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ABSTRACT In this paper, a high-precision hot-pressed light guide plate defect detection model based on
improved YOLOv7 is proposed. The model strengthens the spatial correlation between background and
foreground by fusing global context information. A densely connected convolutional network is used to
enhance the feature extraction capability and mitigate problems such as gradient vanishing while ensuring
the maximum information flow in the network. Further, adaptive spatial feature fusion is used in the feature
fusion structure of the model; the adaptive spatial feature fusion structure compensates for the small targets
that are difficult to extract in high dimensions from low dimensions, thus solving the problem of detecting
small targets that are easy to lose. Finally, a self-constructed dataset is built using images of hot-pressed light
guide plates collected from industrial sites, and a large number of experiments are conducted. Experimental
results show that the defect detection model has a mean average precision (mAP) of 99.1% and a detection
speed of 127 FPS. Compared with the mainstream surface defect target detection algorithms, while ensuring
the detection speed, the accuracy rate has been significantly improved, and the accuracy rate and real-time
can meet the requirements of the industrial field inspection of hot-pressed light guide plate.

INDEX TERMS Hot-pressed light guide plate, defect detection, deep learning, YOLOv7.

I. INTRODUCTION
The Light Guide Plate(LGP) is the primary component of a
backlight module and can convert a point light source and
a line light source from a Light Emitting Diode (LED) into a
uniform surface light source, and the structure of the resulting
Liquid Crystal Display (LCD) system is shown in FIGURE 1.
Due to the advantages of ultrathin, high transparency, high
reflection, uniform and bright light guides, LGPs are com-
monly used in cell phones, tablets, computers, car navigation
and other LCD screens. The quality of LGPs directly affects
the quality of the LCD screen. However, when producing
LGPs, due to the raw material composition, the use of equip-
ment, processing technology and manual operation and other
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factors, their surfaces will inevitably exhibit bright spots,
line scratches, dark shadows and other defects. To avoid the
assembly of defective LGPs into an LCD screen, whichwould
waste more resources, a factory must test for defects in LGPs
before they leave the factory to remove them from future
production steps.

Traditional defect detection methods include manual
inspection and machine vision inspection. Manual inspection
is affected by operation time, human eye accuracy, endurance
and worker emotion. Traditional machine vision detection
often has to go through image preprocessing [1], threshold
processing [2], feature selection [3] and other steps, which are
easily disturbed by environmental factors such as light and
dust. The resulting generalizability is weak, and algorithm
stability and versatility is poor, making it difficult to meet the
online defect detection of LGPs. Compared with traditional
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FIGURE 1. Liquid crystal display system structure.

machine vision methods, with the development of deep learn-
ing theory and the improvement of computer performance,
deep learning-based target detection algorithms are widely
used due to their powerful feature expression, generalization
and cross-scene capabilities, and the primary fields of study
include insulator detection [4], [5], [6], fruit detection [7], [8],
[9], face recognition [10], [11], [12], etc.
The defect detection requirements of hot-pressed LGPs

are relatively high, and most are smaller than 100-µm white
spots, line scratches, white stains, pressure wounds, etc. It is
also necessary to provide accurate location information of
each defect to optimize the production process and equip-
ment parameters. Deep learning classification network-based
defect detection can only obtain coarse localization, the
localization accuracy is related to the sliding window size and
network classification performance, and the overall detection
speed is slow. The target detection network, which can obtain
both precise location and classification information of the
target, is the closest network to the defect detection task
and is generally divided into single-stage and dual-stage
networks. The two-stage network first finds the location of
the target object to obtain the suggestion frame to ensure
sufficient accuracy and recall. Then, this network classifies
the suggestion frame to find more accurate locations. The
two-stage algorithms with higher accuracy but slower speed
primarily include R-CNN [13], SPP-Net [14], FastR-CNN
and FasterR-CNN. The single-stage network does not need
to obtain the suggestion frame stage and directly generates
the class probability and position coordinate values of the
object, and the final detection result can be directly obtained
by a single detection. Single-stage networks are generally
faster than two-stage algorithmswith a small loss of accuracy,
primarily including SSD, YOLOv3 [15], YOLOv4 [16],
YOLOv5, YOLOv6 and YOLOv7 series. In July 2022, the
official YOLO team launched YOLOv7, a collection of
primarily existing tricks, module re-referencing and dynamic
tag assignment strategies that outperform some other known
target detectors such as YOLOR,YOLOX,Scaled-YOLOv4,
YOLOv5,DETR,DeformableDETR,DINO-5scale-R50 and

ViT-Adapter-B in speed and accuracy in the 5FPS to 160FPS
range.

Currently, YOLOv7 demonstrates robust detection capa-
bilities in the realm of single-stage object detection networks.
However, the surface texture of hot-pressed LGPs is charac-
terized by complexity, with a diverse array of defect types and
shapes, coupled with relatively small defect sizes. Utilizing
YOLOv7 directly for detecting surface defects on hot-pressed
LGPs may result in the loss of semantic information for small
target defects. This can lead to lower accuracy or missed
detection of small target defects. Therefore, there is a need to
enhance YOLOv7 to make it suitable for defect detection on
hot-pressed LGPs. Thus, we propose an improved YOLOv7
defect detection network based on global context informa-
tion, densely connected convolutional networks and adaptive
spatial feature fusion. The hot-pressed LGP defect intelligent
detection system is successfully applied to industrial sites.
The primary contributions of this study are as follows:

(1) The backbone network introduces the Global Context
Block (GCBlock), which integrates global contextual infor-
mation by establishing long-range dependencies among all
feature pixels. This enhances spatial correlation between the
background and foreground, strengthening the recognition of
targets in complex backgrounds and improving the perceptual
capability for small target defects.

(2) The neck network incorporates the Densely Connected
Convolutional Network (DenseNet), enabling information to
flow more freely across different layers of the network. This
facilitates the capture of features at various levels, mitigates
the issue of vanishing gradients, and is particularly beneficial
for training deeper network architectures.

(3) Adding the Adaptive Spatial Feature Fusion (ASFF)
structure to the feature fusion mechanism allows for com-
pensating small targets that are challenging to extract from
high-dimensional information. This addresses the issue of
potential loss of small targets and effectively resolves pre-
diction conflicts across different dimensions. It enhances the
adaptability of the network, which is particularly effective in
identifying complex and diverse defects in hot-pressed LGPs.
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II. RELATED WORK
Currently, the YOLO family of networks and its improved
networks are more widely used in target detection.
Chen et al. [17] proposed an improved YOLOv5 network
model to identify rubber tree diseases. In the backbone
network, the bottleneck module in the C3 module was
improved so that it is beneficial to capture the long-range
information in the spatial range. The attention mechanism
SE module was added in the last layer of the backbone
network to increase the weight of effective image features.
The loss function was changed from GIOU to EIOU to
accelerate the convergence of the network model. Although
the detection of this network achieves better results, the
mAP only reaches 70%, and the detection accuracy still
must be improved. Cai et al. [18] proposed a network model
based on improved YOLOv4 to achieve the best trade-off
between accuracy and speed for autonomous driving. The
last output layer of the backbone network was replaced
with deformable convolution to enhance the network feature
extraction capability. A new feature fusion module PAN++

was then designed to enhance the feature fusion capability in
the neck network. A sparse scaling factor method was used
to improve the existing channel pruning algorithm to reduce
computational resources, and the network achieved marked
improvements in accuracy and speed compared to YOLOv4,
particularly enhancing the detection of small objects.
Jiang et al. [19] proposed an improved attention mechanism
YOLOv7 algorithm with three CBAM modules added to
the backbone network to improve the network’s ability to
extract features for counting tasks in dense hemp duck flocks.
Su et al. [20] proposed an improved YOLOv5-based
algorithm for defect detection in rail fasteners, analyzed
the size of fastener defect target boxes using the K-mean
algorithm, and analyzed small objects of rail fasteners by
combining an attention mechanism and multiscale fusion.
Yang et al. [21] proposed an improved YOLOv3-based
algorithm for insulator defect detection, changed the FPN to
bidirectional fusion to improve the perceptual field of small
targets, and added EIoU and Smooth-EIoU loss functions
to significantly improve the overlap between the predicted
box and the calibrated box and speed up the convergence
speed. Lu et al. [22] proposed an improved YOLOv5-
based algorithm for integrated circuit (IC) defect detection
by adding a prediction head to detect objects at differ-
ent scales and integrating squeeze-and-excitation layers to
improve the feature extraction capability of the network
in dense scenes. Chen et al. [23] proposed an improved
YOLOv4 algorithm for detecting and counting bayberry
trees in drone images. The Leaky ReLU activation function
was used to accelerate the model extraction speed, and the
DIoU NMS and K-Means clustering methods were used
to retain the most accurate prediction boxes. The detec-
tion accuracy reached 97.78%. Xu et al. [24] proposed
an improved YOLO-v5 algorithm for defect recognition in
weld radiographic images. The Coordinate Attentionmodule,

SIOU loss function, and FReLU activation function were
added to improve the ability to detect small targets, cap-
ture low-sensitivity spatial information, and perform global
optimization. Li et al. [25] proposed an improved YOLOv4-
tiny algorithm for real-time detection of non-motorized
vehicles. Dilated convolution and depthwise separable con-
volution were added to increase the model’s receptive field.
An improved Spatial Pyramid Pooling module was added
to enhance the network’s feature extraction capabilities.
The improved network’s mAP increased by 2.01% com-
pared to the original YOLOv4-tiny network. Wu et al. [26]
proposed an improved YOLOv4 algorithm for identifying
small target weeds. By modifying the backbone feature
extraction and feature pyramid structure, the network’s fea-
ture expression and small target extraction capabilities were
enhanced. A depthwise separable convolution block with a
residual structure was introduced to reduce the number of
network parameters. The improved network’s mAP increased
by 4.2% compared to the original YOLOv4 network.

At present, some progress has also been made in the
detection of defects in LGPs based on deep learning.
Ming et al. [27] proposed a combined classifier with dynamic
weights (CCDW)-based LGP defect detection method. Con-
sidering the diversity of the underlying classifiers, the
proposed CCDW selects the best combination of features
to distinguish between defective and defect-free LGP sam-
ples. Although the network improved the diversity of feature
extraction and the accuracy of the classifier, the detection
speed was slow and the accuracy was low. Li and Li [28]
proposed an end-to-end multitask learning network archi-
tecture for cell phone LGP defect detection. The encoder
part uses a similar U-Net encoder, which makes full use
of redundant features while increasing the network percep-
tion field. The feature fusion part uses feature fusion and
multiscale feature interaction, and the segmentation head per-
forms defect segmentation and classification tasks. Although
the network improves the positioning accuracy of defects,
the structure is relatively complex, and pixel-by-pixel label-
ing is required when adding a segmentation branch again.
Li et al. [29] proposed a two-stage multiscale residual atten-
tion network based on ‘‘segmentation+decision’’ for LGP
defect detection. The segmentation subnetwork was con-
structed using a U-shaped structure and designed a multiscale
residual attention unit (MRAU) to achieve precise defect
location. The segmentation subnetwork was used to extract
features, and the decision subnetwork was used to achieve
accurate determination of LGP images. A detection accu-
racy of up to 99% is achieved on the self-built defect
detection dataset. Although the network has high detection
accuracy, it cannot achieve precise positioning of defects.
Hong et al. [30] proposed a dense bilinear convolutional
neural network. The introduction of dense blocks, bilinear
feature layers, and SE modules improved the network’s abil-
ity to classify and discriminate defective textures. Although
the network model has small parameters and low training
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TABLE 1. Summary of defect detection of the LGP.

cost, the detection accuracy is low. Yao and Li [31] pro-
posed an AYOLOv3-Tiny-based defect detection network for
PAD light guides. It combined overlap pooling and a spatial
attentionmodule to construct an overlap pooling spatial atten-
tion module (OSM) to replace the traditional convolution of
the backbone network, which can improve the accuracy and
enhance the feature extraction ability of defect regions and
prevent overfitting. And it used a residual block structure to
construct a dilated convolutionmodule (DCM) to improve the
detection capability of large defects. Although the network
has high detection accuracy and small model parameters, the
false detection rate is high. Li and Yang [32] proposed an
improved YOLOv5 network-based defect detection method
for hot-pressed LGPs. The HAM module combining a spa-
tial attention mechanism and channel attention mechanism
enables the network to have higher recognition capability for
targets. The perceptual field is also enhanced, and feature
extraction capability is improved using dilated convolution
with different expansion rates. Although the network has a
fast detection speed, the rate of missed detection is high.
Li andWang [33] proposed a visual detectionmethod for light
guide plate defects based on an improved RetinaNet. The
improved ResNeXt50 with the lightweight Ghost Module

was used as the backbone network, reducing resource param-
eters and consumption, and improving training and inference
speed. The feature pyramid network module was improved to
more effectively fuse shallow and high-level semantic infor-
mation, further enhancing the detection ability of small target
defects. Although the model training and inference speed is
fast, the structural model is relatively complex. There is a
summary table provided, as shown in TABLE 1.

III. HOT-PRESSED LGP DEFECT DETECTION SYSTEM
The defect detection device for hot-pressed LGPs primarily
consists of a transmission device, image acquisition device
and image processing device, as shown in FIGURE 2. The
transmission device primarily consists of a conveyor belt
and conveyor belt rollers. The image acquisition device is
primarily composed of a light source and a high-resolution
camera. The image processing device is primarily composed
of high-performance computers and image processing soft-
ware. First, the transmission device transports the hot-pressed
LGP to the inspection station, and then, the image acquisition
device captures the image of the hot-pressed LGP. Finally, the
image processing device analyzes and detects the captured
image.
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FIGURE 2. Hot-pressed LGP defect detection device. (a) Transmission device; (b) Image acquisition device; (c) Image processing
device.

FIGURE 3. Hot-pressed LGP image.

The quality inspection accuracy of the hot-pressed LGPs
is relatively high, and it is difficult for the industrial surface
camera to meet such requirements. Thus, the inspection sys-
tem in this study used a 16k line matrix camera to collect
clear images of hot-pressed LGPs, as shown in FIGURE 3.
The top image is a partial image intercepted from an original
hot-pressed LGP image, and the bottom image is intercepted
from the corresponding position on the top image. As shown
in the four windows at the bottom, the LGP image has dense
light guide points and a complex textured background, the
light guide points become increasingly dense from left to
right, and the image gradually blurs.

During production, according to themanufacturer’s techni-
cal requirements and the imaging characteristics of the LGP,
the defects of the Hot-pressed LGPs are divided into four
categories: white dot defects, bright line defects, dark line
defects and area defects, which are shown in FIGURE 4.

IV. METHODOLOGY
A. YOLOv7 NETWORK STRUCTURE
YOLOv7 [34], a detector using the YOLO architecture,
is a single-stage target detection network with fast detection
speed, high accuracy, and easy training and deployment. The
entire network model structure of YOLOv7 can be divided
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FIGURE 4. Types of defects in hot-pressed LGPs. (a) White dot defects; (b) Bright line defects; (c) Dark line
defects; (d) Area defects.

FIGURE 5. YOLOv7 network structure diagram.

into three parts: backbone, neck and head, and the network
structure (see FIGURE 5). The backbone network extracts
the multiscale features of the input image and outputs the
multiscale feature map to the neck network as the input. The
primary role of the neck network is feature fusion, where
the FPN structure [35] transfers stronger semantic features
in the deeper layers to the shallower layers, augmenting the
entire pyramid and thus enhancing semantic representation at

multiple scales. The PAN structure [36] of the neck network
transmits stronger positional information from the shallow
layers to the deep layers, enhancing localization at multiple
scales. The FPN and the PAN enhance the expressive power
of the network and assign the multiscale learning task to
3 different sized detection networks. The head integrates the
new feature information and performs target detection and
classification.
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FIGURE 6. Structure diagram of each module.

YOLOv7 is composed of a CBS module, MP module,
ELANmodule, ELAN-Hmodule, UPSample module, SPPC-
SPC module and RepConv module. The structure of each
module is shown in FIGURE 6. The CBS module consists
of regular convolution, batch normalization, and SiLU acti-
vation functions. The MP module is a downsampling module
that consists of a maximum pooling layer and a CBS mod-
ule. The ELAN module is an efficient aggregation network
with two branches, which allows the network to learn more
features with greater robustness by controlling the shortest
and longest gradient paths. The role of the ELAN-H module
is similar to that of the ELAN module. The difference is
that ELAN stitches 4 convolutional layers for output and
ELAN-H stitches 6 convolutional layers for output. The
UPSample module is an upsampling module that uses the
upsampling method of nearest neighbor interpolation. The
SPPCSPC module can increase the perceptual field, allowing
the algorithm to adapt to different resolution images and is
obtained viamaximumpooling for different perceptual fields.
The RepConv module is somewhat different in training and
deployment. The training has the summed output of three
branches, and deployment reparameterizes the parameters of
these three branches to the master branch.

B. GDA-YOLOv7 NETWORK STRUCTURE
The backbone network of YOLOv7 downsamples the input
five times. The downsampling is done by ELAN and MP1
modules, and the backbone network may lose the semantic
information of small target defects during the downsam-
pling process. The original feature extraction module of the
backbone network, ELAN, cannot effectively use the global
contextual features in the image, and the feature extraction
capability is weak, which may eventually result in missed

detection of small target defects or low detection accuracy.
For the aforementioned reasons, in the modified network
GDA-YOLOv7 proposed in this paper, the second and third
ELAN modules in the original YOLOv7 network backbone
are replaced with Global Context Blocks (GCBlocks) [37].
This substitution aims to more effectively capture global
contextual information in the image, establishing long-range
dependencies among all feature pixels. The integration of
GCBlocks enhances spatial correlation between the back-
ground and foreground, thereby improving the recognition of
targets in complex backgrounds and the perceptual capability
for small target defects.

The original neck network of YOLOv7 has problems such
as low feature extraction ability and disappearance of back
propagation gradients, which may cause the deeper layers in
the neck network to learn extremely slowly or not at all, thus
causing the neurons to enter a stagnant state and stop learning
new things. This will cause the head network to receive no
valid prediction information and the network to have poorer
prediction results. Building upon the aforementioned ratio-
nale, the enhanced GDA-YOLOv7 network, as proposed in
this study, replaces the first and second ELAN-H modules in
the original YOLOv7 network neck with Densely Connected
Convolutional Network (DenseNet) [38]. This substitution
promotes a more unrestricted flow of information across
different layers of the network, facilitating the capture of
features at various levels. Consequently, this addresses the
challenge of gradient vanishing and enhances the training of
deeper network architectures.

Because the size of defect targets is uncertain, small-sized
defects dilute their semantic information more quickly as the
number of layers in the network increases, thus easily result-
ing in the loss of small-sized targets. Although the original
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FIGURE 7. Improved YOLOv7 network structure diagram.

feature fusion method of YOLOv7 can enrich the overall
semantic feature information, there are often prediction con-
flicts between different dimensions. For the aforementioned
reasons, in the refined GDA-YOLOv7 network proposed in
this study, the Adaptive Spatial Feature Fusion (ASFF) [39]
is incorporated into the feature fusion structure of YOLOv7.
This addition allows for compensating small targets that are
challenging to extract from high dimensions in low dimen-
sions, addressing the issue of potential loss of small targets.
Moreover, it effectively resolves prediction conflicts across
different dimensions, enhancing the adaptability of the net-
work. This is particularly effective for identifying light guide
plate defects with diverse and complex shapes. The improved
YOLOv7 network is shown in FIGURE 7.

C. GLOBAL CONTEXT BLOCK(GCBLOCK)
Each pixel in an image is not isolated. One pixel has a certain
relationship with the surrounding pixels, and the intercon-
nection of a large number of pixels produces various objects
in the image. In LGP detection, the contrast between some
defects and the background is low, and fusing global con-
textual information [40] can help the network to enhance the
spatial correlation between the background and defect targets,
thus relying on this potential relational feature to allow the
network to better detect defect targets. Thus, we add a global
context block to the backbone network of YOLOv7 to obtain
global context features in the image and let long-range depen-
dencies be constructed among all feature pixels so that the
network can focus on different regions and detect defective
targets more effectively.

The global context block can assign different weights to
the input elements from the spatial and channel dimensions
to highlight useful information, and its structure is shown in
FIGURE 8. The global context block is abstracted into three
processes.

FIGURE 8. Structure of the global context block.

First, a 1 × 1 convolution Wk and softmax function are
used to obtain spatial attention weights, and the weights are
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FIGURE 9. Structure of the densely connected convolutional network.

FIGURE 10. Structure diagram of DenseBlock.

then multiplied with the original graph. Thus, the features of
all locations are aggregated together to form global context
features, expressed as shown in Equation (1). Using the Soft-
max function ensures that the sum of probabilities for each
prediction equals 1, thus ensuring that useful information
remains within the appropriate range.

Second, feature transformation via 1× 1 convolution Wv1
is performed, and Layer Norm [41] and ReLU enhanced
generalizations are used to capture the interdependencies on
the channels, formulated as shown in Equation (2). Intro-
ducing the ReLU function between two convolutional layers
enhances their nonlinearity and improves the model’s rep-
resentation capability. Due to the increased difficulty in
optimization caused by the two-layer bottleneck transforma-
tion, Layer Norm is added to the bottleneck transformation,
before the ReLU activation, to simplify the network and
promote generalization.

Third, feature transformation via 1 × 1 convolution Wv2
is performed, followed by feature aggregation (i.e., global
contextual features are aggregated to features at each location
using an additive method), as shown in Equation (3):

αi =

Np∑
j=1

eWk×j∑Np
m=1 e

Wk×m
xj (1)

δ(·) = ReLU (LN (Wv1(·))) (2)

zi = xi +Wv2(ReLU (LN (Wv1(
Np∑
j=1

eWk×j∑Np
m=1 e

Wk×m
xj))))

(3)

D. DENSELY CONNECTED CONVOLUTIONAL
NETWORK(DENSENET)
In the YOLOv7 network, the neck network suffers from
low feature extraction ability and vanishing back propagation
gradients. Each layer in a densely connected convolutional
network (DenseNet) can access the gradient from the loss
function and the original input signal, thus prompting implicit
deep supervision [42] and helping to train deeper network
architectures. Thus, we add a densely connected convolu-
tional network to the neck network of YOLOv7 to enhance
the feature extraction ability and alleviate the gradient disap-
pearance problem while ensuring the maximum information
flow of the network.

The densely connected convolutional network (DenseNet)
consists of the DenseBlock and the transition layer, as shown
in FIGURE 9. DenseBlock is a unique module in the densely
connected convolutional network, as shown in FIGURE 10.
In the same DenseBlock, the width and height of the layer
will not change, but the number of channels will change
accordingly. Connecting all layers in DenseBlock directly
to each other allows information to flow smoothly between
layers in the network and improves feature propagation. This
process also promotes feature reuse and fusion, enhances
feature extraction, and solves problems such as gradient
disappearance in deep neural networks. To preserve the feed-
forward feature, the input of each layer in the network is the
sum of the outputs of all the previous layers, and the output
of each layer is also propagated backward and becomes part
of the input of the later layer. Thus, the Lth layer in Dense-
Block has L inputs, consisting of the feature maps of all the
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FIGURE 11. Adaptive spatial feature fusion structure diagram.

previous convolutional blocks, and its own feature maps are
passed to all subsequent layers. Also, an L-layer network has
L(L+1)/2 connections in an L-layer network instead of only
L connections, as in the traditional structure.

In DenseBlock, layer l receives the feature maps of all
previous layers, and xl is defined as shown in Equation (4):

xl = Hl([x0, x1, . . . , xl−1]) (4)

where [x0, x1, . . . , xl−1] are 0, 1, 2, . . . ,l − 1 layers of the
cascade, and Hl(·) is a composite function of three consec-
utive operations: batch normalization (BN) [43], followed
by a ReLU activation function [44] and a 3 × 3 convolu-
tion (Conv).

The transition layer primarily consists of convolution and
pooling, which connects different DenseBlocks modules by
adjusting the width and height of the preceding DenseBlocks
and combines the characteristics of DenseBlocks. TheDense-
Block modules are stacked so that the functions will stack
continuously, which also makes the connection between the
layers tighter.

E. ADAPTIVE SPATIAL FEATURE FUSION(ASFF)
During defect detection with LGPs, it is easy to lose
small-size targets because the size of defect targets is uncer-
tain, and small-size defects dilute their semantic information
more quickly as the number of layers in the network
increases. Although generic feature fusion methods can
enrich the overall semantic feature information, there are
often prediction conflicts between different dimensions.
ASFF can resolve prediction conflicts in different dimensions
and can compensate for small targets that are difficult to
extract in high dimensions from low dimensions, solving the
problem of detecting small targets that are easily lost. Thus,
we use adaptive spatial feature fusion (ASFF) in the feature
fusion structure of the model, which is shown in FIGURE 11.

In the neck structure of the YOLOv7 algorithm, FPN
transmits the stronger semantic feature features from the deep
layer to the shallow layer to enhance the entire pyramid, thus
enhancing the semantic representation on multiple scales.
PAN transmits the stronger location information from the
shallow layer to the deep layer, enhancing the localization on
multiple scales. The primary purpose of adding the adaptive
spatial feature fusion module at the end of the PAN layer
in front of the head layer is to ensure that the model can
take full advantage of feature information at different scales.
By adjusting the feature fusion and weight parameters of the
PAN layer, the weight parameters are derived from the output
of the convolutional feature layer, and the weight parame-
ters become learnable after gradient back-propagation to be
adaptive when performing weighted fusion, which effectively
improves the feature extraction capability of the network and
fully realizes the multiscale feature fusion of the model.
X1,X2 andX3 are featuremaps extracted from theYOLOv7

backbone network. Level 1, level 2 and level 3 are fea-
ture maps that can be obtained from the PAN structure.
ASFF-1, ASFF-2 and ASFF-3 are the final fusion results
obtained using the ASFF algorithm. The adaptive spatial fea-
ture fusion process with ASFF-3 as an example is as follows.

(1) For the level 1 feature map, we let level 1 obtain
the same number of channels as the level 3 feature map by
convolution. We then upsample the convolved level 1 fea-
ture map to keep the same size as level 3, and the result
is x1→3.
(2) For the level 2 feature map, we let level 2 obtain

the same number of channels as the level 3 feature map by
convolution. We then upsample the convolved level 2 feature
map to keep the same size as level 3, and the result is x2→3.
(3) The level 3 feature map is not adjusted but is renamed

x3→3.
(4) After processing the three feature maps using the soft-

max function, the weight coefficients α3
ij, β

3
ij and γ 3

ij of x
1→3,
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x2→3 and x3→3 are obtained, respectively. Then, y3ij (ASFF−

3) is calculated using a weighted summation according to
Equation (5) (i.e., y3ij (ASFF−3) is calculated by the Adaptive
Spatial Feature Fusion (ASFF) algorithm to obtain the new
feature map):

y3ij = α3
ij ∗ x

1→3
ij + β3

ij ∗ x
2→3
ij + γ 3

ij ∗ x3→3
ij (5)

The adaptive spatial feature fusion (ASFF) module is cal-
culated as shown in Equation (6):

ylij = αlij ∗ x
1→l
ij + β lij ∗ x

2→l
ij + γ lij ∗ x

3→l
ij (6)

where ylij (ASFF−l) is the new featuremap obtained using the
ASFFmodule and is the valid feature for the target prediction.
αlij, β

l
ij and γ lij are the weight coefficients of the three feature

maps that are defined by the softmax function as shown in
Equation (7). αlij, β

l
ij and γ lij are processed by the softmax [45]

function to satisfy αlij+β lij+γ lij = 1, and αlij, β
l
ij, γ

l
ij ∈ [0, 1].

The parameters λ l
∝ij

, λ
l
βij

and λ l
γij

are the control parame-
ters for Equation (7):

αlij =
e

λ l
αij

e
λ l

αij + e
λ
l
βij+e

λ l
γij

(7)

F. LOSS FUNCTION
The loss function is used to measure how far the predic-
tions made by the model deviate from the true value and
to quantify the deviation to guide the next training step in
the right direction. The loss function of YOLOv7 can be
divided into three parts: localization loss, confidence loss and
classification loss. The total loss is the weighted sum of the
three losses, as shown in Equation (8):

LOSS = W1 × Lbox +W2 × Lcls +W3 × Lobj (8)

The localization loss is used to measure the error between
the predicted box and the calibrated box. Confidence loss
is used to measure the probability of the presence of the
target in the prediction box. The larger the confidence loss
is, the smaller the probability of the presence of the target. The
classification loss is used to measure the probability that the
target in the prediction box belongs to a certain classification.
The larger the classification loss is, the lower the probability
that the target belongs to a certain classification.

1) LOCALIZATION LOSS
The localization loss is based on the CIOU loss, as shown in
Equation (9):

CIOU loss = 1 − CIOU (9)

The formula for CIOU is shown in Equation (10). The three
terms of CIOU correspond exactly to the calculation of IOU,
center point distance and aspect ratio:

CIOU = IOU − (
ρ2(b, bgt )

c2
+ αv) (10)

where b is the parameter for the center coordinates of the
prediction box. bgt is the parameter for the center coordinates
of the real box. ρ is the Euclidean distance between the pre-
diction and real boxes. c is the diagonal length of the smallest
outer rectangle that completely encloses the prediction and
real boxes.

The full name of IOU is Intersection over Union (IOU),
which is used to calculate the ratio between the intersection
of the prediction box and the real box and the union, as shown
in Equation (11),

IOU =
A ∩ B
A ∪ B

(11)

v is used to measure the consistency of the scale
between the prediction box and the real box, as shown in
Equation (12). And, α is the parameter used to balance the
scale, as shown in Equation (13):

v =
4
π2 (arctan

wgt

hgt
− arctan

w
h
)
2

(12)

α =
v

(1 − IOU ) + v
(13)

where w and h are the width and height of the predicted box.
wgt and hgt are the width and height of the real box.

2) THE CONFIDENCE LOSS AND CLASSIFICATION LOSS
The loss of confidence and the loss of classification are shown
in Equation (14) using the binary cross-entropy loss function:

Lcls = Lobj = −
1
n

∑
(yn × ln xn + (1 − yn) × ln (1 − xn))

(14)

where n is the number of samples of the input. yn is the target
value and xn is the predicted value of the network.

V. EXPERIMENTAL VERIFICATION
A. EXPERIMENTAL DATASET OF HOT-PRESSED LGPS
The dataset of the hot-pressed light guide was acquired on the
factory production line by a high-precision line-scan camera,
and the defective images weremanually selected. Because the
resolution of the original image is large and cannot be directly
applied to train in the deep learning model, the defective
part of the image is manually intercepted with a window of
416×416, and the dataset is divided into white point defects,
bright line defects, dark line defects, and area defects. In this
study, we make labels for these defective images and extend
the dataset by other means such as panning and flipping.
The size of the original dataset is 1500 and the size of the
expanded dataset is 4127, and then the dataset is divided into
training, validation and test sets in the ratio of 6:2:2, and the
results are shown in TABLE 2:

B. EXPERIMENTAL SETUP
The hardware environment and software versions for the
experiments are shown in TABLE 3.
Parameters for network training, as shown in TABLE 4.
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TABLE 2. Defect dataset for hot-pressed LGPs.

TABLE 3. Hardware environment and software version.

TABLE 4. Network training parameters.

C. MOSAIC DATA AUGMENTATION
Using Mosaic data augmentation can enrich the detec-
tion dataset using panning, scaling, rotation and chang-
ing the hue values. In particular, random scaling adds
many small targets to make the network more robust and
improve the discriminative power of the model on the test
data.

The steps for implementing mosaic data augmentation
include the following: (a). Read four random images at
a time. (b). Flip, scale and change the color gamut of
the four images separately, and place these four images in
the top left, bottom left, top right and bottom right cor-
ners, respectively. (c). Stitch the design regions of the four
images together using a matrix to create a new image. This
new image also contains the bounding box information of
the target, which has been processed during the stitching
process.

D. PERFORMANCE INDICATORS
This study uses six primary metrics to test the performance
of the model. Precision (P) describes the probability that the
positive class classified by the classifier is indeed a positive
class and is calculated as shown in Equation (15). Recall (R)
describes the ability of the classifier to find all positive classes
and is calculated as shown in Equation (16). Average preci-
sion (AP) is each class consists of precision (P) and recall (R),
which takes the area of the P-R curve under different thresh-
olds. The larger the value is, the better the class recognition
accuracy is. The formula is shown in Equation (17). Themean
average accuracy (mAP) is the average AP of all categories,
and the relevant formula is Equation (18). The larger the value
is, the better the model recognizes the higher the accuracy of
the target. Frames per second (FPS) is the number of frames
per second processed by the model and describes the speed of
model inference. The larger the value is, the faster the model
inference, and the better the model performance. Billions of
floating point operations per second (GFLOPS) is the number
of computations required by a model and is used to measure
the complexity of the model:

P(Precision) =
TP

TP+ FP
(15)

R(Recall) =
TP

TP+ FN
(16)

AP =

∫ 1

0
P(R)dR (17)

mAP =

∑c
n=0 AP(C)
C

(18)

where TP is a positive class judged as positive. FP is a
negative class judged as positive. FN is a positive class judged
as negative, and TN is a negative class judged as negative.

E. ABLATION EXPERIMENTS
In this paper, three improvements were made to YOLOv7.
To verify the effectiveness of each improvement and the
effectiveness of the combination of the three improvements,
ablation experiments were conducted, and experimental
results are shown in TABLE 5.

TABLE 5 shows that the mAP of YOLOv7 is 96.4%. mAP
is improved by 2% by adding only the GCBlock module
to the backbone of the YOLOv7 network because GCBlock
allows the network to focus on different regions and detect
defective targets more effectively by constructing long-range
dependencies between all feature pixels for the feature map
itself.

The YOLOv7 network only adds the DenseNet module
in Neck, and the mAP is improved by 2.1% because each
layer of DenseNet accesses the gradient directly from the loss
function and the original input signal, ensuring the maximum
information flow of the network while enhancing the fea-
ture extraction ability, alleviating the gradient disappearance
problem and helping to train a deeper network architecture.

The YOLOv7 network only uses the ASFF module in the
feature fusion structure, and the mAP is improved by 2.1%.
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TABLE 5. Results of ablation experiments on the hot-pressed LGP dataset.

FIGURE 12. Training loss and validation loss. (a) Localization loss; (b) confidence loss; (c) classification loss.

Because ASFF improves the feature extraction ability of the
network by adjusting the feature fusion and weight parame-
ters of the PAN layer, the weight parameters are derived from
the output of the convolutional feature layer, and the weight
parameters become learnable after gradient back-propagation
to be adaptive when performing weighted fusion, which
effectively improves the feature extraction ability of the net-
work and fully realizes the model multiscale feature fusion.
This process can still compensate for small targets that are
difficult to extract in high dimensions from low dimensions,
solving the problem of detecting small targets that are easily
lost.

As can be seen from FIGURE 12, the localization loss
and classification loss functions of the GDA-YOLOv7 net-
work converge quickly within the first 100 training times
during training and validation, and converge when the
number of training times reaches 300. The confidence

loss function of the GDA-YOLOv7 network converges in
the first few epochs, indicating that the improved net-
work will hardly miss any detection during training and
validation.

The results of the loss functions of the YOLOv7 net-
work with various improvement modules are significantly
better than those of the original YOLOv7 network. Dur-
ing validation, the confidence loss function and classifica-
tion loss function of YOLOv7, YOLOv7+DenseNet, and
YOLOv7+ASFF had several significant mutations in the
first 80 epochs, that is, some data in the validation set were
validated incorrectly, but YOLOv7+GCBlock did not have
these problems. Obviously, our GDA-YOLOv7 network has
absorbed the advantages of the YOLOv7+GCBlock network,
making the results of the loss function very reasonable, with-
out mutations during validation, and the network converges
quickly.
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FIGURE 13. Detection results of the hot-pressed LGP dataset in different networks. (a) White dot defects; (b) Bright line defects; (c) Dark line defects;
(d) Area defects.

F. HOT-PRESSED LGP COMPARISON EXPERIMENT
The improved YOLOv7 model was compared with the
YOLOv3-Tiny, YOLOv3, YOLOv5 and YOLOv7 networks
to verify its accuracy and validity. These models were all
built based on the same parameters as the improved YOLOv7
model and used the original dataset of hot-pressed LGPs in
the model. The comparison of mAP and FPS of different
networks is shown in TABLE 6. The detection results of the
hot-pressed LGPs dataset in different networks are shown in
FIGURE 13.

In this study, seven images were randomly selected
for testing on each model, and the results are shown
in FIGURE 13. The detection accuracy of the improved

YOLOv7 network is much higher than that of the other
networks and meets the requirement of high-accuracy
detection.

As shown in TABLE 6, Comparison of the hot-pressed
LGPs dataset on the correlation network shows that the total
mAP of the improved YOLOv7 model is 10.4%, 7.7%, 1.9%
and 2.7% higher than the YOLOv3-Tiny, YOLOv3, YOLOv5
and YOLOv7 models, respectively. The improved YOLOv7
model shows a 2.1% improvement in mAP for white point
defects, 6.2% improvement in mAP for dark line defects,
1.3% improvement in mAP for bright line defects and 1.1%
improvement in mAP for area defects compared to YOLOv7.
The FPS of the improved YOLOv7 model is 127. Thus, the
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TABLE 6. Comparison results of hot-pressed LGPs dataset on related networks.

TABLE 7. Results of comparison of NEU-DET dataset on related networks.

improved YOLOv7 model can meet the demand for real-time
high accuracy.

G. EXPERIMENTAL RESULTS OF NEU-DET DATASET
To further substantiate the efficacy of the proposed model in
this paper, comparative experiments were conducted using
the NEU-DET dataset. The methodology for these compar-
ative experiments mirrors that of the experimental approach
applied to the dataset of surface defects in hot-pressed light
guide plates. The NEU-DET dataset consists of images of
defective hot-rolled steel strips. The sample images in the
dataset have a resolution of 200× 200, totaling 1800 images
with defects. The defect types include Crazing, Inclusion,
Patches, Pitted, Rolled, and Scratches. In this study, labels
were created for these 1800 defective images, and the dataset
was partitioned into training, validation, and test sets in a
6:2:2 ratio. TABLE 7 presents the comparative results of

detecting surface defects in hot-rolled steel strips using the
GDA-YOLOv7 network, YOLOv3-tiny, YOLOv3, YOLOv5,
and YOLOv7. Six images were randomly selected for test-
ing each model, and the detection results are illustrated in
FIGURE 14. The results in FIGURE 14 indicate that the
detection accuracy of the GDA-YOLOv7 method surpasses
that of the other models. As shown in TABLE 7, GDA-
YOLOv7 not only exhibits superior detection accuracy but
also operates at a speed of 152 FPS, meeting the requirements
for industrial site detection.

VI. DISCUSSION
For this study, GDA-YOLOv7 has the following advantages:
The introduction of the GCBlock module increases the net-
work’s awareness of contextual semantic information, which
improves the accuracy of detecting defects. The introduction
of the DenseNetmodule enhances the feature extraction capa-
bility and training of deeper models while ensuringmaximum
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FIGURE 14. Detection results of NEU-DET dataset in different networks. (a) crazing defects; (b) inclusion defects; (c) patches defects; (d) pitted defects;
(e) rolled defects; (f) scratches defects.

information flow. The application of ASFF module realizes
multi-scale feature fusion, which makes the model more reli-
able in recognizing small targets.

The experiments show that compared with YOLOv3-
tiny, the overall mAP of the GDA-YOLOv7 model has
increased by 10.4%, and the mAP of white dot defects
and dark line defects has increased the most significantly,
at 13% and 16.1%, respectively. The mAP of bright line
defects increased by 7.6%, and the mAP of regional defects
increased by 5.1%. Compared with YOLOv3, the over-
all mAP increased by 7.7%, and the mAP of dark line
defects and bright line defects increased the most signifi-
cantly, at 10.9% and 10.7%, respectively. The mAP of white
dot defects increased by 3.5%, and the mAP of regional

defects increased by 5.5%. Compared with YOLOv5, the
overall mAP increased by 1.9%, and the mAP of white dot
defects and dark line defects increased the most signifi-
cantly, at 3.3% and 2.6%, respectively. The mAP of bright
line defects increased by 1.6%, and the mAP of regional
defects increased by 0.1%. Compared with YOLOv7, the
overall mAP increased by 2.7%, and the mAP of white dot
defects and dark line defects increased the most significantly,
at 2.1% and 6.2%, respectively. The mAP of bright line
defects increased by 1.3%, and the mAP of regional defects
increased by 1.1%. Therefore, the GDA-YOLOv7 model
has shown significant improvements compared to other
networks and is very suitable for high-precision detection
tasks.
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VII. CONCLUSION
In this study, an improved YOLOv7 hot-press guide plate
defect detection method is proposed to accurately identify
defects in hot-pressed guide plates in complex backgrounds.
Incorporating the GCBlock module into the backbone net-
work of YOLOv7 facilitates the transfer of additional con-
textual semantic information to the Neck layer. This enables
the network to focus on different regions, enhancing the
recognition of targets in complex backgrounds and improv-
ing the perceptual capability for small target defects. The
DenseNet module is introduced in the neck to ensure max-
imum information flow of the network while enhancing
feature extraction, alleviating gradient disappearance, and
helping to train a deeper network architecture. Utilizing
the ASFF module in the feature fusion architecture enables
comprehensivemulti-scale feature integration, addressing the
challenge of potential small target loss. This enhances the
recognition capability for light guide plate defects with intri-
cate and variable appearances. Experimental results show
that the GDA-YOLOv7 model improves the mAP by 2.7%
comparedwith YOLOv7 and the detection speed of themodel
is 127 fps, which can meet the demand of real-time high
accuracy.

The methodology of this study still has some limitations.
Our main focus is on the accuracy and efficiency of defect
detection to meet the demand for high efficiency in indus-
trial production. However, future work can further improve
the real-time and reliability of the algorithm to ensure
real-time application in real industrial production environ-
ments. In addition, attention should also be paid to improving
the robustness and security of the algorithms so that they can
cope with various anomalies and potential attacks.

DATA AVAILABILITY
The dataset and code used in our research have been shared
at the following link: https://www.kaggle.com/datasets/
zhenyuli123/code-and-dataset
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