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ABSTRACT In this paper, we introduce the first use of symbolic integration that leverages the machine
learning infrastructure, such as automatic differentiation, to find analytical approximations of ordinary and
partial differential equations. Analytical solutions to differential equations are at the core of fundamental
mathematical models, which often cannot be determined analytically because of model complexity or
non-linearity. Traditionally, the methods for solving these problems have used hand-designed strategies,
numerical methods, or iterative methods. We propose a method that is an application of differentiable
architecture search to find solutions to differential equations. We demonstrate our proposed method on a
set of equations while simultaneously comparing it with numerical solutions to corresponding problems.
We demonstrate that the proposed framework allows for solutions to various problems.

INDEX TERMS Symbolic integration, machine learning, PDE, neural architecture search.

I. INTRODUCTION
Mathematical models that use differential equations have
various parameters that differ depending on the actual
experiment, application, or area [1]. Thus, an approach is
needed that would allow us to easily find analytical solutions
of ordinary differential equations (ODEs), where changing
these parameters and evaluating the model at different points
in time or space would be easy and fast. Sometimes,
an analytical solution exists, and it is possible to find one, but
more often, such solutions are impossible to find, particularly
if the system of equations contains a nonlinear part [2].
However, more complex ODE systems can be approximated
using various numerical methods, which are most commonly
iterative (e.g., finite element method, finite difference
method [3]). These methods require re-evaluation of their
functions at any change in the system parameters, which takes
time (e.g., using a fine grid with the finite element method).
Therefore, faster approaches are required for recalculation at
various points when the parameters are changed.

Recent advances in machine learning have facilitated the
creation of various tools that allow easy construction of
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machine learning models [4], [5], [6]. These frameworks
allow quick iterations to construct parametric models more
easily. Other software libraries have also appeared which
allow for symbolic computation, for example, SymPy [7].
SymPy allows symbolic and numerical integration and dif-
ferentiation, which can help solve the differential equations.

A. GENERALIZATION OF SYSTEM PARAMETERS

There have been many methods of solving differential
equations, such as automating the solution of partial differ-
ential equations using the finite element method [8], [9],
or a symbolic computation library solving some differential
equations symbolically [7], [10], [11]. Many of them have
various useful strategies and solutions, although none offer
the ability to generalize over parameter intervals.

B. SMALL DATA

Another problem concerning solving differential equations
is data. Usually, acquiring more data in complex systems
governed by various laws is not possible [12]. We must draw
conclusions from the small amount of data we have. Current
state-of-the-art methods do not guarantee convergence,
especially when there is no data, but it is more often the case
that these small-data problems are more valuable.
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C. GENERAL ARCHITECTURE

In machine learning, specific architectures (manual selection
of a parametric model form) are required to solve a particular
class of problems such as classification or regression. After
fixing the model, automatic differentiation [5], [13] enables
the automatic use of optimization methods to estimate
unknown model parameters [14]. Whenever a change in the
objective or data complexity occurs, a change in architecture
is required (sometimes even a complete redesign). To help
solve this a novel method of DARTS: Differentiable Archi-
tecture Search was recently proposed [15]. The progress
in the development of automatic differentiation, symbolic
computation, and automatic architecture search allows for the
combination of these ideas.

D. CONTRIBUTIONS

This work aims to create a machine learning architecture
based on automatic differentiation, symbolic integration,
and automatic neural architecture search, which could find
an approximation given a differential equation, its initial
and boundary conditions, its parameters, and intervals for
these parameters. We aim to address the generalization of
dimensionality, boundary and initial conditions, timescale,
spatial resolution, and solution space smoothness.

Il. RELATED WORK
Classical solvers, such as the finite difference method (FDM),
finite element method (FEM), finite volume method (FVM)
are numerical methods that partition the input space into
a finite grid, and the solution at the elements of the
grid is approximated by solving algebraic equations [3].
Semi-analytical methods, such as the homotopy perturbation
method, search for an approximate analytical solution that is
close enough to the exact solution [16]. These are the methods
commonly used in science and engineering [8], [17] .
Learning mathematical models automatically is called
symbolic regression [18]. In other words, it is an optimization
problem over the space of model forms [19]. These methods
discover equations characterizing relationships or underlying
laws and physics in the data. These equations are often
used as components of machine learning models, such as
in the form of network nodes, loss terms, or regularization
terms. There has been some work in physics informed neural
networks (PINNs), where a neural network is trained and
used to act as a solution to the differential equation [12],
[20], [21], [22], [23], [24]. The yield of the PINN is the
deep neural network — a black box, which can be used
to perform inference. Whereas, the yield of our method
is a portable symbolic formula to perform efficient use in
future calculations. For a more complete overview of physics
informed machine learning, we refer the reader to the work
by Karniadakis et al. [18] and Cuomo et al. [25].
Brandstetter et al. [26] combine the ideas of classical
solvers and physics informed machine learning methods and
propose a grid-based graph neural network. They match the
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performance of state-of-the-art numerical solvers for some
tasks. Zubov et al. [27] propose a symbolic regression method
operating in a purely symbolic formulation combining
various numerical and analytical techniques for finding
analytical solutions. Similarly to PINNs, the yield is the
whole network, not a symbolic expression.

Cranmer [28], [29] proposes an efficient open-source
library for symbolic regression based on genetic algorithms.
He proposed a multi-population evolutionary algorithm for
equation discovery. It is a method highly dependent on
data, and the output is a portable mathematical formula.
These types of methods are known as Genetic programming
symbolic regression (GPSR) [19], [29]. Moving beyond
discovering formulas from data, such as the line of work
by Cranmer [29], the methods by Oh et al. [19] propose
solving differential equations with no data, i.e., only requiring
the definition of the differential equation, boundary, initial
conditions; and use the same GPSR approach. This aligns
closely with what we want to obtain — symbolic (human
interpretable) models, but in a setting for differential
equations with small data. We present an approach that is
different from GPSR.

We build on the work of DARTS: Differentiable Architec-
ture Search [15] which proposes a differential architecture
search method by continuous relaxation of the discrete
architecture representation. Their results show that the archi-
tectures obtained are capable of meeting the performance of
state-of-the-art architecture search methods. We examine this
method by applying it to search for symbolic equations and
formulas in the same way as architectures.

ill. METHOD

A. DIFFERENTIAL EQUATIONS

Consider a non-linear differential equation in the domain 2
with a solution function y = y(x):

Ay) =fb), beQ, ey
with boundary conditions
B(y,yp) =0, b e, 2)

where A is a differential operator, f(b) is a known analytical
function, B is a boundary operator, d€2 is a boundary of an
area 2.

The analytical solution y can be assumed to be approxi-
mated by a parametric § = J(x, 0), 0 € ® C R% function (in
some cases a neural network). In such case the search for an
optimal approximation consists of two parts, first to minimize
quadratic loss L4 (1):

{niﬂg AG(x,0) — f(B)*, beQ 3
ye

and second to find searchable function to contain boundary
conditions so to minimize the quadratic loss Lp

y(x, 0) € argmin(B(y(x, 0), yp(x, 9))2, bed @)
feR%
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However, solving such optimization problems with
non-convex inner objectives is in general a NP-hard prob-
lem [30]. Approaching this to gradient-based methods (e.g.,
stochastic gradient descent) for optimizing such objectives
is necessary due to the possible curse of dimensionality in
the unknown parameter space [27], but this limits the view
of the space and we may potentially become stuck in a local
minimum.

Given that L4 is a quadratic twice continuously differen-
tiable function the task is to find the optimal unknown model
parameters 6*(y) w.r.t. y. Under the smoothness assumption,
the optimally is reached VyLy(y,0) = 0, which defines
the function 6*(y). With the assumption that ming £, has a
solution, there exists a (y, 8*) such that Vg Lp(y, 0*) = 0.
Under the condition that Vo Lp(y,6*) = 0 is end-to-end
continuously differentiable and that 6*(y) is continuously
differentiable at y, implicitly differentiating the last equality
from both sides w.r.t. y and applying the chain rule leads to:

(VoL 20" (VoL
00 o) + T 6 =0, (5)
y

Assuming that the Hessian ngﬁb is invertible, we can
rewrite as follows:

96* 5 L\ 0( eﬁh)
5y 0 =—(Vie0.6M)

— .05, (6

Applying the chain rule for computing the total derivative
of L4 with respect to y yields:

dLa . 8£A 00* n 0LA
dy 90 ay | ay’
where we have omitted the evaluation at (y, 6*). Substituting
and reordering yields:

(N

3Ly,

dy 9y 00 o 309y

which computes the gradient of L4, given the function 6*(y).
However, in most of the cases obtaining such a mapping

is computationally expensive, and this was the reason of
selecting high order architectures.

B 08 0% (gap,) ®)

B. SYMBOLIC INTEGRATION

When we found any approximation y(x) of the solution,
we would like to evaluate the quality of the analytical
approximation. In contrast to numerical methods, with
analytical approximation we can calculate the errors at given
space points as well as at the whole domain. Let us consider
this quadratic error function L:

L=E@)
= / Q(A(&(xﬁ))—f(b))zdx. 9)

Since we know that the true solution must meet the
conditions A(y) = f(b), b € £, we can define the
quadratic error of the solution, by integrating over the domain
of interest.

141234

The loss function £ depends not only on the system
variable y(x), but also on additional system parameters
E(xy, ..., xk). If we fix the range of system parameters,
then we can calculate the total error of the approximation,
as follows:

Lr=Lr(),x1,...,%
X1,up XK ,up
=/ £ dx;..dxg . (10)
X1,low XK low

where integration can be done by SymPy. In the case where
the final y is a multivariate function, in practice we found it
might not be possible to symbolically integrate, and in such
cases the integral can be replace the Monte-Carlo simulated
domain observations, when integration is applied only on
a selected variable, and other domain values are calculated
based on numerical estimates:

Lt =Lr(, x1,...,xK)

/x./lup Z Z

HH1ow ey €xtow X 1,up] Xk EIXK Jow XK up)
X5()(1,..,xj_l,Xj+1,..,xK)dx]'. (11)
C. DARTS
With recent advances in neural architecture search, several
highly performant methods were discovered [15], [31], [32].
These automatically searched architectures have achieved
highly competitive performance in tasks such as image
classification and object detection. One such method is
DARTS [15].

DARTS searches for computational cells — building blocks
of the final architecture [15]. A cell is a directed acyclic graph
consisting of a sequence of N nodes. Each node x® is a
parametric function and each edge (i, j) between the nodes is
associated with some operation 0/ that transforms x. The
input of the nodes is defined as the previous layer outputs. The
output of the cell is a reduction operation (e.g., concatenation,
sum, etc.) with all the intermediate nodes.

The value of each intermediate node is computed using its
predecessors

0 — Zé(i».i)(x(i)) (12)
i<j
Let O be a set of candidate operations where each operation
is a function o(-) to be applied to x®. The choice for the
reduction operation is proposed as a softmax over the set of
candidate operations, relaxing the discrete function selection
into a continuous space. Let /) be the mixed operation:

> o@),,

0eO

5(i~j)(x) —
where o0 (z); is the softmax function, or, more precisely,

Z exp (¢,
(@, ]))

0O Zo 'e© €XP (a /

(l]))

o) (x) = o(x) (13)
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where the the weights for each connection (i, j) are param-
eterized by a vector o) of dimension |@|. The actual
architecture search is then defined as simply learning a set
of variables o = {a(i'j)} via gradient descent, or another
optimization algorithm. The remaining solution remains
continuous and differentiable.

At the end of the search the architecture can be obtained by
replacing each mixed operation 6/ with the best operation:

0" = arg max ') (14)
0eO

ending up with a single operation for each edge between the
nodes. This method can be exploited by providing a wide
range of operations in O relevant to the problem being solved,
in our case, parametric functions.

D. DARTS FOR PARAMETRIC EXPRESSIONS

The search of an analytical approximation for y(x) could be
automated with inspiration from the DARTS method. The
base model y = J(x) is taken as a single cell of the DARTS
network. We define the cell to have N nodes, therefore
x©@ = x, and § = x™), as shown in Fig. 1. The intermediate
nodes are computed as shown in (13). The set O can include
a zero function o(z) = 0 to denote no connection between
the nodes, and other functions. Examples of functions include
0(z) =1, 0(z) = z, 0(z) = 22, 0(z) = ¢°, and so on.

Then, the model is trained using gradient descent, mini-
mizing loss £ with respect to the weights «. Input data (x)
is generated by sampling the user-specified input parameter
intervals uniformly. Experiments showed that usage of SymPy
with complex equations required much computing time.
To speed up the computation and make the equations simpler
the softmax function was changed to a simple product to have
a regularization term which penalized the loss if the sum of
weights are not equal to one

a(i,j)(x) = (Z ag’j)O(x)) + 8, (15)

0O

and an additional regularization loss term

2
Lieg = ((Z oz((f’j)) - 1) : (16)
0eO

kup
L= »Ceq. dk + Vreg.ﬁreg.’ (I7)

Kiow

where yiep. is a hyperparameter, k € [Kjow, kup] is the interval
for parameter k.

These two changes replace similar functionality that
was carried out by the softmax function — all of the
values after the softmax added up to one (characteristic
of (16)) and allowing the weights to influence the operations
(characteristic of (15)), and provide a speedup in the symbolic
integration, if applicable.
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E. PRACTICAL OPTIMIZATION IMPROVEMENTS

To simplify the model further, after a specific amount of
epochs N, the model would be pruned. A pruning strategy
is proposed below:

1) Take the first unpruned edge’s vector of weights o'/,

2) Replace the vector with the largest operation like

in (14) and remove the operations of the discarded
weights, thus leaving the mixed operation as 6/ (x) =
affﬂ )0*(x) for that edge, where 0*(x) is the operation
with the maximum weight « in that edge. Another
approach is to remove a single weight with the lowest
value instead of all and remove the operation of the
discarded weight.

3) If the edge contains only one weight, mark the edge as

pruned.

4) Repeat after N, epochs.

When there is nothing else left to prune, the solution
expression can be deduced, as shown in Fig. 1(b).

Example: Consider the example, where we have operations
O = {1, x, sin(x)}, a single edge, where the model at some
pointis y = > .o @e0(x) + B, thatis, § = a1 + aox +
a3 sin(x) + B. Assume the algorithm learnt the parameters
a1 = 0.01, ap = 0.01, 3 = 0.98. Then, the pruning step
would replace that edge with just § = a3 sin(x) + B.

For more complex problems the differential equations
might contain initial conditions, boundary conditions. Thus,
there must be way of including these in the model or in the
optimization algorithm. The proof of concept model has been
extended to allow both types of conditions.

1) INITIAL CONDITIONS
Let the initial conditions be of the form:

Y(x0) = Yo, (18)

then, a loss term of this form can be added:
N 2
Linit.cond. = (Yo — $(x0))” . (19)

for each xg. The loss then becomes

Kup
L= / Leq. dk + Vreg.ﬁreg. + Vinit.cond. Linit.cond., (20)
ki

low

where Vinit.cond. 1S a hyperparameter.

2) BOUNDARY CONDITIONS
Assume the condition is in the form:

dy
- = g(x)
dx X=Xp

where x;, is the boundary. These conditions can be added in a
similar way how the initial conditions were added:

2
&
Lbound.cond. = (_y - g(x)) 21
X=xp

dx
The differentiation can be completed using autodiff or SymPy.
Additional constraints on the problem can be added in a
similar manner.
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(a) Initial model with each edge contain-
ing 5 operations. The operations are O =
{00,01,02,03,04}.

(b) Trained model with each edge containing
only the most prominent operation. Faded
lines show pruned operations.

To T1 To + X1
L TN

zgm
\E’;':{
T

(3 23

(c) Example model with multiple input vari-
ables and operations Oi, = {0in, (x0,%1) =
X0, Oiny (X0,X1) =X1, Oiny (X0,%1) = X0 + X1 }.

FIGURE 1. Proof of concept architecture with 5 operations. Initially the model contains the composition of the sums of all initial formulas. After training
each edge is a single operation, and the symbolic formula can be inferred from the architecture. In the multiple variable case (c) each of the grey lines

have a corresponding o which are also trainable.

F. MULTIVARIATE FUNCTIONS
To allow the network to support all kinds of functions,
we redefine the input of the model. Let O;, be a set of
candidate operations where each operation is a function oj,(+)
to be applied to the input xg, x1, . . ., X;;, Where m is the number
of input variables. The operations of the initial input block are
swapped out for operations in Oj,. For example, a model with
two input variables is presented in Fig. 1(b).

The mixed operations for the blocks are then calculated
using

Z O‘(()l;;{)oin(xo, Xy ooy Xm), 1=0,
.. 0in€0in
5(1,1)()6) —
(Z aii’f)O(x)) + B, i £0.
0eQ

(22)
The weights a,(f;;{) are trained along all other weights ol
and participate in weight pruning in the same way.

IV. EXPERIMENTS AND RESULTS

The experiments were done in JAX [6] using Optax [33]
and SymPy [7] The code developed for this method
is available on github.com/PauliusSasnauskas/sasde. The
hyperparameters used in the experiments below are
presented in Table 1. Further experiment details and
Python implementation are included in supplementary
material.
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A. TOY EXAMPLE
We take the Malthusian population model differential
equation and conditions

d—P =rP, P(l)=¢" (23)
a S
where P = P(t) is our unknown function, r and ¢ are the
variable parameters. Usually the goal is to find a good enough
approximation P = P(t)fora specific value of r and 7. Instead
of solving for a single value, we reduce the problem for
finding the approximation for an interval r € [riow, Tup] = R
and ¢ € [tiow, tup] = T, bound by empirical findings, laws of
physics, or chosen values.
For the input the training procedure sampled 512 values for
r and ¢ uniformly from the intervals R and T respectively.
This example has a simple analytical solution
P = Pye' (where Py is the initial population size), which
can be compared to found solutions. The results indicated the
architecture is working as expected. The final equation form
obtained from this experiment is

$=0.999999940395355 ¢'0 " — 1.12404698882074 - 10~".
(24)

The solution plot can be seen in supplementary material.

The found approximation P can be integrated like pre-
sented in (10) w.r.t. both variables ¢ and r to validate if it
satisfies the conditions. Substituting P with (24) and intervals
T = [0, 1], R = [1, 2] for variables ¢ and r respectively we
obtain an error of 3.80403517432048 - 10~13.
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TABLE 1. Hyperparameter choices and runtime details for the experiments.

Hyperparameter Malthus model Burgers’ equation Euler-Tricomi equation
Equation spec. (23) (25) 30)
O 0,1,r,t,rt 0,1,¢,x,—x,e", tx, et 0,1, x,y,xy,x +y
@ 0717Z7 _sz2vez 071717 _Z7Z+1761 071727 —Z,Z)C7Zy7€Z,SiH(Z)
Learning rate 0.01 0.001 0.002
Alpha penalty 7reg. 2 1 1
Node count 4 5 5
Num. epochs N, 32 128 256
Num. samples 512 512 512
Batch size 64 64 128
TABLE 2. Runtime details for the experiments.
Runtime details Malthus model Burgers’ equation  Euler-Tricomi equation
Equation spec. (23) 25) (30)
Approx. time 1 min 9 min 15 min
Error* 3.80404 - 1013 0.44282 0.15527

B. BURGERS’ EQUATION
We take a specific Burgers’ equation specification:

u + u% = ﬂ@, (25)
ot ax T ox2
with boundary and initial conditions:
u(0, x) = — sin(mx), (26)
u(t,—1)=u(t,1) =0, (27)
tel0,1], xe[-1,1], (28)

and apply our proposed architecture on the equation, we
obtain the analytical approximation:

u(t, x) = 0.130458233489587 1x + 0.16775517978791 x
— 1.08303360615556 ¢¥-219013981893828 x
— 0.142374154435032 ¢*
+0.431302160024643 ¢0-303474700927734 ix
+0.870762419457051. (29)

The solution plots can be seen in supplementary material.

C. EULER-TRICOMI EQUATION
We take a specific Euler-Tricomi equation specification:

d*u d*u

2 2

- - =0 30
dx? Ty dy? (30)
u(x, x2) = sin(x), (31)
u(0,y) = y%, (32)
x€1[0,2], yelo0,2], (33)

and obtain the analytical approximation:
u(x,y) = —1.053338832861 xy + 0.495143982030023 x

+0.557947342762368 y*+0.0786390291381303 y
+ 0.922053234446157 sin (0.976893961429596 y)
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+ 0.652301847934723 sin (0.26658496260643 X

+0.496432423591614 sin (0.976893961429596 y))
—0.294711053371429. (34)

The solution plot can be seen in supplementary material.
The runtime details, such as the integrated error (10), are
presented in Table 2. The shown error is from (10) for the toy
example; for Burgers’ equation and Euler-Tricomi equation
the mean of the error function evaluated at a grid of points
with a step of 0.01.

D. LIMITATIONS

The hyperparameter tuning procedure of each problem,
such as the specification of the operations O is manual,
which means the method may be unsuccessful in the search.
Although, in mathematical modeling, practitioners suggest
a set of assumptions (functions) to construct potential
analytic solutions, and define permissible ways to assemble
expressions (such as exponentiation, addition, multiplication,
etc.) [19]. This also provides a way to suggest hints about
the system we may know from the laws of physics or other
observations, such as some proportionalities or scalings. The
problem of huge search space [32] or scaling [31] still
exists and is an open problem in neural architecture search.
To bypass this problem some works [34] focus on a specific
type of architecture (e.g., convolutional layers) and search
in that domain only. Instead, we would like an algorithm
that automatically selects the best combinations, much like
in the work by Cranmer [29], which also supports function
hints. Another limitation is that, for many cases symbolic
integration with SymPy cannot integrate some complex equa-
tions or takes considerably longer than then whole number
of epochs to integrate a single equation. In such cases we
replace integration with numerical approximation as shown
in (11) and obtain near-identical results, and additionally in
our implementation leave the ability for the user to specify if
they wish to experiment with symbolic integration.
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V. CONCLUSION

We presented our proposed architecture showing how it
can assist in finding solutions for differential equations.
Empirical investigation revealed that this method is able to
obtain satisfactory symbolic equations and agrees with ana-
lytical solutions of some differential equations. We highlight
the end-to-end differentiability of this approach, combining
elements from the ML pipeline and symbolic integration
for searching analytical solutions. Due to the complexity of
some differential equations there is no ability to compare to
analytical solutions. The results suggest that the proposed
architecture fits well in the toolbox of methods for solving
differential equations.

Future Work: We aim to extend the work to by including
automatic operation selection and support for systems of
equations, and provide a basis for other applications in
finding analytical approximations.

APPENDIX A

EXPERIMENTAL SETUP

The experiments were run on an [Intel(R) Core(TM)
i7-1065G7 CPU. Data was generated by sampling the spec-
ified parameter intervals uniformly. The hyperparameters
were chosen by manual random search. The learning rate had

3.0

175
2.5

150
125 2.0

Y 100 1.5 i

75 1.0
a0 0.5

25
0.0

0

0 50 100 150

X

FIGURE 2. Euler-Tricomi equation (30) solution u(x, y) given by (34).

a linear scheduler with 1000 steps from y to %y, where y
is the specified learning rate. The gradients were clipped to
1 by the global norm.

—-—- actual

301 epoch 8
—— epoch 64
—— epoch 96

251 epoch 896

P

2.0 1

1.5 1

1.0 1

0.0 0.2 0.4 0.6 0.8 1.0
t

FIGURE 3. Malthus model equation solutions P(t) after a number of
epochs during training, compared to the actual solution P(t) = e'. The
solution after the last epoch (yellow) overlaps with the actual solution
(dashed orange).

t=0.5
0.2 1
P
01 P
N %/
y —0.14 ‘
ey — epoch 8
—— epoch 256
—-0.34 — epoch 1024
—— epoch 2048
—— epoch 3072
—04 epoch 6144
epoch 7552
-1.00 -0.75 -050 -0.25 0.00 0.25 0.50 0:75 1.00

X

FIGURE 4. Burgers’ equation solutions u(t, x) after a number of epochs
during training, at t = 0.5.

TABLE 3. Hyperparameter choices and runtime details for the experiments. * Error - loss integrated as shown in (10) for the toy example; for Burgers’
equaton and Euler-Tricomi equation the mean of the error function evaluated at a grid of points with a step of 0.01.

Hyperparameter Malthus model Burgers’ equation Euler-Tricomi equation
Equation spec. 23) 25) (30)
Ohn 0,1,r,t,1t 0,1,t,x,—x, €, tx, et 0,1, x,y,xy,x +y
o 071717 _17Z27ez 071’Z7 _Z7Z+1’ez 071»Z7 —z,zx,zy,ez,sin(z)
Learning rate 0.01 0.001 0.002
Alpha penalty 7reg. 2 1 1
Node count 4 5 5
Num. epochs N, 32 128 256
Num. samples 512 512 512
Batch size 64 64 128
Runtime details Malthus model Burgers’ equation Euler-Tricomi equation
Approx. time 1 min 9 min 15 min
Error* 3.80404 - 1013 0.44282 0.15527
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FIGURE 5. Malthus model equation (23) solution P(t) given by (24) atr € {1, 1.2, 1.4, 1.6, 1.8, 2}. The prediction and actual functions are
overlapping.
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FIGURE 6. Burgers’ equation (25) solution u(t, x) given by (29) at t € {0, 0.33, 0.67, 1}.
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FIGURE 7. Euler-Tricomi equation solutions u(x, y) after a number of epochs during training.

APPENDIX B
SOLUTION PLOTS
See Figs. 2-7 and Table 3.
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