music emotion analysis and visualization.

in real-time during the user’s use, and automatically select
suitable music tracks based on the user’s emotional pref-
erences. Personalized music recommendation systems can

leverage edge audio processing technology to recommend
the most suitable music for users according to their real-time
emotional state. These application scenarios can realize more
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FIGURE 3. The algorithm principle and process of LSTM.

intelligent and real-time music emotion analysis experience
through edge audio processing technology. The fusion of
edge audio processing and IoT technology introduces new
possibilities for music emotion analysis. In the IoT environ-
ment, diverse devices can interconnect and share audio data,
enabling a more comprehensive and holistic analysis of musi-
cal emotions. Edge audio processing can accomplish audio
analysis tasks among multiple devices, realize distributed
music emotion analysis, and provide more accurate and per-
sonalized support for music recommendation, creation, and
other fields.

In conclusion, edge audio processing technology holds sig-
nificant promise in music emotion analysis. The task of audio
analysis is migrated from the central server to the peripheral
devices, which can realize more real-time and efficient music
emotion analysis, enrich the music appreciation experience,
and provide more in-depth guidance and support for music
recommendation and creation. In the IoT era, marginal audio
processing has injected new vitality into music emotion anal-
ysis, paving the way for fresh possibilities in the development
of the music industry.

C. ARCHITECTURE DESIGN OF LONG SHORT-TERM
MEMORY NETWORK
Figure 3 presents the algorithm principle and process of
LSTM.

The basic unit of the LSTM network in Figure 3 is a
memory unit with self-circulation mechanism.

Through a sigmoid function, the forget gate generates a
forget gate output f (t) [24] between 0 and 1 according to the
hidden state h(t−1) of the last time step and the input x(t) of
the current time step. Equation 1 shows the calculation of the
forget gate:

f (t) = sigmoid(Wf ∗
[
h(t−1), x(t)

]
+ bf (1)

The input gate consists of sigmoid function and tanh func-
tion. sigmoid function determines the degree of cell state to
be updated according to h(t−1) and x(t) [25]. tanh generates
a new candidate value g(t) based on the same input. The

TABLE 1. Key elements of architecture design of integrated LSTM
network.

calculation of the output gate reads:

i(t) = sigmoid(Wi ∗
[
h(t−1), x(t)

]
+ bi (2)

g(t) = tanh(Wc ∗
[
h(t−1), x(t)

]
+ bc (3)

The cell state C(t) is updated according to the cell states
C(t−1), f (t) and i (t) in the previous time step [29]. The
calculation of cell state reads:

C(t) = f (t) ∗ C(t−1) + i (t) ∗ g(t) (4)

The output gate multiplies the output of sigmoid function
with the output of tanh function to get the final hidden state
h(t). The calculation of the output gate reads [30]:

o(t) = sigmoid (Wo ∗
[
h(t−1), x(t)

]
+ bo (5)

h(t) = o(t) ∗ tanhC(t) (6)

bf , bi and bo are bias vectors. Wf , Wi and Wo are weight
matrices. ∗ means matrix multiplication. [] refers to vec-
tor connection operation. Equation 7 and Equation 8 show
sigmoid function and tanh function:

σ(t) =
1

1 + e(−x)
(7)

tanh =
ex − e(−x)

ex + e(−x)
(8)

Table 1 displays the key elements of the architecture design
of the integrated LSTM network.

In order to analyze music emotions more coherently and
accurately, this paper fuses the LSTM network with the STS
model to automatically identify music emotions [9], [52].
Figure 4 depicts the construction of the emotion analysis
model integrating LSTM network music with STS.

In order to construct the LSTM network based on the STS
model, the initial step involves mapping the music emotion
tag sequence into a continuous vector representation through
the Embedding Layer. The output of the embedded layer is
input into the stacked multi-layer LSTM unit, and the input
sequence is processed sequentially and its context informa-
tion is extracted. Ultimately, the hidden state obtained from
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FIGURE 4. Emotional analysis model of LSTM network music based on STS.

the LSTM unit serves as the encoder’s output. In the decoder,
the generated sequence of music emotion tags is mapped into
a continuous vector representation through the embedding
layer. The embedding layer’s output and the encoder’s context
vector are input into the LSTM unit. The LSTM unit is
responsible for the stepwise generation of the target sequence,
producing a label or symbol at each time step, which then
serves as the input for the subsequent time step. At each
time step, the hidden state and output of the LSTM unit are
employed to generate the label for the next time step until the
complete target sequence is generated. In the training process,
techniques such as Teacher Forcing are adopted to provide the
input of the decoder to help the model learn more accurate
sequence generation [6], [51].

In addition, the music emotion analysis model combined
with the STS LSTM network has a wide application prospect
in practical application. This model gives users a more intu-
itive way to perceive and understand musical emotions by
automatically recognizing emotional expressions in music.
Such technology holds significant potential across various
domains. First, it can enhance music recommendation sys-
tems. By analyzing users’ emotional preferences for different
types of music, the system can more accurately recom-
mend musical works that align with users’ emotional needs,
thereby enhancing their overall musical experience. Second,
the model can be used in the process of music creation
and production. Given that music creation is often a vital
avenue for emotional expression, the model’s emotional anal-
ysis capability aids musicians in better understanding and
capturing emotional elements, facilitating the creation of
more resonant musical works. In addition, the music emotion

analysis model combined with the STS LSTM network can
also contribute to the field of music education. Educators
can tailor music teaching materials and methods to students
based on their emotional states, thereby enhancing teaching
effectiveness and the overall learning experience.

In summary, this model transcends its initial application
in music and exhibits substantial potential across various
domains. Its presence has the potential to significantly enrich
people’s lives and work, playing a pivotal role in the practical
application of sentiment analysis technology. Table 2 presents
the algorithm pseudocode for the STS LSTM network-based
music emotion analysis model.

D. METHODS AND TECHNIQUES OF MUSIC EMOTION
VISUALIZATION
Visualization technology is a method to present data or infor-
mation through visual elements such as graphics, colors, and
animations [2], [48]. In music emotion analysis, this paper
uses timeline visualization technology to show the emotional
state of music to users or audiences intuitively [7], [40].
Table 3 shows the application of different visualization tech-
niques in music emotion analysis.

In addition, visualization serves several crucial functions
in music emotion analysis: first, the intuitive presentation
of emotional expression. Visualization technology employs
visual elements such as color and time axes to intuitively
convey the emotional state withinmusic to users. This enables
a quicker and deeper understanding of the emotional highs,
lows, and changes in the music. Second, the display of emo-
tional time series changes. Through time axis visualization
technology, changes in music emotion can be clearly depicted
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TABLE 2. The algorithm pseudocode for the STS LSTM network-based
music emotion analysis model.

TABLE 3. Application of different visualization techniques in music
emotion analysis.

over time. This allows users to trace emotional shifts in
different parts of the music, facilitating a comprehensive
understanding of its emotional expression. Third, interac-
tive emotional space. Visualization technology can also map
musical emotions to coordinate axes of different dimensions
to build an interactive emotional space. This empowers users
to freely explore the relationship and changes of musical
emotions in different dimensions.

In a word, the utilization of methods and techniques in
music emotion visualization plays a pivotal role. It enables
users to better understand music’s emotional expression and
changes through intuitive, interactive, and dynamic ways, and
provides a powerful auxiliary tool for music recommendation
and creation.

V. EXPERIMENTAL DESIGN AND PERFORMANCE
EVALUATION
A. DATASETS COLLECTION
This paper uses theMillion Song Dataset to train and evaluate
the music emotion analysis. This database collects many
music tracks, aiming to provide rich music data for music

TABLE 4. Explanation of dataset string parameters.

TABLE 5. The expected sorting results obtained from different
combinations of configuring the sampler and shuffle.

researchers to conduct various analyses and research. It con-
tains music tracks from different periods, styles, and artists.
Each song within this dataset has rich musical features,
covering rhythm, melody, harmony, and music type. In addi-
tion, there are emotional tags for each song, which indicate
the emotional state expressed by each song, such as plea-
sure, sadness, excitement and so on. The data are stored in
Hierarchical Data Format 5 (HDF5) format, totaling about
300GB. It comprises 10 genres (Blues, Classical, Country,
Disco, Hip-Hop, Jazz, Metal, Pop, Reggae, and Rock), each
consisting of 100 tracks. These tracks are in the form of
16-bit, single-channel.wav format audio files with a sampling
rate of 22050Hz [5]. The dataset can be accessed at gtzan |

TensorFlow Datasets (google.cn). The generated dataset has
three columns: [waveform, sample_rate, label]. The wave-
form column has a data type of float32, the sample_rate
column has a data type of uint32, and the label column has
a data type of string. Table 4 provides explanations for the
string parameters in the dataset.

Table 5 illustrates the expected sorting results obtained
from different combinations of configuring the sampler and
shuffle.

Table 6 depicts the process and explanations of data pre-
processing operations.

In order to deal with the large-scale dataset in music
emotion analysis, this paper draws insights from relevant
literature and employs data sampling methods to enhance
analysis efficiency and ensure result quality. This strategy
aligns with common practices in big data processing and
holds significant implications for music emotion analysis.
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TABLE 6. The process and explanations of data preprocessing operations.

Scaled Additional Interaction Regression (SAIL) method is
based on significant differences and uses statistical methods
and confidence intervals to identify significant parts of data
[12]. This method can allocate significant data parts to the
most efficient resources in time and cost, thus improving
the quality of results under budget constraints. The Gapprox
method considers the diversity of data and adopts cluster
sampling to improve estimation accuracy. The block size and
sample size are determined by dividing the input data into
different blocks according to the data’s internal and external
cluster variance [14]. This method can reduce the amount
of data to be processed to satisfy the acceptable confidence
interval and error boundary, thus achieving the required result
quality. The dynamic voltage-dynamic frequency regulation
method combines data diversity and Dynamic Voltage and
Frequency Scaling (DVFS) technology to manage the energy
consumption of big data processing [13]. This method applies
DVFS technology by estimating processing time and required
frequency to reduce energy consumption. This method can

TABLE 7. The validation results for the number of neurons in the LSTM
network.

significantly improve energy consumption in the case of
uneven resource consumption.

Inspired by the above methods, this paper employs a sim-
ilar idea, sampling and analyzing data by identifying the
most crucial features and data blocks in music time series
for emotional analysis. These methods aim to improve the
quality and efficiency of music emotion analysis with limited
resources.

B. EXPERIMENTAL ENVIRONMENT
Hardware configuration: Intel(R)Core (TM)i7 9750H
CPU@2.60Ghz 2.59GHz, 16GB memory.

Software environment: install operating system Win-
dows 10, graphics card RTX2080Ti (CPU), DL framework
PyTorch, programming language Python, and audio dataset
processing package Librosa.

C. PARAMETERS SETTING
It is uncertain which combination of structures for the
STS-based LSTMmusic emotion analysis model can achieve
the maximum regression prediction performance. Hence, this
paper conducts experiments on the LSTM network structure
to determine its network layers and the number of neurons.
Table 7 presents the validation results for the number of
hidden neurons in the LSTM network.

Table 7 reveals that as the number of LSTM neu-
rons increases, the prediction error for Valence gradually
decreases. Specifically, from 25 neurons to 256 neurons,
the Valence error decreases from 48.52% to 32.39%. This
indicates that increasing the number of neurons improves
Valence’s accuracy in music emotion analysis. Similarly,
the prediction error for Arousal decreases with an increase
in the number of neurons. From 25 neurons to 256 neu-
rons, the Arousal error decreases from 59.54% to 33.12%.
This suggests that increasing the number of neurons also
positively impacts the accuracy of Arousal. Experimental
verification indicates that the number of neurons in the LSTM
network significantly influences the regression prediction
performance of the music emotion analysis model. For both
Valence and Arousal, the prediction error gradually decreases
with an increase in the number of neurons, indicating that
adopting 256 neurons can enhance the model’s performance.
This empirical evidence supports the selection of an appro-
priate network structure to achieve optimal results in music
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TABLE 8. Validation results for the number of layers in the LSTM network.

emotion analysis. Table 8 presents the validation results for
the number of layers in the LSTM network.

The data in Table 8 indicate that as the number of layers
in the LSTM network increases, the prediction error for
Valence shows an upward trend. Specifically, the error for
Valence increases from 26.42% to 35.59% as the number
of layers goes from 1 to 4. This suggests that increasing
the number of network layers has a negative impact on the
prediction of Valence. Regarding Arousal, there is no clear
trend in the impact of LSTM network layers on prediction
performance. The error fluctuates between different numbers
of layers, with the lowest value at 36.87% (1 layer) and the
highest at 39.37% (3 layers). This indicates that increasing
the number of network layers does not significantly improve
the prediction performance for Arousal. Upon reanalyzing the
data from the table, it is evident that increasing the number
of layers in the LSTM network has a negative impact on
Valence, while there is no clear trend for Arousal. Therefore,
the LSTM network structure with 1 layer performs better,
suggesting that choosing 1 layer achieves the optimal results
for music emotion analysis.

Experimental parameter setting: pre-training LSTM layer
number: 1; Number of LSTM hidden units: 256; Fusion fea-
tures: 1 ∗ 128; Learning rate: 0.001; Optimization algorithm:
Adam; Batch size: 128; Training iterations: Early Stopping;
Regularization intensity and discard rate: 0.2; Loss func-
tion: cross entropy loss function. Root Mean Square Error
(RMSE), Mean Absolute Error (MAE) and square coefficient
are used to evaluate the results. Equations 9 to 11 show the
calculation:

RMSE =

√∑N
i=1 (Xi − Yi)2

N
(9)

MAE =

∑N
i=1 |Xi − Yi|

N
(10)

R2 = 1 −

∑N
i=1 (êl − ei)2∑N
i=1 (ei − el)2

(11)

N is the number of samples. Xi is the prediction label of
samples. Yi is the actual label of samples. êl is the predicted
label of the test sample. ei is the actual label, and el is the
average value of the actual label of the test.

D. PERFORMANCE EVALUATION
Figure 5 displays the influence of different LSTM layers on
model training. It demonstrates that the lower number of
layers of LSTM leads to fluctuation of the Valence value

FIGURE 5. Influence of different LSTM layers on model training.

FIGURE 6. Comparison of experimental results of different DL models.

and Arousal value. The LSTM with 1 layer and LSTM
with 2 layers have advantages in Valence value and Arousal
value respectively. However, the RMSE range of the Arousal
value is smaller than the mean square error range of the
Valence value, that is |A1-A2l<lV1-V2|. Therefore, LSTM
with 1 layer is selected to improve the prediction performance
of both Valence and Arousal.

Figure 6 depicts the comparison of experimental results
among various DL models. In Figure 6, Support Vector
Machines (SVM) and K-Nearest Neighbor (KNN) based on
the machine learning model exhibit inferior prediction results
than DL models. In this paper, the LSTM network-based
music emotion analysis model integrating STS is designed.
Arousal (MAE) is 0.921. Arousal (RMSE) is 0.534. Arousal
(R2) is 0.498. Valence (MAE) is 0.902. Valence (RMSE) is
0.815. Valence(R2) is 0.478, which makes the overall charac-
teristics more perfect, thus further proving that combining the
fusion model with IoT can effectively improve the prediction
accuracy of Arousal and Valence values.

Figure 7 presents the comparative experimental results
of different models on the same dataset. It suggests that
compared with a single model, both the traditional machine
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FIGURE 7. Comparative experimental results of different models.

FIGURE 8. Comparison of model performance of different datasets.

learning model and the DL model can effectively improve
the prediction performance of music emotions, and the DL
model still has advantages. Additionally, the model’s pre-
dictive performance for Arousal values surpasses that for
Valence values, and this difference is significant. Despite the
high complexity of the model proposed, it lacks an advantage
in predicting Arousal values; however, it markedly improves
the prediction performance of Valence values. Furthermore,
the difference between the two is not significant, making
it more versatile. This observation further underscores the
effectiveness of fusing the LSTM network-based music emo-
tion analysis model with STS in music emotion analysis and
prediction.

Finally, the performance of the model using the IoT dataset
and the traditional music feature data is compared. Figure 8
presents the results. It demonstrates that in the prediction of
Arousal value, theMAE of the model decreases from 0.985 to
0.921, the RMSE decreases from 0.613 to 0.534, and R2

increases from 0.456 to 0.498. In the prediction of Valence
value, the MAE of the model decreases from 0.974 to 0.902,
the RMSE decreases from 0.878 to 0.815, and R2 increases
from 0.439 to 0.478. This clearly shows that introducing IoT
data has significantly improved themodel’s performance. In a
word, in the task of music emotion analysis, the introduction
of IoT data can effectively improve the prediction accuracy
and performance of the model. This further underscores the
crucial role of IoT data in the analysis of music emotions and

TABLE 9. The cross-validation results of different time-series data
modeling and recognition models in the research on music emotion and
visualization.

TABLE 10. The analysis results of different models’ time complexity in
the application of music emotion and visualization.

provides robust support for gaining a deeper understanding of
musical emotional expression.

Table 9 presents the cross-validation results of different
time-series data modeling and recognition models in the
research on music emotion and visualization.

Table 9 suggests that, compared to other models, the pro-
posed LSTM network model, integrated with STS, performs
well in predicting Valence, with the lowest RMSE, indicating
its more accurate capture of the music’s pleasantness. DTDL
follows closely in Valence, slightly outperforming both RAE
and IPDL. In predicting Arousal, the proposed model stands
out with the lowest RMSE, signifying its ability to more accu-
rately capture the music’s excitement. RAE performs poorly
in Arousal, with the highest RMSE. Relatively, IPDL’s per-
formance is slightly inferior to the proposed model. DTDL’s
performance falls between RAE and IPDL. In terms of accu-
racy, the proposed model significantly outperforms other
models, reaching a high accuracy of 0.98. RAE and DTDL
have lower accuracies, at 0.86 and 0.89, respectively. IPDL
has the lowest accuracy, at 0.72. Overall, according to the
experimental data, the proposed model excels in predicting
Valence and Arousal, achieving a high level of accuracy. This
indicates that the LSTM network combined with STS has a
significant advantage in music emotion analysis and visu-
alization research. Table 10 presents the analysis results of
different models’ time complexity in the application of music
emotion and visualization. It demonstrates that the proposed
model has a relatively lower time complexity than others,
suggesting higher efficiency in this application scenario.
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E. DISCUSSION
In the research of music emotion analysis and visualization,
worldwide researchers have conducted various studies. Sams
and Zahr used convolutional LSTM networks to perform
audio classification tasks. The results suggested that the mul-
timodal method for music emotion recognition performed
better than the single-modal method [3]. This is consistent
with the research on music emotion and visualization of the
fusion of LSTM networks supported by the IoT in this paper.
It further emphasizes the importance of multimodal data for
music emotion analysis and the effectiveness of the fusion
model. Based on two-channel LSTM, Chen introduced the
analytic hierarchy process (AHP) to fuse weighted features
at the decision-making level, and applied it to multimodal
music emotion analysis in emotion calculation. This method
can effectively improve the recognition rate and save much
training time [49]. These studies prove the effectiveness of
multimodal data and the fusion model in music emotion anal-
ysis. Yu et al. proposed a speech emotion recognition model
of attention-LSTM-attention, but the weighted accuracy of
the model could not reach more than 68% in a simple dataset
[55]. In contrast, this paper adopts the method of integrated
LSTM networks, and combines with the IoT technology to
analyze and visualize music emotions to improve the perfor-
mance of emotion prediction.

VI. CONCLUSION
A. RESEARCH CONTRIBUTION
In this paper, the LSTM network-based music emotion
analysis model combined with STS demonstrates effective
performance in the task of music emotion prediction, and the
DL model is more suitable for dealing with complex music
emotion characteristics than the traditional machine learning
model. These results provide a valuable reference for further
research and application in musical emotion analysis.

B. FUTURE WORKS AND RESEARCH LIMITATIONS
There are also some research shortcomings. First, although
various evaluation indexes are employed to gauge prediction
performance, additional measures such as cross-validation or
other statistical methods can be incorporated to further bolster
the assessment of model effectiveness. Then, the research
outcomes may be constrained by the sample dataset, prompt-
ing the need to expand the dataset for enhanced stability
and reliability of experimental results. Furthermore, the pro-
posed emotional analysis model requires practical application
validation to affirm its effectiveness and feasibility. Future
research should focus on refining researchmethodologies and
enlarging the scale of experiments to advance the field of
musical emotion analysis.
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