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ABSTRACT In this paper, the strategy decision algorithm for automatic evasive steering (AES) integrating
a convolution neural network (CNN) with a physics-based threat assessment is proposed. Five collision
avoidance or mitigation strategies, including evasive steering, lane change, and steering to shoulder stop are
considered for the strategy decision. Although there are many model-based or data-driven approaches for
collision avoidance in the literature, a new decision method integrating data-driven classification based on
CNN with both threat assessment and prediction techniques is proposed to improve reliability as well as
accuracy. First, a set of abstracted images in a bird eye’s view including the threat assessment and trajectory
prediction information are generated. More specifically, a few collision indexes and interaction multiple
model-unscented Kalman filter are used respectively for threat assessment and prediction. Once a stack of the
images so called predicted semantic map corresponding to each collision avoidance strategy are generated,
the decision classification based on CNN follows to choose an appropriate strategy for AES. Finally, the
proposed decision algorithm is trained and validated through typical safe scenario data coming from field
operation tests (FOT) and safety-critical scenario data via simulations.

INDEX TERMS Automatic emergency steering (AES), collision avoidance, threat assessment, motion
prediction, strategy classification.

I. INTRODUCTION
Active safety systems, such as automatic emergency brak-
ing (AEB), forward collision warning, and blind spot
detection systems have been successfully introduced in
the automotive market [1], [2]. Moreover, the advanced
active safety systems, e.g., collision evasive lateral manoeu-
vre systems (CELM), automatic emergency steering (AES)
and minimal risk maneuver (MRM), have been developed
and standardized [3], [4], [5]. At the same time, it is
recently reported that there were fatal accidents of auto-
mated vehicles (AV) mainly due to sensor-related faults,
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i.e., malfunction in detection and classification [6], [7]. It is
thus inevitable to consider collision avoidance and mitigation
strategy in the system design stage for advanced active safety
systems and AV [8].
There are numerous studies about collision avoidance and

decision-making in the literature and they can be classi-
fied into twofold: model-based and data driven approaches.
Since the physical model-based methods have been devel-
oped over three decades, it includes single-behavior threat
metrics, optimization methods, formal methods, and prob-
abilistic methods [9], [10]. Threat metrics such as Time-
to-Collision (TTC), Time-to-Brake (TTB), Time-to-Line
Crossing (TLC) are widely used for threat assessment.
In addition, the minimum safety spacing (MSS) calculation
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has been used to determine collision-free lane changing [11],
[12], [13]. However, it is also noted that most of threat assess-
ment algorithms were validated in the specific scenarios and
hazardous situations.

Also, some research studied the emergency steering system
for with threat assessment methods [14], [15], [16], [17].
However, not only does the literature focus on control or
lateral stability rather than decision for emergency steering,
but also the validation scenarios are limited to situations
where the vehicle in front is either avoided or maintains a
constant speed.

In data-driven approaches, reinforcement learning (RL) is
recently applied for decision-making of lane changing and
overtaking [18], [19], [20]. Since RL-based approaches are
typically trained and tested in virtual simulation environ-
ments, it is limited to consider validation and performance
improvement via real driving data. Another data-driven appli-
cation is the prediction of the driving intention and/or vehicle
trajectory with the Convolutional Neural Network (CNN).
The vehicle prediction methods can be classified by input
representation criterion: track history of the surrounding vehi-
cles (SV) and ego vehicle, raw sensor data, and Simplified
images in the Bird’s Eye View (SBEV) [21]. The SBEV con-
textualize objects and the environment as lines and polygons
while driving. This method is also referred to as rasterized
or vectorized High-Definition (HD) maps [22], [23]. While
the first and second approaches are in general sensitive to
characteristics and performance of the environmental sensors,
the SBEV approach may be more robust due to sensor fusion
integrating the data coming from sensors (e.g., radar, lidar,
and camera) [22], [24]. With the advantage of the SBEV,
a stacked set of current and past SBEV including lane mark
and position of SVs are used as the network input to classify
lane change intention [25]. Similarly, an extended version
of the SBEV including both SVs and road infrastructure
(e.g., route, crosswalk, lane) is considered to predict the
vehicle motion in the intersection [26], [27]. Furthermore,
another version of the SBEV with occupancy, past trajectory
and velocity was proposed to classify different scenarios
such as overtaking, vehicle crossing, and leading vehicle
ahead [22], [23].

Nevertheless, the information presented in the above stud-
ies is not sufficient to determine whether a vehicle is in a
collision. Moreover, there are few data-driven threat assess-
ment methods with applications of collision avoidance or
automatic emergency steering. While crash risk of an ego
vehicle and collision prediction is proposed in the literature,
it is still limited to consider various scenarios and validate the
algorithm via field operation test (FOT) dataset [28], [29].
In this paper, we propose the decision-making frame-

work for the AES strategy integrating the SBEV and CNN
approach with the physics-based approach including threat
assessment andmotion prediction. Furthermore, its validation
and evaluation method are proposed to enhance diversity and
complexity of scenario and/or dataset. The main contribution
of this work are as follows:

• The integrated decision architecture for collision avoid-
ance that combines deep learning (DL) networks with
physics-based algorithms.

• A multi-layered SBEV, serving as a set of abstracted
inputs from physics-based approaches, is employed as
an input for a deep learning network to predict collision
avoidance strategies.

• Our proposed decision-making algorithm was evaluated
through safety-critical scenarios. The safety-critical sce-
narios based on real accident statistics. The reliability of
the algorithm is verified using real-driving data.

This paper is organized as follows: Section II gives the
description of problem for previous collision avoidance
algorithms. Section III introduces the integrated collision
avoidance algorithm with the CNN, and Section IV presents
performance of proposed algorithm via simulation and real-
road data. Section V concludes this paper. The acronyms used
in the paper are provided in Table 1.

II. PROBLEM STATEMENT
It is necessary to consider both kinematics of SV and geome-
try of road to develop a decision-making algorithm ofAES for
collision avoidance and mitigation. It is shown in Fig. 1 that
the ego vehicle drives in first lane and an adjacent heavy-duty
vehicle follows the second lane. The ego vehicle is equipped
with radar and vision sensors. Commercial radar and camera
may have sensor noise or wrong measurement. For example,
two tracks are detected on the adjacent truck. The wrong

FIGURE 1. Defining the problem of decision for collision avoidance
algorithm in real driving condition.

TABLE 1. Summary of acronyms.
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measurement may happen due to the larger size of the
heavy-duty vehicle compared to other vehicles as shown
in Fig. 1. Longitudinal and lateral positions of the left track
are 19 m and −1.74 m, respectively. Typically, the half of
lane width on a highway is 1.8 m, which is close enough
in the lateral direction. In addition, the relative speed is
about −10 m/s, which can cause an accident in the longitudi-
nal direction. This problem has the potential to trigger a false
alarm in the collision avoidance algorithm.

Fig. 2 illustrates two distinct scenarios: in Fig.2 (a), a vehi-
cle abruptly cuts in from the left lane, leading to an accident,
while in Fig. 2 (b), despite a similar cut-in action, no accident
ensues. In both instances, the Automatic Emergency Brak-
ing (AEB) of the ego vehicle is engaged. As can be seen in the
upper part of each of the Fig. 2 (a) and (b), in the pre-accident
situation, it is difficult to distinguish which scenario is the
accident. However, due to the difference in relative speeds,
the accident occurs in the lower part of Fig. 2 (a) and does not
occur in Fig. 2 (b). In other words, it is difficult to determine
the presence of an accident using SBEV including position
and road geometry. It is essential to include additional infor-
mation on the BEV to determine the potential for collision.

To solve these problems, we propose an integrated
decision-making algorithm with physic-based method
and convolution neural network. Furthermore, proposed
algorithm that avoids an accident by selecting six avoidance
strategies when it is determined that an accident is about to
occur. That is, we define six collision avoidance or mitigation
strategies as follows:

• Decelerating (DEC): decelerating of ego vehicle or acti-
vation of AEB.

• Evasive Steering to Left/Right Lane (ESL/ESR): evasive
steering with allowable lateral deviation in in-lane.

• Emergency Lane Change to Left/Right Lane (ELCL/
ELCR): lane changing steering to the next left or right
lane.

• Emergency Steering to Shoulder (ESS): lane changing
to the shoulder if there is a shoulder on the road.

It is assumed that ego vehicle equips the AEB system,
and it activated automatically regardless of the decision
algorithm. Therefore, the decelerating strategy is not consid-
ered by the decision-making algorithm.

III. STARATEGY DECISION FOR AUTOMATIC
EMERGENCY STEERING (AES)
The overall architecture of the decision-making algorithm is
organized as shown in Fig. 3. This proposed algorithm is a
combination of abstraction and classification. The abstraction
consists of a static layer (e.g., road geometry and guard-
rail), a dynamic layer (e.g., trajectory of ego and surrounding
vehicles), and a meta layer (e.g., threat metrics and motion
prediction). The abstraction module is divided into Semantic
Map and stacked PSM (Predicted Semantic Map) com-
ponents. For the Semantic Map component, an image is
generated for each physics-based input, which is defined as a
‘‘layer.’’ Subsequently, these individual layers are combined

FIGURE 2. Defining the problem of decision for collision avoidance in
cutting-in scenarios.

to generate the Semantic Map. In the stacked PSM com-
ponent, individual PSMs are generated for each strategy
based on avoidance strategies of ego vehicle. In Fig. 3, the
first PSM combines layers to represent the current driving
situation, and the empty red box, which represents the pre-
dicted position of the surrounding vehicle, contacts the black
box (position of ego vehicle). In other words, if the current
situation continues, a collision will occur. The subsequent
figure illustrates a PSM that represents the ego vehicle’s ESS
avoidance strategy. In this depiction, the ego vehicle’s avoid-
ance trajectory is shown the surrounding vehicle’s relative
position and does not contact. Additionally, the generated
PSMs are termed as ‘‘Stacked PSM’’ and applied as input for
the CNN. Finally, the deep learning-based decision algorithm
determines collision avoidance strategies when there is a risk
of collision.

A. ABSTRACTION FOR INTEGRATED DECISION
1) THREAT ASSESSMENT
One of the most used and straightforward longitudinal behav-
ior threat metrics is the time-to-collision (TTC), which
calculated with relative longitudinal distance x and veloc-
ity vx and can be expressed as TTC = x/vx . Similarly, based
on correlation of relative lateral distance y and velocity vy,
the time-to-line crossing (TLC), representing a lateral threat
metric, is given by as TLC = y/vy. To consider for both lon-
gitudinal and lateral behaviors, a collision index is employed,

VOLUME 11, 2023 140883



J. Lee, B. Song: Data-Driven Strategy Decision Integrating CNN

FIGURE 3. Illustrative architecture of collision avoidance algorithm.

which is calculated as follows [30]:

Ilong = max
(
xmax − xp
xmax − xth

,
TTC
TTCth

)
(1)

Ilat = min
(
Ilong, 1

)
· min

(
TLCth
tTLC

, 1
)

(2)

where,

xp =
R− dbr
dw − dbr

, dw = −Ṙ · td + dbr ,

dbr = −Ṙ · tbr +
v2A − v2B
2ax,max

(3)

where xmax , xth, TTCth and TLCth are design parameters and
the mor detailed description may be referred to the reference
and The collision index of surrounding vehicle is normalized
to the [0; 255] and reflected in red channels of PSM.

2) MOTION PREDICTION
Many researchers have studied prediction for target vehi-
cles, and various methods have been proposed [31], [32].
Especially, vehicle prediction algorithms based on LSTM or
HMM become reliable for long term prediction. The pro-
posed algorithm focuses on accident scenarios, which are
sufficient for short term prediction. Furthermore, as can be
seen in the literature, most algorithms perform similarly when
the horizon time is two seconds or less. Therefore, we used
a physics-based algorithm as the Interaction Multiple Model
UnscentedKalman Filter (IMM-UKF) that has similar perfor-
mance and less computation [33], [34]. This method utilizes
a combination of multiple models to estimate the state of the
target vehicle, which helps to improve the accuracy of the pre-
dictions. Two kinematic models, the constant velocity (CV)
model and the constant turn rate and velocity (CTRV) model,
are employed for motion prediction. The CV model is used

for lane-keeping, and the CTRV model is suited for lane-
changing maneuvers. The equation of the CVmodel is shown
below:

xh,1(k + 1) = f
(
xh,1(k + 1)

)
+ w1

f
(
xh,1(k)

)
=


px(k) + v(k) cos(θ(k))T
py(k) + v(k) sin(θ(k))T

v(k)
θ (k)
0


w1

∼ N (0,Q) (4)

Also, the equation of the CTRV model is represented as
follows:

xh,2(k + 1)

= f
(
xh,2(k + 1)

)
+ w2

f
(
xh,2(k)

)

=



Px(k) +
v(k)
ω(k)

(− cos(θ(k) + ω(k)T )) + cos(θ(k))

Py(k) +
v(k)
ω(k)

(sin(θ (k) + ω(k)T )) − sin(θ (k))

v(k)
θ (k) + ω(k)T

ω(k)


w2

∼ N (0,Q) (5)

where xh(k), i = 1,2 denote the elements of the surrounding
vehicle motion: px , py, v, θ, ω. px and py represent the relative
longitudinal and lateral position of the vehicle, respectively.
v represents velocity and θ, ω correspond to the relative head-
ing angle and yaw rate, respectively. wi, i = 1, 2 represents
the process noise. The prediction horizon for the motion of
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surrounding vehicle is chosen as 2 second and additional
specifications and parameters related to the UKF can be
found in [35] and [36].

The strategies for collision avoidance are defined
in Section II. The generated trajectories are based on lateral
motion for lane change [24]. To avoid the high acceleration
jerk, refer [24] suggests lane change motion with limited
acceleration based on hyperbolic tangent path. However, this
method is not considered roads with curvature. To compen-
sate for limit, define the modified lane change trajectory as
follows:

ydes(t) = C1 tan h (C2t + C3) + y0 + yc(t) (6)

where,

C1 =
Mt − y0

2
, C2 =

√
ay, lim
ay,0C1

, C3 =
tLC
2

tLC =
2
C2

tan h−1
(
Mt − C1 − y0

C1

)
yC (t) = a3x(t)3 + a2x(t)2 + a1x(t), Mt = W −Wv − ε

where,Mt is maximum allowable lateral movement, yc is lat-
eral movement by curvature, respectively and ay,lim and ay,0
limited lateral acceleration of lane change and lateral accel-
eration of ego vehicle, respectively.

Fig. 4 shows how to generate trajectories based on the
road environment. The trajectories of the different strategies
are applied to the trajectories of the surrounding vehicles
on the PSM to check for collisions. As shown in Fig. 5,
it is difficult to intuitively determine if avoidance is possible
when the predicted trajectory of surrounding vehicle and the
ego vehicle are concurrently presented on the BEV. For this
purpose, the predicted trajectory of the surrounding vehicle
is modified by converting its relative coordinates of the ego
trajectory:

xprel,i = xptar,i − xpego,i
yprel,i = yptar,i − ypego,i (7)

where subscript i = 1, . . . , 10 represents the predictive
time horizon, xprel and yprel are modified trajectory of the
surrounding vehicles and subscript tar and ego denote the pre-
dicted trajectory of surrounding and ego vehicle, respectively.

As depicted in Fig. 5, with themodified trajectory, the BEV
confirms that a collision does not occur.

3) STACKED PSM
To represent the vehicles and environment, we generate the
PSM image with h × w × 3. In the PSM, h and w denote
the height and width, which are 251 pixels and 61 pixels,
respectively. When translated to physical dimensions, these
values correspond to 50 meters and 12 meters, with a con-
version rate of 0.2 meters per pixel. The road geometry,
such as lanes and guardrails, are represented by green and
black lines, respectively, forming the static layer in Fig. 6.
For the dynamic layer, the positions of ego and surrounding
vehicles are marked as black box corresponding to the size of
each vehicle. The past trajectories of surrounding vehicles are

FIGURE 4. Trajectory generation for evasive steering strategy.

FIGURE 5. Coordinate transformation for predicted trajectory.

illustrated using the black dash lines. The predicted motion of
surrounding vehicles and their finite positions are shown with
dot lines and boxes. Also, the risk of surrounding vehicles
is represented by the R channel, with the intensity of lumi-
nance indicates the level of risk, as determined by the threat
assessment algorithm. Subsequently, the predicted trajectory
is modified by each strategy of the ego vehicle, and the PSMs
generated for each strategy are applied as an input into the
CNN. Therefore, Six PSMs are stacked, which includes five
PSMs for each individual strategy and one PSM representing
the current situation. Fig. 6 presents a representative case of
stacked PSMs corresponding to each strategy. This example
illustrates a scenario where a surrounding vehicle cuts in from
the left lane into the lane of ego vehicle. Fig. 6 (a) displays
the current driving situation in the absence of any avoidance
strategy. In contrast, Fig. 6 (b) and (c) illustrate driving sit-
uations where the target vehicle’s trajectory reflects the ESR
and ESS avoidance strategies of the ego vehicle, respectively.
In Fig. 6 (a) and (b), the ego vehicle and predicted trajectories
of surrounding vehicle overlap in PSM, which indicates a
collision. On the other hand, as shown in Fig. 6 (c), the
collision can be avoided by selecting the ESS strategy.

B. CLASSIFICATION FOR DECISION-MAKING
Fig. 7 illustrates the structure of the CNN architecture for the
classification used in this study. As depicted in the figure,
our network has 3 convolutional layers followed by 1 fully
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FIGURE 6. Example of stacked PSM.

connected layer. The convolutional layers perform each
3 × 3 filters and have rectified linear unit (ReLU) activation.
each convolutional layer has 8, 16, and 32 filters, respectively.
Before the fully connected layer, dropout layer is inserted
to avoid the overfitting. The fully connected layer uses the
soft-max function to select the strategy with probability dis-
tribution for the seven classes. The classes are denoted as:

yht = f (xt | W )

xt ∈ {0, 1}h×w×c, yht ∈ [0, 1]7,
7∑
j=1

yh,jt = 1 (8)

where xt is the input image with dimensions h × w × c.
h(height), w(width), and c(channel) are 251, 61, and 18,
respectively. yh is the probability distribution of strategies:
safe, ESL, ESR, ELCL, ELCR, ESS, collision.

We used a cross-entropy loss function to obtain the weights
and included an L2 regulation term to avoid over-fitting. The
loss function defined as follows:

L
(
yt , yht

)
=

1
N

N∑
t=1

K∑
j=1

(
yjt · log

(
yh,jt

))
+ λ∥W∥2

where y and yh are ground-truth and predicted strategy at
time t , respectively. λ is a weight for regulation and K is the
number of strategies.

The predicted strategy st corresponds to the index of yh

with the maximum probability as follows:
st = argmax

j
yh,jt (9)

The proposed CNN-basedmodel is trained using a stochas-
tic gradient method with a learning rate of 0.01 every

10 thousand iterations. The batch size of 100 and trained with
150 epochs.

FIGURE 7. Network architecture for strategy classification.

FIGURE 8. Sensor configuration of test vehicle.

IV. VALIDATION AND EVALUATION
In this section, the proposed algorithm was evaluated by
simulation based on driving scenarios and field data. Safety-
critical concrete scenarios were reconstructed by CarMaker.
The concrete scenario comprises 5,750 collision scenar-
ios and 10,680 safe scenarios. Furthermore, the robustness
to sensor noise and wrong measurement is verified by
experimental data collected from highway driving scenarios.
in Section IV-B. 2).

A. DATA SET
1) FIELD OPERATION TEST (FOT)
The data for evaluation of the proposed algorithm were
acquired by test vehicle with environmental sensors
(in Fig. 8).
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FIGURE 9. Test site and the route of real driving data.

We used front and corner radar sensors to detect sur-
rounding vehicles. To collect the data about lane and global
position, front vision system and low-cost GPS (horizontal
accuracy: 1.0m) were equipped on the test vehicle. All sensor
data were synchronized and acquired on an industrial PCwith
Intel i7 CPU@2.6GHz and RAM@64GB. The data for this
study were collected about 948 km, 9.5 hours of real traffic
from a test vehicle driving on eight highways in South Korea.
The driving route for the data acquisition is highlighted in
blue color on a satellite map in Fig. 9.

2) SIMULATION OF SAFETY-CRITICAL SCENARIOS
Imminent collision (or Safety-critical) scenarios are seldom
encountered in real test driving. Choosing relevant scenarios
from numerous cases is challenging. Furthermore, because
the performance of automatic evasive steering systems can
vary based on test scenarios, it’s crucial to define a specific
set of scenarios, termed a ‘‘scenario catalog,’’ for the devel-
opment and evaluation of AES [24].
In this study, four unsafe logical scenarios based on

the fatal accident analysis on Korean road are chosen as
the scenario catalog and their schematics are shown in the
form of IGLAD in Table 2 [37], [38]. Assuming the ego
vehicle maintains lane-keeping, the behaviors of the target
vehicle (TV) include lane-following, stopping (or remaining
stationary), cut-in, and cut-out. It is also necessary to consider
both road environments and dynamics of surrounding vehi-
cles (SV). Among many elements of the road environment,
road geometry such as straight, curved, and existence of
shoulders are considered as shown in Table 2. Consequently,
eight logical scenarios are generated by combination of the
three safety-critical scenarios and two road environments.
Furthermore, 16,430 concrete scenarios are considered for
development and validation of AES in this study. For the
given concrete scenarios, the ground-truth is essential for
the training and validation of data-driven based collision
avoidance algorithm. The annotation process is based on
worst-case analysis. Fig. 10 illustrates the hierarchical assign-
ment of annotation based on the prioritization of strategies.
The priority of the strategy is determined according to the

sequence shown in Fig. 10 with the aim of reducing the
incidence of secondary accidents. First, it checks the lateral
position (yrel) of the target vehicle to determine the direction.
A positive value denotes a position to the left of the ego
vehicle, and this value subsequently determines the avoidance
strategies opposite the position. Afterwards, the apply the
ESx and ELCx sequentially to determine if an avoidance
strategy exists. If the lateral position of target vehicle is on
the left side of the ego vehicle and the ESR strategy is unable
to avoid the target, it checks whether the shoulder is detected.
If shoulder is detected, it then verifies whether the ESS strat-
egy avoids the accident. Finally, if it is impossible to avoid a
collision using any of the strategies, the concrete scenario is
labeled as a collision.

Fig. 11 (a) and (b) show the result of the annotation for
scenarios with straight road and road geometries like curves
and the presence of shoulder. The annotation of scenarios
involving cut-in and stopped vehicles exhibits a similar dis-
tribution concerning straight roads and road geometry. The
lane-following scenario with road geometry has a smaller
safety ratio, as shown in Fig. 11 (b), which shows the
ground-truth variations of the scenario with road geometry.

TABLE 2. Safety-critical scenario and road geometry for collision
avoidance algorithm.

B. PERFORMANCE ANALYSIS
1) SIMULATION DATA
The proposed collision avoidance algorithm is comparedwith
results from two physic-based algorithms and CNN-based
inference algorithms [12], [25], [30]. First, emergency avoid-
ance decision making algorithm is based on minimum safety
spacing (MSS) for quick lane changing and braking. The
calculation ofMSS iswell-knownmethod for bothmandatory
lane change (MLC) and discretionary lane change (DLC) [9],
[10], [11]. Also, we additionally conducted a comparison
with a collision avoidance algorithm that utilizes a colli-
sion index-based method as input for the meta-layer within
the semantic map. The CNN method, which incorporates
SBEV, is proposed for predicting the intentions of surround-
ing vehicles and has been modified into a collision avoidance
algorithm. To classify the ESS, traffic infrastructure in static
layer adds on original SBEV [25]. Additionally, the output of
the classification has been modified for collision avoidance
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FIGURE 10. Flowchart for annotation of collision avoidance strategies.

FIGURE 11. Distribution of safety-critical scenarios with respect to
annotation of strategies.

strategies as outlined in equation (7). Also, we omitted the
comparison of performance with and without motion predic-
tion because only a single semantic map is generated when
motion prediction is not included.

The collision scenarios are labeled with avoidance strate-
gies or collision for each concrete scenario using the method
mentioned in Section IV. A. For training and testing, we ran-
domly divide 80% and 20% of the concrete scenarios.
In Section IV-B, we use the 16,430 of the safety-critical
concrete scenarios to evaluate the decision-making algorithm.
The metric for performance evaluation of decision-making
use prediction time, accuracy, false positive rate and weighted
F1 score. First, the prediction time tp serves as a metric to
evaluate the performance of the decision-making prediction
capability as follows [39]:

tp = tc − td (10)

where tc represents the moment when a collision occurs
between the target vehicle and the ego vehicle and td is
represents the moment of decision regarding the collision
within the algorithm.

The metrics for the evaluation are as follows:
• True Positive (TP): the label for the scenario is not

‘‘safe,’’ and the algorithm predicts a strategy as same
the label within 0.6 seconds prior the tc.

• True Negative (TN): the scenario is labeled as ‘‘safe,’’
and the algorithm does not decide the any strategy.

• False Positive (FP): the label assigned to the scenario
is not ‘‘safe,’’
1) The result of algorithm is not a strategy as same

the assigned label of the scenario.
2) The result of the algorithm is a strategy with the

same label as the following but does not satisfy
the following conditions.

tlower < tp < tupper

where tupper and tlower respectively, denote the upper and
lower limit of prediction time. For this study, tupper of 1.5s
and tlower of 0.6s are used.

• False Negative (FN): The label assigned to the scenario
is ‘‘safe,’’ and the algorithm always predicts the safe in
concrete scenario.

For a fair evaluation, in Table 3, we present the accu-
racy (ACU), false positive rate (FPR), weighted F1 score (wF)
and prediction time (tp) with confusionmatrix. the ACU, FPR
and wF are define as

ACU =
TP+ TN

TP+ TN + FP+ FN

FPR =
FP

FP+ TN

wF =
2TN

2TN + FP+ FN

and reader can refer to [20] and [34] for the detail of the
performance metrics.
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TABLE 3. Performance evaluation for simulation data.

FIGURE 12. Snapshot for cut-in from the left lane scenarios.

FIGURE 13. Comparison of decision results for safe scenario.

Table 3 provides the performance evaluation results of
different approaches. In comparison to the collision index-
based method, MSS-based method and the SBEV method,
the accuracy of the proposed method has improved by 23%,
22% and 10%, respectively. The False Positive Rate (FPR),
indicating the rate of false alarms, exhibited the lowest results
when compared to other methods. Regarding prediction time,
there is an approximate difference of 0.1 seconds between
the proposed method and the MSS method, with the SBEV
method being the earliest.

Table 4 shows the quantitative results of the algorithm for
each safety-critical scenario. The performance of the pro-
posed algorithm demonstrates the highest accuracy across all
scenarios. The accuracy of CNN-based methods is better than
that of physics-based methods in cut-in and stopped scenar-
ios, while the SBV-based method has the lowest accuracy in
lane-keeping scenarios.

Fig. 12 (a) to (d) illustrate safety-critical scenarios. The
first scenario depicts a target vehicle cuts in without causing
a collision in Fig. 12 (a) and (b), while the second scenario
shows a collision occurrence in Fig. 12 (c) and (d). Fig. 13
shows the results for the decision-making with the proposed
algorithm, SBEV-based algorithm, and collision index-based
algorithm. As shown in the figure, the proposed method
consistently determines it as safe, whereas the SBEV-based
method and collision index-based method indicate the deci-
sion result as either an avoidance strategy or a collision.
In this case, the proposed algorithm is improved comparing
to the other methods.

Fig. 14 (a) illustrates that an instance where the stacked
SBEV algorithm triggers a false alarm due to the cut-in
actions of the target vehicle, and Fig. 14 (b) depicts the
situation where the distance between the ego vehicle and the
target vehicle is at its minimum. When the target vehicle
crosses the left lane at t = 10.66s, the results of stacked PSM
based algorithm select the ESR (Evasive Steering to Right)
as shown in Fig. 14 (a).

Also, when two vehicles are closest in distance at t= 12.3s,
the decision results in a misjudgment. Fig. 14 (b) shows the
SBEV image at the same time. In contrast, Fig. 14 (c) depicts
the PSM in the current situation, where the decision results
are safe because the ego vehicle does not make contact with
the trajectory of the target vehicle. As the distance to the target
vehicle decreases, the risk level increases. In Fig. 14 (d) on
the PSM, the color of the target vehicle has changed to red.
However, the predicted trajectory of the target vehicle does
not encroach on the ego vehicle.

Other results of the target vehicle cutting-in from the left
lane scenario with a collision are shown in Fig. 12 (c) and (d).
As shown in the Fig. 15 (a), Both SBEV-based and
proposed algorithms select the ESR strategy at approxi-
mately 8.03 seconds, just 0.7 seconds before the collision
occurs. The collision index-based algorithm selects a strat-
egy slightly later than the other two algorithms and the
decision of an accident is unavoidable is selected relatively
quickly.
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TABLE 4. Performance evaluation for simulation data in safety-critical
scenarios.

FIGURE 14. Comparison of abstraction results for safe scenario.

As shown in the Fig. 15 (b), the predicted trajectories of
the target vehicle and the ego vehicle are in contact, and
it is determined that avoidance is necessary. The strategies

that do not contact the predicted trajectory are ESR and
ELCR. The ESR strategy is selected according to the pre-
defined priority among the two strategies. In this scenario,
the collision time is 8.73 seconds. Both the SBEV-based
and proposed algorithms determine that they cannot avoid
the accident, with 0.19 seconds and 0.48 seconds remaining,
respectively. As shown in Fig. 15 (c), in this case, none of the
strategies in the PSM can be avoided. Also, The SBEV-based
algorithm alternately selects ESR and ELCR until the colli-
sion, whereas the proposed algorithm maintains a consistent
decision throughout the scenario.

FIGURE 15. Comparison of collision avoidance results in safety-critical
scenario with collision.

2) REAL ROAD DATA
We also validated the proposed algorithm via test vehicle
were collected by driving in highway in real-world. The
performance evaluation of the proposed algorithm and other
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algorithms is summarized in Table 5. The proposed algorithm
performs better than other methods in ACU, FPR and wF.

In Fig. 16, the ego vehicle follows the first lane and
adjacent heavy-duty truck drives in second lane. The longi-
tudinal and lateral positions of the left track are recorded at
19meters and−1.74meters, respectively. Given that the typi-
cal half-width of a highway lane is approximately 1.8 meters,
these measurements suggest proximity in the lateral aspect.
Furthermore, a relative speed of approximately -10 m/s indi-
cates a potential hazard for an accident longitudinally. The
ego vehicle detects a new track on the left side of the adjacent
heavy-duty truck at 85s. The decision results of proposed
and MSS based method are shows in Fig. 17. As illustrated
in the figure, the proposed method decides it as safe, while
the MSS-based method select the ELCL strategy. Also, the
minimum safe space can be calculated as:

MSS =

(
vego − vtarget

)2
2ax,max

+ vego · τbrk (11)

where ax,max and τbrk are the maximum deceleration of ego
vehicle and the dynamic response time of brake system.

The MSS is determined to be approximately 20 meters
based on the relative velocity of the track and the velocity
of the ego vehicle at 85.6s. The magnitude of the relative
longitudinal position (about 20m) is less than the minimum
safety space as depicted in Fig. 17. In contrast to pro-
posed algorithm, the MSS-based algorithm results in a false
alarm. The proposed algorithm also compares the collision
with the predicted trajectory of all surrounding vehicles in
the PSM. Therefore, it can operate without target selection.
As shown on the right side in Fig. 16, despite the new track
is recognized, predicted trajectory of new track (blue track of
frontal vehicle) does not contact the ego vehicle. It also does

FIGURE 16. Snapshot and PSM image at 85.6s.

TABLE 5. Performance evaluation for FOT data.

not conflict with the predicted trajectory of the maintained
track (red track of frontal vehicle) and the decision result is
safe.

FIGURE 17. Comparison of collision avoidance results in highway data.

V. CONCLUSION
In this paper, we have presented the integration of data-driven
decision-making with convolutional neural networks and
threat assessment for the development of automatic evasive
steering systems. The proposed methodology involves data
collection, motion prediction, threat assessment, abstraction,
and data-driven decision-making. The CNN-based decision-
making algorithm is integrated with a physics-based method,
which handles motion prediction and threat assessment
through abstraction. The results showed precise decision
accuracy and the moment of decision, which confirmed that
the performance of the proposed algorithm is higher than
other algorithms. Furthermore, by evaluating it with sim-
ulation and real-world data, the proposed algorithm was
able to verify not only its performance in collision scenar-
ios, but also its applicability in real-time. Future work for
the decision-making algorithm improves the classifier using
the Recurrent Neural Networks (RNN) such as LSTM or
RL-based architecture. Also, the exploration of combinations
of physics-based inputs will advance the abstraction.

REFERENCES
[1] S.-G. Shin, D.-R. Ahn, Y.-S. Baek, and H.-K. Lee, ‘‘Adaptive AEB con-

trol strategy for collision avoidance including rear vehicles,’’ in Proc.
IEEE Intell. Transp. Syst. Conf. (ITSC). Auckland, New Zealand: IEEE,
Oct. 2019, pp. 2872–2878.

[2] S. Yoon, H. Jeon, and D. Kum, ‘‘Predictive cruise control using radial basis
function network-based vehicle motion prediction and chance constrained
model predictive control,’’ IEEE Trans. Intell. Transp. Syst., vol. 20, no. 10,
pp. 3832–3843, Oct. 2019.

[3] Intelligent Transport Systems—Collision Evasive Lateral Manoeuvre
Systems (CELM)—Performance Requirements and Test Procedures,
Standard ISO/CD23375, 2023.

[4] Euro NCAP 2025 Roadmap. Accessed: Dec. 13, 2023. [Online]. Available:
https://cdn.euroncap.com/media/30700/euroncap-roadmap-2025-v4.pdf

[5] Euro NCAP Vision 2030: A Safer Future for Mobility. Accessed: Dec. 13,
2023. [Online]. Available: https://cdn.euroncap.com/media/74468/euro-
ncap-roadmap-vision-2030.pdf

VOLUME 11, 2023 140891



J. Lee, B. Song: Data-Driven Strategy Decision Integrating CNN

[6] Rear-End Collision Between a Car Operating with Advanced Driver
Assistance Systems and a Stationary Fire Truck, Nat. Transp. Saf. Board,
Culver City, CA, USA, 2018.

[7] Taxonomy and Definitions for Terms Related to Driving Automation Sys-
tems for On-Road Motor Vehicles, Standard SAE J3016, SAE, Geneva,
Switzerland, Apr. 2021.

[8] J. Dahl, G. R. de Campos, C. Olsson, and J. Fredriksson, ‘‘Collision
avoidance: A literature review on threat-assessment techniques,’’ IEEE
Trans. Intell. Vehicles, vol. 4, no. 1, pp. 101–113, Mar. 2019.

[9] G. Li, Y. Yang, T. Zhang, X. Qu, D. Cao, B. Cheng, and K. Li, ‘‘Risk
assessment based collision avoidance decision-making for autonomous
vehicles in multi-scenarios,’’ Transp. Res. C, Emerg. Technol., vol. 122,
Jan. 2021, Art. no. 102820.

[10] H. Jula, E. B. Kosmatopoulos, and P. A. Ioannou, ‘‘Collision avoidance
analysis for lane changing and merging,’’ IEEE Trans. Veh. Technol.,
vol. 49, no. 6, pp. 2295–2308, Nov. 2000.

[11] R. Dang, J. Wang, S. E. Li, and K. Li, ‘‘Coordinated adaptive cruise control
system with lane-change assistance,’’ IEEE Trans. Intell. Transp. Syst.,
vol. 16, no. 5, pp. 2373–2383, Oct. 2015.

[12] Z. Zhang, L. Zhang, C. Wang, M.Wang, D. Cao, and Z. Wang, ‘‘Integrated
decision making and motion control for autonomous emergency avoidance
based on driving primitives transition,’’ IEEE Trans. Veh. Technol., vol. 72,
no. 4, pp. 4207–4221, Apr. 2023.

[13] X. Xu, L. Zuo, X. Li, L. Qian, J. Ren, and Z. Sun, ‘‘A reinforcement
learning approach to autonomous decision making of intelligent vehicles
on highways,’’ IEEE Trans. Syst., Man, Cybern., Syst., vol. 50, no. 10,
pp. 3884–3897, Oct. 2020.

[14] M. Ammour, R. Orjuela, and M. Basset, ‘‘A MPC combined decision
making and trajectory planning for autonomous vehicle collision avoid-
ance,’’ IEEE Trans. Intell. Transp. Syst., vol. 23, no. 12, pp. 24805–24817,
Dec. 2022.

[15] S. Cheng, L. Li, H.-Q. Guo, Z.-G. Chen, and P. Song, ‘‘Longitudinal
collision avoidance and lateral stability adaptive control system based on
MPC of autonomous vehicles,’’ IEEE Trans. Intell. Transp. Syst., vol. 21,
no. 6, pp. 2376–2385, Jun. 2020.

[16] J. Ji, A. Khajepour, W.W. Melek, and Y. Huang, ‘‘Path planning and track-
ing for vehicle collision avoidance based on model predictive control with
multiconstraints,’’ IEEE Trans. Veh. Technol., vol. 66, no. 2, pp. 952–964,
Feb. 2017.

[17] Y. Chen, S. Chen, H. Ren, Z. Gao, and Z. Liu, ‘‘Path tracking and handling
stability control strategy with collision avoidance for the autonomous
vehicle under extreme conditions,’’ IEEE Trans. Veh. Technol., vol. 69,
no. 12, pp. 14602–14617, Dec. 2020.

[18] J. Liao, T. Liu, X. Tang, X. Mu, B. Huang, and D. Cao, ‘‘Decision-making
strategy on highway for autonomous vehicles using deep reinforcement
learning,’’ IEEE Access, vol. 8, pp. 177804–177814, 2020.

[19] J. Wang, Q. Zhang, D. Zhao, and Y. Chen, ‘‘Lane change decision-making
through deep reinforcement learning with rule-based constraints,’’ 2019,
arXiv:1904.00231.

[20] B. R. Kiran, I. Sobh, V. Talpaert, P.Mannion, A. A. Al Sallab, S. Yogamani,
and P. Pérez, ‘‘Deep reinforcement learning for autonomous driving: A sur-
vey,’’ 2020, arXiv:2002.00444.

[21] S. Mozaffari, O. Y. Al-Jarrah, M. Dianati, P. Jennings, and A. Mouzakitis,
‘‘Deep learning-based vehicle behavior prediction for autonomous driving
applications: A review,’’ IEEE Trans. Intell. Transp. Syst., vol. 23, no. 1,
pp. 33–47, Jan. 2022.

[22] H. Cui, V. Radosavljevic, F.-C. Chou, T.-H. Lin, T. Nguyen, T.-K. Huang,
J. Schneider, and N. Djuric, ‘‘Multimodal trajectory predictions for
autonomous driving using deep convolutional networks,’’ in Proc. Int.
Conf. Robot. Autom. (ICRA). Montreal, QC, Canada: IEEE, May 2019,
pp. 2090–2096.

[23] N. Djuric, V. Radosavljevic, H. Cui, T. Nguyen, F.-C. Chou, T.-H. Lin,
N. Singh, and J. Schneider, ‘‘Uncertainty-aware short-term motion pre-
diction of traffic actors for autonomous driving,’’ in Proc. IEEE Winter
Conf. Appl. Comput. Vis. (WACV). Snowmass Village, CO, USA: IEEE,
Mar. 2020, pp. 2084–2093.

[24] K. Yi and B. Song, ‘‘Automated driving vehicles,’’ in Vehicle Dynamics:
Fundamentals and Ultimate Trends, B. Lenzo, Ed. Cham, Switzerland:
Springer, 2022, pp. 289–387.

[25] D. Lee, Y. P. Kwon, S. McMains, and J. K. Hedrick, ‘‘Convolution neural
network-based lane change intention prediction of surrounding vehicles
for ACC,’’ in Proc. IEEE 20th Int. Conf. Intell. Transp. Syst. (ITSC).
Yokohama, Japan: IEEE, Oct. 2017, pp. 1–6.

[26] R. Gruner, P. Henzler, G. Hinz, C. Eckstein, and A. Knoll, ‘‘Spatiotem-
poral representation of driving scenarios and classification using neural
networks,’’ in Proc. IEEE Intell. Vehicles Symp. (IV). Los Angeles, CA,
USA: IEEE, Jun. 2017, pp. 1782–1788.

[27] N. Harmening, M. Biloš, and S. Günnemann, ‘‘Deep representation learn-
ing and clustering of traffic scenarios,’’ 2020, arXiv:2007.07740.

[28] X.Wang, J. Liu, T. Qiu, C.Mu, C. Chen, and P. Zhou, ‘‘A real-time collision
prediction mechanismwith deep learning for intelligent transportation sys-
tem,’’ IEEE Trans. Veh. Technol., vol. 69, no. 9, pp. 9497–9508, Sep. 2020.

[29] S. Cheng, B. Yang, Z. Wang, and K. Nakano, ‘‘Spatio-temporal image
representation and deep-learning-based decision framework for auto-
mated vehicles,’’ IEEE Trans. Intell. Transp. Syst., vol. 23, no. 12,
pp. 24866–24875, Dec. 2022.

[30] K. Kim, ‘‘Predicted potential risk-based vehicle motion control of auto-
mated vehicles for integrated risk management,’’ Ph.D. dissertation, Dept.
Mech. Eng., Seoul Nat. Univ., Seoul, South Korea, 2016.

[31] N. Deo, A. Rangesh, and M. M. Trivedi, ‘‘How would surround vehicles
move? A unified framework for maneuver classification and motion pre-
diction,’’ IEEE Trans. Intell. Vehicles, vol. 3, no. 2, pp. 129–140, Jun. 2018.

[32] S. Mukherjee, S. Wang, and A. Wallace, ‘‘Interacting vehicle trajec-
tory prediction with convolutional recurrent neural networks,’’ in Proc.
IEEE Int. Conf. Robot. Autom. (ICRA). Paris, France: IEEE, May 2020,
pp. 4336–4342.

[33] R. Toledo-Moreo and M. A. Zamora-Izquierdo, ‘‘IMM-based lane-change
prediction in highways with low-cost GPS/INS,’’ IEEE Trans. Intell.
Transp. Syst., vol. 10, no. 1, pp. 180–185, Mar. 2009.

[34] K. Jo, K. Chu, K. Lee, and M. Sunwoo, ‘‘Integration of multiple vehicle
models with an IMM filter for vehicle localization,’’ in Proc. IEEE Intell.
Vehicles Symp. La Jolla, CA, USA: IEEE, Jun. 2010, pp. 746–751.

[35] D. Lee, C. Liu, and J. K. Hedrick, ‘‘Interacting multiple model-based
human motion prediction for motion planning of companion robots,’’ in
Proc. IEEE Int. Symp. Saf., Secur., Rescue Robot. (SSRR). West Lafayette,
IN, USA: IEEE, Oct. 2015, pp. 1–7.

[36] Q. Xu, X. Li, and C.-Y. Chan, ‘‘A cost-effective vehicle localization
solution using an interacting multiple model—Unscented Kalman filters
(IMM-UKF) algorithm and grey neural network,’’ Sensors, vol. 17, no. 6,
p. 1431, Jun. 2017.

[37] Korea Road Traffic Authority. (2016). Traffic Accident Analysis System.
[Online]. Available: http://taas.koroad.or.kr/

[38] IGLAD. (2019). IGLAD Codebook. [Online]. Available: http://www.
iglad.net

[39] R. Song and B. Li, ‘‘Surrounding vehicles’ lane change maneuver predic-
tion and detection for intelligent vehicles: A comprehensive review,’’ IEEE
Trans. Intell. Transp. Syst., vol. 23, no. 7, pp. 6046–6062, Jul. 2022.

JIMIN LEE received the B.S. and M.S. degrees
in mechanical engineering from Ajou Univer-
sity, Suwon, South Korea, in 2013 and 2015,
respectively, where he is currently pursuing the
Ph.D. degree in mechanical engineering.

His research interests include decision-making,
threat assessment, automated vehicle control, and
collision avoidance systems.

BONGSOB SONG received the B.S. degree in
mechanical engineering from Hanyang Univer-
sity, Seoul, South Korea, in 1996, and the M.S.
and Ph.D. degrees in mechanical engineering
from the University of California at Berkeley
(UC Berkeley), Berkeley, CA, USA, in 1999
and 2002, respectively.

He was a Research Engineer with the California
Partners for Advanced Transit and Highways Pro-
gram, UC Berkeley, until 2003. He is currently a

Professor with the Department of Mechanical Engineering, Ajou University,
Suwon, South Korea. His research interests include sensor fusion, convex
optimization, collision avoidance, and threat assessment with applications to
intelligent vehicles.

140892 VOLUME 11, 2023


