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ABSTRACT Continuous monitoring of active volcanoes is essential for understanding their behavior and
providing accurate forecasts and warnings. Automating the detection of volcano microseismic events plays
a crucial role in large-scale analysis, early warning systems, and efficient handling of large-scale data. This
paper presents a novel approach for the automated detection of microseismic events associated with volcanic
activity, focusing on the Cotopaxi volcano in Ecuador. Inspired by voice activity detection (VAD) systems
used in speech processing, we propose an Adaptive-Microseismic Activity Detector (A-MAD) that modifies
VAD techniques to identify frames within seismic signals containing volcanic activity. The A-MAD system
incorporates a spectral subtraction stage to mitigate the impact of environmental noise and employs Gaussian
Mixture Models (GMMs) to model the probabilistic distribution of microseismic events. Mel Frequency
Cepstral Coefficients (MFCCs) are used as features to describe the seismic signals, enabling adaptability
for varying noise levels. Experimental results on signals from Cotopaxi Volcano in Ecuador demonstrate
the effectiveness of the A-MAD system, achieving high accuracy (96.39% for discrete events and 98.45%
for continuous signals) while meeting the efficiency requirements of volcano monitoring institutions. This
work contributes to the advancement of early warning systems for volcanic eruptions, providing a robust and
adaptive approach for microseismic activity detection.

INDEX TERMS Volcanic seismic events, Gaussian mixture models, volcano monitoring.

I. INTRODUCTION
A. MOTIVATION
Natural disasters are inherently unpredictable, making it
crucial to provide sufficient information based on scientific
understanding to support early warning systems [1]. Volcanic

The associate editor coordinating the review of this manuscript and
approving it for publication was Manuel Rosa-Zurera.

eruptions unleash various detrimental effects on nearby
populations, including gas emissions, ashfall, lahars on the
volcano’s flanks, and lava flows. Continuous monitoring of
active volcanoes helps experts provide accurate forecasts
and warnings, which reduces the risks faced by nearby
communities [2]. Scientists analyze the characteristics and
patterns of the monitored seismic signals to assess the
likelihood of an eruption [3], [4]. Specifically, we focus
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on microseismic events, also known as micro-earthquakes,
to assess potential volcanic eruptions.

In Ecuador, the responsibility for monitoring seismic and
volcanic activity lies with the ‘‘Instituto Geofísico de la
Escuela Politécnica Nacional’’ (IGEPN), which duly notifies
the competent authorities in the event of a necessary warning
alert. The Cotopaxi volcano, located in north-central Ecuador,
is closely monitored by the IGEPN since its eruption and
subsequent generation of lahars can endanger the population
living close to the main fluvial drainages [5]. Therefore, this
research focuses on the analysis of the microseismic events
found in the seismic signals of the Cotopaxi volcano.

The IGEPN observatory used to rely on visual methods to
detect and classify microseismic events, whichmay introduce
human errors due to the overwhelming volume of data
to analyze daily [6], [7]. Currently, the detection stage is
performed by using a micro-earthquake detector of Short-
Term Average/Long-Term Average (STA/LTA) [8], which
reaches an accuracy of 90% for detecting microseismic
events. However, the effectiveness of the STA/LTA method
depends on the SNR of the seismic signal. Then, if the
background noise in the signal increases, the system can lead
to false detections.

Further works on the detection of microseismic events
adapted Voice Activity Detection (VAD) systems for seismic
signals. The real-time detector presented in [6] improved the
detection of microseismic events associated with volcanic
activity. However, the system hardly relies on a handpicked
minimum energy threshold. This manual parameter selection
has two disadvantages: it would not be efficient if the SNR
of the seismic signal changes, and its adaptation for seismic
signals of a different volcano would be a cumbersome task.
Therefore, there is a need to develop a system with robust
performance under noisy conditions, and whose efficiency
does not require manual selection of parameters.

B. CONTRIBUTIONS
In this work, we adapt VAD algorithms that identify speech
segments within an utterance to identify frames within a
seismic signal that contain microseismic volcanic activity.
We refer to these systems as Microseismic Activity Detectors
(MAD).

Environmental conditions primarily introduce irrelevant
information into seismic signals, which can hinder the early
detection of eruption events. Considering the limitations
of energy-based MAD systems in handling additive noise
within the signal, incorporating a signal enhancement stage
becomes crucial to prevent segments without seismic activity
from being misclassified as micro-earthquakes. This signal
enhancement technique, which has been widely used in
VAD systems, is the focus of our investigation. We aim to
demonstrate its relevance in the context of seismic volcanic
signals, where the Signal-to-Noise Ratio (SNR) may vary,
even within signals recorded by the same station. Thus,
we implement a spectral subtraction stage that mitigates the
impact of environmental noise for improved microseismic

activity detection. Furthermore, adopting a probabilistic
modeling approach that learns the probability distribution
for each class (segments with or without microseismic
activity) provides a more robust representation of the energy
distribution compared to simple threshold-based methods
for class determination. Selecting appropriate features to
describe the seismic signal is another area of exploration
in microseismic event detection, as it has been proven to
enhance detection performance [9].
In this context, our paper introduces A-MAD, an Adaptive-

Microseismic Activity Detector that extracts characteristics
from each individual utterance, allowing the system to
adapt to varying noise levels in different seismic signals.
Concretely, our contributions are:

i) Unlike traditional methods that rely solely on an
energy threshold, we propose a technique that utilizes
Gaussian Mixture Models (GMMs) to model the probability
distribution of microseismic event occurrences.

ii) We incorporate a spectral subtraction stage to enhance
the SNR, enabling robust detection even in the presence of
noisy signals.

iii) We leverage the effectiveness of using the Mel
Frequency Cepstral Coefficients (MFCCs), a widely used
representation in voice recognition, for learning the prob-
abilistic distribution of the seismic signals, enhancing the
overall performance of our system.

The paper is organized as follows: Section II offers a brief
overview of the related works in the field, Section III elabo-
rates on the methodology with a focus on adapting the pro-
posed system to seismic signals, Section III-E describes the
hyperparameter optimization of A-MAD, Section IV presents
the obtained results, and Section V concludes the study.

II. RELATED WORKS
Several studies have investigated the detection of volcano
microseismic events using various techniques, including
hidden Markov models (HMM), VAD, deep learning models,
and other signal processing techniques.

HMM models were proposed by Gutiérrez et al. [10] for
automatic microseismic event detection and classification.
They applied their method to seismic data from the San
Cristobal volcano in Nicaragua and achieved correct classi-
fication rates of up to 80%. Their results demonstrated the
effectiveness of the HMM method in real-time detection,
isolation, and identification of microseismic events. Simi-
larly, Bhatti et al. [11] developed an automatic volcano event
detection system based on HMMs that incorporated state and
event duration models. They incorporated duration modeling
to reduce false positive rates in event detection, resulting in
high accuracy and a reduction of up to 31% in false positives.

Inspired by the speech processing community, Lara-
Cueva et al. [12] proposed a real-time microseismic event
detection system based on VAD techniques. They utilized
VAD algorithms to detect long-period (LP) and volcano-
tectonic (VT) events and determine their starting and ending
points. Their algorithm achieved high accuracy with low
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computational complexity, making it suitable for real-time
volcanic research. Similarly, in [6], they aimed to enhance
micro-earthquake detection using real-time automatic recog-
nition systems based on VAD and endpoint detection. They
developed a reliable detector with high precision, accuracy,
and a low Balanced Error Rate (BER) using continuous data
from the Cotopaxi Volcano in Ecuador.

Deep learning models have also been proposed by Titos
et al. [13], where they utilized Recurrent Neural Networks
(RNN), Long Short-Term Memory (LSTM), and Gated
Recurrent Unit (GRU) for the detection and classification of
continuous volcano-seismic events. They trained their models
using a representative dataset and achieved high accuracy
in detecting and classifying different types of events, show-
casing the potential of RNNs for the real-time monitoring
of volcanic activity. In addition, Lara et al. [14] have
contributed to the field with an automatic recognition system
for volcanic microearthquakes, with a particular focus on the
Cotopaxi Volcano. Their approach leverages Convolutional
Neural Networks (CNNs) and spectrograms generated using
various window types based on the theory of periodograms.
This approach exhibits remarkable performance with 99%
accuracy in the detection stage and 97% accuracy in the
classification stage.

Additionally, other signal processing techniques have been
proposed in the literature. Specifically, Proaño et al. [15]
investigated the use of Variational Mode Decomposition
(VMD) for seismic event detection. They applied VMD to
seismic signals from the Cotopaxi Volcano in Ecuador and
found that it improved event detection and identification
of event starting and ending points, reporting a 99.26%
detection accuracy. Recently, a micro-earthquake detector
based on homomorphic deconvolution and the STA/LTA
algorithm was proposed [16]. The detector was applied
to seismic data from the Cotopaxi volcano, achieving
a 98.26% detection accuracy. According to the authors,
the homomorphic deconvolution technique improved the
estimation of the volcanic micro-earthquake signal while
reducing signal noise. Table 1 summarizes the key aspects
of the aforementioned related works.

Unlike previous works, our A-MAD approach extracts
characteristics from each individual utterance, enabling
adaptability to varying noise levels in different seismic sig-
nals. This adaptability sets our method apart from traditional
approaches that rely solely on an energy threshold. Moreover,
our system incorporates a spectral subtraction stage, which
effectively enhances the SNR in seismic signals. This spectral
subtraction technique enables robust detection even in the
presence of noisy signals, addressing a common challenge
faced in volcano microseismic event detection. Finally,
inspired by the speech processing community, we utilize
MFCCs as a representation.

III. METHODOLOGY
The proposed methodology, referred to as A-MAD, com-
prises two main stages: training and inference, as illustrated

in Figure 1. Moreover, the subsections presented below
are shown in the colored boxes of Figure 1. Initially, the
original seismic signals, which inherently contain noise, are
utilized to extract MFCCs for each time frame. Additionally,
to enhance the signal quality and improve the SNR, a spectral
subtraction technique is applied to these noisy signals as a
preprocessing step. Subsequently, the energy of the enhanced
seismic signal is computed and sorted in ascending order.
Next, theMFCCs corresponding to the frames with the lowest
and highest energy levels in the enhanced signal are selected
and used to train two GMMs: one for identifying frames
containing seismic events and the other for recognizing
frames without seismic activity. Each MFCC frame is
assigned a category based on the GMM classifications. Then,
a decision algorithm, based on specific assumptions related to
microseismic events, determines the start and end times of the
detected microseismic events. Finally, performance metrics
are computed by comparing the timestamps generated by
A-MAD with the ground truth timestamps established by
domain experts. Detailed explanations of each stage of the
proposedmethodologywill follow in the subsequent sections.

A. DATASETS
A-MAD was applied to two distinct datasets of seismic
signals collected from the Cotopaxi volcano. The first dataset,
known asMicSigV1 [17], was obtained from the first publicly
available repository of Ecuadorian volcano microseismic
events, accessible at https://www.igepn.edu.ec/eseismic_web_
site/. This dataset contains only discrete microseismic events.
The second dataset, referred to as ConSig in this study,
was specifically provided by the IGEPN for the purpose
of this research. In contrast to MicSigV1, ConSig contains
continuous data measurements.

The seismic signals were recorded by two broadband
seismic stations, BREF and BVC2, with a sampling rate of
50Hz, as well as a short-period seismic station, VC1, with a
100Hz sampling rate. These stations are situated on the flanks
of the Cotopaxi volcano. Both datasets encompass various
types of seismic events, including LP, VT, regional, hybrid,
and ice-quakes. Expert annotators from the IGEPN provided
annotations for the signals, indicating the start and end times
(timestamps) of each seismic event and its corresponding
type. The seismic signals are stored in accordance with the
Standard Exchange of Earthquake Data format (SEED) [18],
which includes both the data and metadata for each file.

The MicSigV1 dataset consists of 1187 utterances, with
each utterance capturing a single seismic event. Each
utterance includes 10 s of the signal before and after the
detected event, enabling the estimation of the noise level.
The signals in this dataset originate from the BREF and VC1
stations. In contrast, the ConSig dataset spans a duration of
72 hours of continuous data and is segmented into 20-minute
windows, as described in [6]. These windows may contain
multiple seismic events or no events at all. IGEPN specialists
have annotated a total of 77 seismic events recorded by the
three seismic stations (BREF, BVC2, VC1).
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TABLE 1. Summary of related works.

FIGURE 1. Flowchart of the adaptive-microseismic activity detector (A-MAD). During training, spectral subtraction, MFCCs extraction,
and low/high energy frames selection are used to train two gaussian mixture models. For inference, a single label is predicted as a
hypothesis for each input frame. Finally, false positives and false negatives are removed from all segments in the utterance, and the
start and end points are defined.

In this context, the term ‘utterance’ refers to the entire
seismic signal being analyzed. In the case of the MicSigV1
dataset, an utterance corresponds to one of the 1187 seismic
signals containing a single microseismic event. In the case
of the ConSig dataset, an utterance represents a 20-minute
segment that may contain multiple microseismic events.

B. PREPROCESSING STAGE: SPECTRAL SUBTRACTION
The spectral subtraction technique is employed to enhance
the quality of the seismic signal by reducing the background
noise present in its spectrum. Let |X |

2 and |N |
2 represent the

powers of the noisy original signal and its estimated noise,
respectively, in a specific frequency FFT bin. The spectral
subtraction process involves multiplying the noisy signal by
a gain factor g, where g is defined for each frequency bin
as [19]:

g = max
((

1 −

(
α

|N |
2

|X |2

))
,min

(
gh,

(
β

|N |
2

|X |2

)))
. (1)

Here, gh = 1 denotes the maximum gain for the noise
floor, β = 0.01 controls the maximum attenuation of noise

in the power domain, and α denotes the over-subtraction
factor. The value of α linearly decreases from αmax = 10 to
α = 1 according to the SNR as suggested in [20]. The
Minimum Mean Square Error (MMSE) method serves as the
noise estimator. The actual spectral weighting is then carried
out by multiplying the noisy spectrum X with the weighting
function g, resulting in the enhanced signal S in the frequency
domain, defined as S = g · X .

We used the VoiceBox toolbox implementation available at
specsub1 for the spectral subtraction stage, which provides
the enhanced signal in the time domain. Finally, the energy
of the enhanced signal is computed and proceeds to the
subsequent stage.

C. MODELING THE DETECTION OF SEISMIC EVENTS
The modeling stage consists of three processes, which are
explained separately: MFCCs extraction, low/high energy
frames selection, and training of the GMMs.

1https://github.com/ImperialCollegeLondon/sap-voicebox
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1) MFCCS EXTRACTION
The Mel scale is a perceptual pitch scale that approximates
the frequency perception of the human auditory system. It is
a non-linear scale based on the observation that the perception
of pitch is not directly proportional to the physical frequency
of a sound wave. Instead, the human ear perceives pitch
differences on a logarithmic scale, as described in [21].
In this study, we employ a Mel scale filterbank consisting
of 26 filters to reduce the number of frequency bins in the
power spectrum of the seismic signal. This reduction helps
to group together perceptually similar frequency components
and focus on important spectral characteristics, while also
reducing computational complexity.

TheMel filterbank spectrumwas adjusted to accommodate
the characteristics of volcanic seismic events, which predom-
inantly manifest in low frequencies. Specifically, to incorpo-
rate this prior knowledge, in this paper, we considered the
frequency range from 0Hz to 50Hz and assigned greater
importance to the lower frequencies on the Mel scale.

After passing the power spectrum of the noisy seismic
signal |X |

2 through the Mel filterbank, the logarithm of the
filterbank outputs is subjected to the Discrete Cosine Trans-
form (DCT) to decorrelate the filterbank coefficients and
extract a compact representation of the spectral information
[22]. The computation of MFCCs follows the equation:

MFCCi =

26∑
k=1

Xk cos
[
i
(
k −

1
2

)
π

26

]
, i = 1, 2, . . . ,M ,

(2)

where M = 12 is the number of cepstrum coefficients, and
Xk , for k = 1, 2, . . . , 26 represents the log-energy output
of the kth filter. This process allows us to obtain a compact
representation of the spectral information that is relevant for
the subsequent stages of the system.

2) LOW/HIGH ENERGY FRAMES SELECTION
In this stage, we compute the energy of the enhanced
seismic signal |S|

2 obtained through the spectral subtraction
stage. The energies are then sorted in ascending order while
preserving the frame indexes. Since the number of frames
in the frequency domain is consistent for the MFCCs and
the energies computed in this step, we can establish a
correspondence between these features.

To model the distributions of the presence or absence of
a microseismic event based on the MFCCs, we divide the
frames of each utterance into two sets. The first set consists
of a fixed percentage of frames with the highest energies,
which are used to train a GMM model representing the
distribution of the presence of a microseismic event. The
second set comprises a fixed percentage of frames with the
lowest energies and is used to train a separate GMM model
representing the distribution of the absence of a microseismic
event. It is important to note that the percentage of frames for
training both models (i.e., the percentage of training frames)
is a hyperparameter in our A-MAD approach.

3) GAUSSIAN MIXTURE MODELS
As discussed in Bishop’s book [23], GMMs are a statistical
modeling technique used to handle complex data distributions
that cannot be adequately represented by a single Gaussian
distribution. In GMMs, the probability distribution of a
dataset is represented as a weighted sum of K Gaussian
components, each characterized by a mean vector µk and a
covariance matrix 6k for k = 1 to K . The mixing weights
π = [π1, π2, . . . πK ] assigned to each component indicate
their relative importance in the mixture.

In our work, we adapt the methodology presented in [19] to
the seismic domain. Specifically, we train two GMMs: one to
represent frames containing microseismic events and another
for frames without microseismic activity.

Our assumption is that frames with higher energy are
indicative of microseismic activity, and we utilize them to
define the GMM for microseismic events. Conversely, frames
with lower energy are used to define the GMM for non-
microseismic activity.

To reduce the computational complexity of our adaptive
system, we employ the k-means algorithm instead of the
Expectation-Maximization (EM) algorithm to estimate the
GMM parameters. K-means can be viewed as a limit case
of the EM algorithm in which the covariance matrices
of the GMMs are assumed to be identical and spherical.
The k-means algorithm assigns each MFCC vector to the
nearest cluster centroid based on Euclidean distance, and the
centroids are updated by calculating the mean of the assigned
data points. We use K = 16 Gaussian components for
both GMM models, whose means correspond to the cluster
centroids obtained from k-means. The k-means algorithm
iterates a maximum of 20 epochs to refine the clustering
results. The learned microseismic and non-microseismic
event models are GMMs of the form:

p(x|λ) =

K∑
k=1

πkN (x|µk , 6k ), (3)

where π are the mixing weights, µk the mean vectors, 6k the
covariance matrices, x theMFCC vector of an arbitrary frame
within the utterance and λ refers to one of the two trained
GMM models. Specifically, we use λseismic to represent the
microseismic activity hypothesis and λnon-seismic to represent
the non-microseismic activity hypothesis. This formulation
will be utilized during the inference stage.

D. INFERENCE AND DECISION ALGORITHM
Once defined the parameters of the GMMs, we compute the
Log-Likelihood Ratio (LLR) of every utterance frame for
the given models, followed by a decision algorithm. Later in
this document, we will provide a detailed explanation of the
metrics used to evaluate our approach.

1) HYPOTHESIS FOR EACH FRAME
The A-MAD algorithm utilizes the LLR test to compare the
likelihoods of the microseismic activity hypothesis (λseismic)
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and the non-microseismic activity hypothesis (λnon-seismic)
for each frame. Assuming equal priors for microseismic and
non-microseismic activity, the LLR test for the presence of
microseismic activity in a given frame x within an utterance
is defined as:

log
(
p(x|λseismic)

)
≥ log

(
p(x|λnon-seismic)

)
, (4)

where p(x|λ) is calculated using Eq. 3 based on the
corresponding hypothesis.

Similar to the speech activity case discussed by [19], the
condition to declare the presence of microseismic activity
for a specific frame x is reduced from Eq. 4 to the nearest
neighbor rule:

min
k

||x− µseismic
k ||

2
≤ min

k
||x− µnon-seismic

k ||
2, (5)

where µseismic
k and µnon-seismic

k represent the mean vectors
learned by the GMMs for the microseismic activity hypoth-
esis (λseismic) and the non-microseismic activity hypothesis
(λnon-seismic), respectively. It is important to highlight that
in our methodology, the minimum distance to centroids,
as represented in Eq. 5, and the LLR test, as shown in Eq.
4, are essentially equivalent. In the LLR test, we evaluate
the likelihood of a given data point, denoted as x, under the
microseismic activity hypothesis compared to the likelihood
under the non-microseismic activity hypothesis. Conversely,
when we select the centroid (Gaussian component) with the
minimum distance, we are effectively choosing the class that
data point x is most similar (i.e., close) to. This mirrors the
concept of selecting the hypothesis (or class) that renders data
point x more probable in the LLR test.

Finally, to classify a frame as containing microseismic
activity, it must satisfy the LLR condition described in Eq.
5, and the frame’s energy must surpass a minimum energy
threshold θmin, which is a hyperparameter of the A-MAD
algorithm.

2) DECISION ALGORITHM
From the previous stage, we obtain frames that are
labeled as either having microseismic activity (positive
label) or non-microseismic activity (negative label). These
labeled frames are then grouped into segments, where a
segment consists of consecutive frames with the same label,
either positive (microseismic activity) or negative (non-
microseismic activity).

The decision algorithm is utilized to determine the start
and endpoint of the detected events within an entire utterance.
Considering the reported average duration of seismic events
in the Cotopaxi volcano, as mentioned in [24] and [6] to be
approximately20 s, the decision algorithm aims to mitigate
potential false positive (FP) and false negative (FN) segments.

FP segments arise from short-duration energy peaks that
cannot be attributed to a seismic event. Specifically, positive
segments shorter than 4 s, which are surrounded by frames
labeled as negative, are reclassified as negative segments.

Afterward, a similar process is applied to address FN
segments. Concretely, negative segments shorter than 4 s,
surrounded by frames labeled as positive, are reclassified as
positive segments.

Next, the decision algorithm identifies positive segments
that are at least 8 s long, which are considered to likely contain
seismic activity.

Finally, the start and end times in seconds are computed
based on the frame numbers from all positive segments
found. This conversion allows for the comparison of the
timestamps estimated by the A-MAD with the ground truth
labels provided by experts from the IGEPN.

3) METRICS
As mentioned in [17], the evaluation of volcanic 4 s event
detectors relies on two performance metrics: accuracy (Acc)
and BER. The accuracy metric measures the proportion of
correctly detected events out of the total number of events.
On the other hand, the BER value ranges from 0 to 1, with
an optimal value of 0 indicating perfect performance. The
IGEPN requires a BER not greater than 0.01 for the detection
of volcanic microseismic events at the Cotopaxi volcano.
These metrics are computed based on the number of true
positives (TP), true negatives (TN), false positives (FP), and
false negatives (FN), defined as follows:

Acc(%) =
TP

TP+ TN
× 100 (6)

BER = 1 −

TP
TP+FN +

TN
TN+FP

2
(7)

In this context, a volcanic seismic event is considered a TP
if the difference between the true and estimated timestamps
is less than 5 s. FN occurs when the estimated timestamps
exceed the true event duration by more than 5 s, while FP
happens if the estimated timestamps start or endmore than 5 s
before or after the true event. These metrics will be computed
for both datasets to evaluate the performance of the proposed
approach.

E. HYPERPARAMETER OPTIMIZATION
We performed three experiments to optimize the hyperpa-
rameters of the A-MAD system: the window length, the
percentage of training frames for the GMM models, and the
minimum energy threshold θmin. The window length needs
to be modified because of the differences in sampling fre-
quencies between audio signals and seismic signals recorded
by the Cotopaxi volcano’s sensors. s for the percentage of
training frames, we varied the samples from 10% to 50%with
the aim of determining the GMM parameters that yield the
best metrics. Finally, for the experiments of the minimum
energy threshold, we used the optimal window length
and the optimal percentage of training frames, since this
parameter is crucial in distinguishing frameswith andwithout
activity. The optimization experiments will be presented in
Section IV-A.
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TABLE 2. Optimization of the window length on the MicSigV1 and ConSig
datasets.

IV. RESULTS
This section describes the results for the experimental setup
performed for hyperparameter optimization of the A-MAD
system. Then, the MicSigV1 and ConSig datasets are used to
assess the performance of our system.

A. EXPERIMENTAL SETUP
The A-MAD algorithm was implemented using Matlab® on
a computer equipped with an Intel Core i7 processor running
at 2.40GHz and 8GB of RAM. No graphical processing unit
(GPU) acceleration was utilized.

1) WINDOW LENGTH
The need to modify this parameter arises from the differences
in sampling frequencies between audio signals (16 kHz
- 48 kHz) and seismic signals recorded by the Cotopaxi
volcano’s sensors (50Hz or 100Hz). Seismic signals have
significantly lower sampling rates, resulting in fewer samples
per second. In speech signals, a window length of 0.03 s
with 0.01 s of overlapping was suggested by [19]. However,
for seismic signals, [6] used a window size of 0.1 s with
50% of overlapping. In our experiments, we tested different
window sizes as listed in Table 2, and we found that using
a window size of 2 s with 50% of overlapping yielded the
highest accuracy for both datasets.

2) PERCENTAGE OF TRAINING FRAMES
According to [19], using 10% of the frames with the
lowest and highest energies is the best approach for training
the GMMs for speech signals. However, we observed that
slightly increasing the percentage of frames used to train the
GMMs can improve the A-MAD performance. Therefore,
we conducted experiments with different percentages of
frames, as shown in Table 3. Our findings indicate that using
30% of frames with the lowest and highest energies is the
most suitable choice for our A-MAD.

This percentage provides an adequate number of data
samples to model the distributions for detecting volcanic
microseismic events. Conversely, using more than 30% of
frames reduces the models’ generalization capacity.

3) MINIMUM ENERGY THRESHOLD
Once the optimal window length and the appropriate
percentage of training frames have been determined, the
selection of the minimum energy threshold becomes crucial
in distinguishing frames with and without activity. It is worth

TABLE 3. Optimization of the percentage of training frames on the
MicSigV1 and ConSig datasets.

TABLE 4. Optimization of the minimum energy threshold on the MicSigV1
and ConSig datasets.

noting that in traditional VAD systems, the minimum energy
threshold is often the only parameter adjusted. However,
in our A-MAD, this parameter is examined alongside the LLR
hypothesis for frame classification.

To determine the minimum energy threshold, we analyzed
the energy values of the lowest 30% frames in each utterance
of the MicSigV1 dataset. We identified the maximum and
minimum energy values, calculating the average of these
values to establish an estimated range for the minimum
energy threshold. The average minimum energy value was
−32.59 dB, while the average maximum energy value was
−14.67 dB. Subsequently, we evaluated the performance of
the A-MAD by varying θmin within the specified range,
as depicted in Table 4. We observed that our system achieved
optimal performance when θmin was set to −20 dB.

These modifications allow for precise parameter selection
in the A-MAD, enhancing its performance and effectiveness
in detecting microseismic events. In the following section,
we present the metrics obtained using the optimized hyper-
parameters.

B. A-MAD SYSTEM EVALUATION
For the MicSigV1 dataset, we focused on signals recorded
by the BREF station. As for the ConSig dataset, signals
from three stations were utilized: BREF, BVC2, and VC1.
The decision algorithm employed for the MicSigV1 dataset
followed the description provided in Section III-D2, where a
threshold of 5 s was validated to classify an event as a TP (see
Figure 2 for an illustration).
In contrast, an additional decision step was required

for the ConSig dataset due to the involvement of three
seismic signals (i.e., from the BREF, BVC2, and VC1
stations). Following the guidance of experts from the IGEPN,
we established that a volcanic microseismic event would be
considered detected if it was correctly identified in at least
two out of the three stations.

Figure 3 illustrates an example that demonstrates the
decision process for the ConSig dataset. In the case of the first
event, it was correctly classified as a true positive because it
was detected by both the BREF and BVC2 stations within the
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FIGURE 2. A volcanic microseismic event from MicSigV1 is considered a
true positive (TP) if the difference between the ground-truth labeled by
IGEPN specialists and the estimated timestamps of our A-MAD approach
are less than 5 s.

specified 5 s threshold. However, for the second event, it was
only detected by the BREF station and therefore was not
considered a TP. By incorporating these decisions, we were
able to evaluate the performance of the A-MAD algorithm
on both datasets, providing valuable insights into its accuracy
and BER in detecting volcanic microseismic events.

We compared our results with the detection task conducted
in [14], where each utterance from the MicSigV1 dataset
was segmented into 15 s windows, and a decision was made
for each segment. Therefore, the segmentation approach
employed by [14] can be compared to our A-MAD threshold
of 5 s. However, our method is more stringent, as it penalizes
differences in timestamps greater than 5 s. Our evaluation
metrics for the MicSigV1 dataset demonstrated competitive
accuracy and BER values, as presented in Table 4. Notably,
we achieved a BER of 0.012, meeting the performance
requirement set by the IGEPN for the detection of volcanic
microseismic events at the Cotopaxi volcano.

Additionally, we achieved a higher performance for the
ConSig dataset than for the MicSigV1 dataset, with an
accuracy of 98.45%. This improvement can be attributed
to the characteristics of the ConSig dataset, which consists
of utterances containing 20min of volcano seismic signal.
The use of 30% of frames for modeling the microseismic
and non-microseismic models provides more contextual
information, resulting in more robust models compared to
the MicSigV1 dataset, where only 10 s before and after the
volcanic seismic event are included.

Furthermore, we compare our approach for continuous
seismic signals from the Cotopaxi volcano with three related
works. First, the ConSig MDA [6] approach is similar to
ours since the continuous signals were segmented in 20min,
and more than one micro-earthquake can be present in the
segment or no events at all. Even though the dataset used in
[6] contains 744 h of seismic signals, it can still be compared
with our system, which achieved [6] 1.35% higher accuracy
than ConSig MDA. Second, we compare our system with the
approach for detectingmicro-seismic events proposed in [16],

FIGURE 3. Decision algorithm for the consig dataset. The event on the left
is considered detected as it was correctly identified in at least two out of
three stations (BREF and BVC2) within the specified 5-second threshold.
However, the event on the right is not considered detected as it was only
identified by the BREF station and not in the other stations.

TABLE 5. A-MAD performance evaluation on the ConSig and MicSigV1
datasets. We compare our results with similar approaches presented in
[6], [14], [25], and [16].

which used homomorphic deconvolutions to improve the
SNR, followed by a STA/LTAdetector. The system referred to
as ConSig Deconv [16] was evaluated on continuous seismic
signals from the Cotopaxi volcano as well, reaching a high
accuracy proportional to our results. Lastly, the ConSig ANN
[25] system trained machine learning classifiers along with
diverse labeling techniques to achieve an accuracy of 95.4%
for continuous seismic signals of the Cotopaxi volcano.
Table 4 presents the comparative results of evaluating the
microseismic detectors with continuous seismic signals. Note
that the accuracy was improved with our A-MAD system, and
the BER required by the IGEPN was satisfied.

Based on the observed results, we hypothesize that the
MicSigV1 dataset is more suitable for the classification of
volcanic microseismic events, while a continuous seismic
signal with greater duration and multiple events, such as
the ConSig dataset, can lead to the development of more
robust models for detection purposes. A similar behavior was
observed in [14], where the probability of detection increased
for signals with a duration longer than 30 s.

Another aspect in which we can compare our A-MAD
system is the execution time. According to the authors of
[14], their system requires approximately 0.65 s to 0.75 s to
process a window of 15 s. In contrast, our A-MAD is capable
of processing an entire MicSigV1 utterance (approximately
1min in duration) in just 0.34 s. For the ConSig dataset,
our A-MAD takes 5.57 s to process and detect events in a
20-minute signal, whereas the approach presented in [14]
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requires 55 s to detect and classify a signal of the same
duration, while the approach of [6] processes a signal of the
same duration in 2.04 s.

One notable advantage of our system is its efficiency and
speed, as it does not rely on the use of a GPU to accelerate
the training process. Deep learning approaches, such as the
one presented in [14], depend on pre-trained models that
may require several hours or even days to complete the
training process without sufficient computational resources.
This demonstrates the efficiency and computational speed
of our A-MAD system, making it suitable for real-time
microseismic event detection applications. In contrast,
we acknowledge that the deep learning architecture presented
in [14] successfully accomplishes both the detection and
classification tasks.

V. CONCLUSION
This work contributes to the advancement of early warning
systems for volcanic eruptions, with a particular focus on
the Cotopaxi volcano. However, the methodology proposed
for the A-MAD system can be extended to analyze volcanic
signals from different volcanoes, making it a versatile
approach. Our system involves a preprocessing stage, where
the energy signal is enhanced using spectral subtraction.
This is followed by a modeling stage, where Gaussian
Mixture Models are trained using the MFCCs of frames
with the lowest and highest energies. These models aim
to capture the distributions that represent the presence of
microseismic or non-microseismic volcanic activity. Once the
model parameters are learned, a decision is generated for
each frame based on the log-likelihood ratio of the energy
frame and the centroids of the models, along with a minimum
energy threshold that was determined experimentally.

The results obtained demonstrate the effectiveness of our
A-MAD system as a real-time detector of volcanic micro-
seismic events. In the MicSigV1 dataset, which consists of
discrete events, our system achieved an accuracy of 96.39%
and 0.012 of BER. Similarly, in the ConSig dataset, which
contains continuous seismic signals, our system achieved an
accuracy of 98.45% with 0.011 of BER. The performance
metrics attained, alongwith the efficient execution time of our
A-MAD system, align with the requirements specified by the
IGEPN, which is the institution responsible for monitoring
volcanic activity in Ecuador.

Future work might investigate the integration of other
data modalities, such as infrasound or gas emission data,
in conjunction with seismic signals. Combining multiple data
sources can provide a more comprehensive understanding
of volcanic activity and improve the detection of volcanic
events.
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