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ABSTRACT With the increasing amount of real data, the challenges of large-scale model operations as well
as poor generalization capacity, making selection of an appropriate feature set a significant concern. This
study proposes ImprovedRFECV, an enhanced approach for cross-validated recursive feature elimination
(RFECV). The algorithm first enhances the robustness of the optimal feature subset through random
sampling of different data, building multiple models, and comparing their scores. Simultaneously, the L1
and L2 regularization terms are introduced to evaluate the value of each feature more comprehensively, thus
reducing the impact on the anti-interference term and further improving the accuracy of the algorithm and its
stability. Furthermore, a multi-model ensemble learning framework is employed to enhance generalization
ability and effectively prevent overfitting. Lastly, a both-end expansion removal strategy is adopted to address
the issue of strong covariance among features while enhancing the algorithm’s flexibility. The experimental
results demonstrate that, compared to the RFECV algorithm, the ImprovedRFECV algorithm achieves fewer
optimal average features and outperforms the optimal feature subset across five datasets spanning five
different domains, demonstrating the algorithm’s high level of robustness and generalization ability.

INDEX TERMS Feature selection, machine learning, stability evaluation, regularization, RFECV.

I. INTRODUCTION
Feature selection [1], [2] is a common preprocessing tech-
nique in machine learning that aims to improve both the
performance and interpretability of a model. It aims to iden-
tify the most optimal subset of features from the original data.
Practical applications often face challenges such as the curse
of dimensionality, where the dependence between features in
the dataset can result in issues like increased model computa-
tion and reduced generalizability. Hence, the selection of an
appropriate feature set is crucial in machine learning tasks.
The field of selection employs various algorithms and tech-
niques to tackle the aforementioned issues. These methods
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aim to optimize the selection process and identify the best
feature subset for a given problem.

Three categories of feature selection algorithms can be
distinguished based on various feature selection strategies:
Filter [3], [4], [5], [6], [7], [8], Wrapper [9], [10], [11], [12],
[13], [14], [15], and Embedded [16], [17], [18], [19], [20],
[21], [22], [23], [24], [25], [26]. The Filter method primarily
relies on statistical metrics or information-theoretic measures
to assess the usefulness or duplication of data aspects and
thereafter choose the most advantageous variables for mod-
eling. Liu et al. [3] designed a novel unsupervised feature
selection that considers complete sample correlations and
feature dependencies in a unified framework. Specifically,
the significant neighbors of each sample are comprehensively
retained and selected through self-representation dependency

141512

 2023 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ VOLUME 11, 2023

https://orcid.org/0000-0002-9399-7705
https://orcid.org/0009-0001-9275-092X
https://orcid.org/0000-0002-3597-7124
https://orcid.org/0000-0003-1517-6757


T. Tu et al.: More Flexible and Robust Feature Selection Algorithm

and graph construction. Additionally, mutual information is
used to consider correlations between features, and sparse
learning is to remove informative features. However, the
Filter method, while simple to use and computationally fast,
lacks control over the number of features and may select
an inadequate amount, resulting in overfitting or underfitting
[4]. The Wrapper method determines the quality of a feature
subset by iteratively selecting candidate features, training
the corresponding learner, and continuously optimizing until
the optimal set of features is found. This method takes into
account the interaction between features and can find a better
subset of features. However, this type of algorithm, relying
on training samples for modeling, is prone to overfitting.
Overfitting can occur if the subset is too large or the number
of training samples is too small, adversely impacting the
effectiveness of feature selection [4]. Embedded [16], [17]
methods utilize the feature selection capabilities embedded in
specific learners, such as Lasso, Ridge, etc. This method also
considers feature interactions, while not requiring additional
computation, and thus is computationally less expensive.
Zhang et al. [18] investigated a new feature selection method
for data classification that effectively combines the dis-
criminative power of features with ridge regression. It first
establishes the global structure of the training data through
linear discriminant analysis to help identify discriminative
features. Then, the ridge regression model is utilized to evalu-
ate the feature representation and discriminative information
to obtain a representative coefficient matrix. The importance
of the features can be calculated this representative coefficient
matrix. Finally, the selected new feature subset is applied
to a linear support vector machine for data classification.
The method achieves good results in terms of computational
efficiency and cost. While deep learning methods fall under
the Embedded methods category, it is worth noting that
Embedded methods rely on specific learning algorithms and
may be susceptible to overfitting. If neural networks are
used for feature selection, the interpretability is poor [19].
Additionally, there exist other feature selection algorithms
and methods, such as the feature selection method for the
weighted Gini index (WGI) proposed by Liu et al. [20]. The
comparison results of feature selection methods, including
Chi2, F-statistics, and Gini index, indicate that F-statistics
and Chi2 exhibit superior performance when only a few
features are selected. The embedded feature selection method
for the weighted Gini index (WGI) has the highest probability
of achieving optimal performance as the number of selected
features increases. Hu R [21] et al. have combined feature
selection, low-rank selection, and subspace learning into a
cohesive framework. In particular, they utilize the low-rank
constraint for feature selection within the context of a linear
regression model. This approach carefully considers the dual
aspects of information present in the data. The low-rank
constraint considers the correlation among response vari-
ables and embeds an L2P-norm regularization to account
for the correlation among class indicators, feature vectors,
and their corresponding response variables. Additionally,

they utilize the LDA algorithm, which belongs to subspace
learning, to further adjust relevant feature selection results.
Lastly, they conducted experiments on multiple real-life
multi-view image sets. The findings confirmed that the pro-
posed methodology outperformed all comparison algorithms.
Further examples are the classical PCA [22], [23], ICA [24],
[25], LapSVM [26], etc. Each of these methods has its own
characteristics and application range, and it is necessary
to choose the appropriate method according to the specific
problem.

Currently, these feature selection algorithms have been
effectively applied in various fields, especially the RFECV
algorithm has been widely used in several fields. In the
geological sciences field [27], it has been used for feature
selection in soil heavy metal contamination data. In the elec-
tric load field [28], [29], it has been used to select. the most
relevant variables to predict load demand. In the medical
health domain [30], [31], [32], [33], [34], it has been used to
select important features that exhibit a high correlation with
certain diseases or clinical indicators. In the environmental
science domain [35], it can be used to select key features
related to environmental pollution and other environmental
problems. In the finance field [36], it has been used for select-
ing features highly correlated with stock prices and market
trends. However, the best subset of features selected by this
algorithm is less robust and does not solve the covariance
problem [37], while it is prone to overfitting [38]. Thus, there
is a need to enhance existing feature selection methods to
attain superior performance and overcome these limitations.

This paper presents an enhanced version of the RFECV
algorithm proposed, as depicted in Figure 1. The ImprovedR-
FECV algorithm exhibits several advantages over the RFECV
algorithm in three aspects. First, the incorporation of stabil-
ity evaluation, L1 regularization term, and L2 regularization
term in the ImprovedRFECV algorithm enhances the robust-
ness of the best feature subset and mitigates the covariance
issue. Moreover, the ImprovedRFECV algorithm employs an
ensemble learning framework, rather than a single model,
thereby enhancing the model’s generalization ability and mit-
igating the risk of overfitting. Thirdly, the utilization of a
both-end expansion removal strategy optimizes the selection
step and removal strategy. This approach not only accel-
erates feature selection but also reduces the final selection
of feature subsets, resulting in a better feature subset for
the final selection. Overall, these improvements make the
ImprovedRFECV algorithm as a highly effective and efficient
feature selection method, surpassing the traditional RFECV
algorithm, with versatile applications across various fields.

This study used five datasets from the Tianqihoubao
and Kaggle platforms. The datasets consisted of air qual-
ity PM2.5 data, bike-sharing demand data, house price
data, concrete strength data, and electricity load data. The
original datasets, which were filtered by both the RFECV
algorithm and ImprovedRFECV algorithm, were predicted
using Random Forest (RF), LightGBM (LGBM), XGBoost
(XGB), Gradient Boosting Decision Tree (GBDT), and
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FIGURE 1. Overview figure of the ImprovedRFECV algorithm.

four ensemble tree models, respectively, using Root Mean
Square Error (RMSE), Root Mean Squared Logarithmic
Error (RMSLE), R-Squared (R2), and Mean Absolute Per-
centage Error (MAPE) to compare the performance of the
original feature set, the best feature subset selected by the
RFECV algorithm, and the best feature subset selected by
the ImprovedRFECV algorithm. The experimental results
show that the best feature subset selected by the Improve-
dRFECV algorithm achieves superior performance while
utilizing fewer features. This suggests that the ImprovedR-
FECV algorithm effectively enhances the feature selection
process and improves the model’s performance.

In summary, the ImprovedRFECV algorithm has several
key contributions in the field of feature selection. These
contributions encompass:

1) mitigating the risk of overfitting the feature selection
algorithm.

2) effectively addressing the covariance problem.
3) providing control over the number of features, increas-

ing the algorithm’s flexibility.
4) accelerating feature selection and reducing computa-

tional effort.
5) improving the robustness of the optimal feature subset.
Consequently, the ImprovedRFECV algorithm is a more

effective and efficient feature selection method, with appli-
cations across a broad range of fields.

II. RELATED JOB
At present, among the three types of feature selection algo-
rithms, Filter, Wrapper, and Embedded, the wrapped feature
selection algorithm is widely used, especially the RFECV
algorithm has become a hot application in the field of fea-
ture selection. In the field of geoscience, for the problem
of soil heavy metal pollution, Wang et al. [27] used support
vector machine recursive feature elimination cross-validation
(SVM-RFECV) to select among pre-selected feature bands.
In the field of electric load, Liang et al. [28] proposed
a two-stage short-term load forecasting method based on

the RFECV algorithm and the time-convolutional network
efficient channel attention mechanism-long and short-term
memory network (TCN-ECA-LSTM). Veljanovski et al. [29]
proposed a method to combine the ability of neural net-
works to learn nonlinear relationships between features with
the optimization capability of the RFECV algorithm to find
the best prediction model. In the field of medical health,
Sung et al. [30] proposed a new stroke severity classification
method that uses symmetric gait features and the RFECV
algorithm, and experiments showed that combining symmet-
ric gait data with the RFECV technique can improve the
classification performance of stroke severity. Ossai et al. [31]
developed a method based on cross-validation and additional
tree classifier recursive feature elimination machine learning
algorithm (RFECV-ETC) to predict extended pre-hospital
stay (ELOHS) and its risk factors with very good results.
Amakrane et al. [32] proposed a new handwritten feature
selection method to obtain relevant features to effectively
identify Parkinson’s disease. The method is based on the
REFCV algorithm to determine the best classifier for pre-
dicting Parkinson’s disease. Hou et al. [33] proposed an
SVM-RFECV algorithm for predicting Alzheimer’s disease.
Assegie et al. [34] used the RFECV algorithm to explore
the effect of heart disease feature quality on the prediction
performance of machine learning models for heart disease.
In environmental science, Tong et al. [35] used the RFECV
algorithm, random forest feature selector (RFFS), and princi-
pal component analysis (PCA) to optimize sensor arrays for
real-time and fast detection of automobile exhaust pollutants.
In the field of finance, Bamunuarachchi and Silva [36] used
a logistic regression RFECV feature elimination model to
evaluate the performance of pawn operations.

In conclusion, the RFECV algorithm can improve the
prediction accuracy of the model while reducing computa-
tional time and resource consumption. Moreover, the RFECV
algorithm ensures the robustness of the model by nested
cross-validation and prevents the bias of the results due to
sample reassignment.

III. MOTIVATION
Although widely used in various fields, the traditional
RFECV algorithm still has limitations.

1) The accuracy and stability of traditional RFECV algo-
rithms are affected by the anti-interference term. For
instance, when there is high covariance or the presence
of outliers, RFECV algorithms may incorrectly select
less useful features, thereby weakening the model’s
predictive power [37].

2) The traditional RFECV algorithm’s lack of flexibility
comes from removing one feature in each iteration
round.

3) The performance and stability of traditional RFECV
algorithms are dependent on the chosen classifier or
regression method. Different methods can yield vary-
ing feature subsets, which can impact the model’s
performance and stability [38].
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FIGURE 2. ImprovedRFECV algorithm schematic.

4) The traditional RFECV algorithm’s lack of stability
evaluation methods can result in uncertainty and bias
when dealingwith random sample sampling and pertur-
bation. As a consequence, the algorithm’s results may
be influenced by specific datasets and cross-validation
collapses. This can lead to the selection of a suboptimal
feature subset that lacks robustness and generalizability
to other datasets.

Based on the above-mentioned shortcomings of the tradi-
tional RFECV algorithm, we propose an ImprovedRFECV
algorithm. The improvement of this algorithm for the above
four drawbacks is as follows.

To address the drawbacks 1), the regularization term is
used to alleviate the covariance problem. When there are
redundant features in the dataset, L1 regularization tends to
select one of the features and ignore other highly correlated
features, thus avoiding the covariance problem. In contrast,
L2 regularization penalizes the sum of squares of the regres-
sion coefficients by adding an L2 parametric term to the
optimization objective function. Unlike L1 regularization,
L2 regularization will make the regression coefficients as
close to 0 as possible but does not directly compress them
to 0. Moreover, L2 regularization will make the weights of
multiple highly correlated features similar for them.

To address the drawbacks 2), the number of features
selected in each round and the step size can be set according to
the actual problem, to better control the flexibility and effec-
tiveness of the algorithm. Also use a strategy of expanding
removal at both ends to speed up feature selection, reduce
computation, and further improve algorithm efficiency.

To address the drawback 3), The L1 regularization and L2
regularization terms are introduced to calculate the scores
of the features, and integrated learning is used to prevent
overfitting, thus ensuring the performance and stability of
the model. the L1 regularization term is used to help select
between featureswith equal contributions and some irrelevant
feature coefficients can be set to 0. the L2 regularization term
is used to prevent the feature coefficients from being too large
and reduce the complexity of the model.

To address the drawback 4), by adding a stability assess-
ment method to each regression model and considering both
model performance and stability requirements when selecting
features. In each iteration, we randomly sampled a portion
of the training data and used this portion to train the model
and calculate the average score of the model. Since we may
randomly sample multiple times, the stability of a subset of
features can be estimated in this way, thus increasing their
robustness.

IV. METHOD
The principle of the ImprovedRFECV algorithm consists of
two parts. The first part involves feature evaluation, while the
second part focuses on the feature selection strategy. Figure 2
illustrates the specific principles of the algorithm.

A. FEATURE EVALUATION
Let the initialized feature set be F , and select the feature
subset S, namely S ⊆ F , and the evaluation value of the
feature subset shall be:

Eva (S) = Score(S) + Stability(S) + L1(S) + L2(S) (1)
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where Score (S) is the score obtained by the cross-validation
method, Stability(S) is the score obtained by using the
random sampling method, L1 (S) is the score of the L1 regu-
larization term, and L2(S) is the score of the L2 regularization
term.

1)Score
In the process of cross-validation, the data is split into k

subsets or folds, with one-fold selected as the validation set
and the remaining k-1 folds as the training set. This process
is repeated k times, each time with a different fold designated
as the validation set. The results of each model evaluation
are then returned in an array. By using cross-validation, the
generalization ability of a model can be more accurately eval-
uated. This is because, rather than evaluating the model on
a single testing set, cross-validation utilizes multiple testing
sets, reducing the impact of random variations and producing
more reliable results. Moreover, integrating models through
cross-validation further enhances the generalization ability
of the model. In this approach, the k-fold cross-validation
scores of each model are taken into account equally, and
finally, the mean score is used as the final cross-validation
score. This strategy helps to avoid overfitting and promotes
the robustness of the model.

score(S) =
1
n

×
1
k

∑k

i=1
E(y(i)test ,H (X (i)

train,S )) (2)

where score(S) denotes the average evaluation metric value
obtained from the regression model corresponding to the
feature subset S under k fold-cross validation; n denotes the
number of models; X (i)

train,S denotes that only the features in
S are selected as input features in the training set of the
ith validation set; y(i)test denotes the test set label of the ith

validation set; E
(
y(i)test ,H (X (i)

train,S )
)
denotes the evaluation

metric predicted for the ith validation set; and H
(
X (i)
train,S

)
denotes the prediction result of the corresponding regression
model.

2) Stability
The stability selection method is used to assess the signif-

icance of features in a dataset by random data, constructing
multiple models, and comparing scores. The specific proce-
dure is outlined as follows:

a. Randomly select a portion of the original data to form
the training and testing set.

b. Use these data to train the models and calculate their
scores.

c. Use the obtainedmodel to predict the sample labels and
calculate the average difference between the predicted
results of this model and the actual labels.

d. Calculate the average evaluation metric of this feature
subset across all models during the sampling process as
the stability score.

e. Repeat the above steps until N repetitions of sampling
are completed.

f. Ultimately, evaluate the stability score for each feature
subset.

A higher stability score indicates a greater contribution of
the feature to the model, thereby warranting its inclusion.

stability(S) =
1
niter

∑niter

j=1
E(y(j)test ,H (X (j)

train,S )) (3)

where stability(S) denotes the stability score corresponding
to the feature subset S; niter denotes the number of samples
(default is 10); X (j)

train,S and y(j)test the training and testing sets
in the jth cross-validation, respectively.

3) L1 and L2
To enhance the control of overfitting, in addition to the

above stability scores, L1 and L2 regularization term scores
are introduced as well. L1 regularization term penalizes
the redundant or unimportant features in the feature subset,
reducing noise and filtering out irrelevant ones. L2 regular-
ization term reduces the complexity and generalization error
improving prediction capability.

L1(S) =

∑
f ∈S

∣∣∣wLassof

∣∣∣ (4)

where L1(S) denotes the L1 regularization term score cor-
responding to the feature subset S; wLassof is the weight
coefficient obtained after applying L1 regularization to the
features f .

L2(S) =

∑
f ∈S

wRidgef (5)

where L2(S) denotes the L1 regularization term score cor-
responding to the feature subset S; wRidgef is the weight
coefficient obtained after applying L1 regularization to the
features f .

In the feature evaluation stage of the ImprovedRFECV
algorithm, the scores of the current feature subset, stability
score, L1 regularization term score, and L2 regularization
term score are all taken into account when calculating the
total score. This comprehensive approach provides a more
accurate assessment of the importance of each feature in
the selection process. Additionally, the ImprovedRFECV
algorithm uses a model integration approach to further
improve its generalization capability. This approach involves
training multiple models on different subsets of the data and
then combining them to produce a final prediction. By using
an ensemble of models, the algorithm can better account for
variations in the data and prevent overfitting, leading to more
robust and reliable results.

B. FEATURE SELECTION STRATEGY
The feature selection process employs an elimination
approach, which consists of the following.

1) Initialize all features by adding them to the feature
set F ;

S0 = F, S∗
= ∅ (6)

2) For each iteration i = 0, 1, 2, . . . ,m, the following
operation is performed:
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Algorithm 1 ImprovedRFECV
Input: feature matrix X, label vector y, number of selected features n_features, and other parameters.
Output: selected features
1: Initialize the feature set as all indices of the features.
2: Initialize an empty list selected_features to store the selected feature indices.
3: repeat
4: for each feature i in the feature set do
5: Initialize scores[i], stabilities[i], lasso_regularizations[i], and ridge_regularizations[i].
6: For each regression model, compute the average R-squared value of the feature subset {Xi} using cross-validation

and calculate the stability score.
7: If LI regularization coefficient alpha_lasso > 0, use Lasso model to compute the LI regularization score

regularization_score_lasso.
8: If L2 regularization coefficient alpha_ridge > 0, use Ridge model to compute the L2 regularization score

regularization_score_ridge.
9: Sum up scores[i], stabilities[i], lasso_regularizations[i], and ridge_regularizations[i] to get the final score

final_scores[i].
10: end for
11: Select the index of the feature with the highest final score, best_feature_idx = argmax(final_scores).
12: Add the feature index corresponding to best_feature_idx to selected_features.
13: Update the feature set by removing the selected feature and its step-1 adjacent features.
14: until n_features times
15: return selecled features.

a. Find the optimal feature subset S for this iteration
among the remaining feature subsets Si;

S = argmax(Eva(Si)) (7)

b. Add S to the final feature subset S∗;

S∗
= S∗

+ S (8)

c. Adjustment of the remaining feature set with a both-end
expansion removal method, Where Sleft represents
step-1 feature on the left of S, and Sright represents
step-1 feature on the right of S;

Si+1 = Si − S − Sleft − Sright (9)

d. If the number of features in S∗ meets the requirement,
the iteration is stopped, otherwise, the next iteration is
continued;

3) Return the final feature subset, S∗.
The number of features to be skipped in each feature

selection is 1. It is important to consider the boundary con-
ditions to prevent exceeding the range of the feature index.
This feature update strategy helps prevent the selection of
highly correlated features, accelerates the feature selection
process, and mitigates the impact of redundant features on
the evaluation.

C. THE OVERALL ALGORITHM
The idea of the ImprovedRFECV algorithm is a feature
screening method for model integration based on data stabil-
ity, combined with L1 regularization and L2 regularization,
which can effectively evaluate the impact of features on
model performance and search in the feature space while

using a both-end expansion removal strategy to find the
optimal subset of features, thus improving the generalization
capability and accuracy of the model. The implementation is
shown in Algorithm 1.

V. EXPERIMENT
A. EXPERIMENTAL SETUP
To verify the performance of the proposed ImprovedRFECV
algorithm, five datasets from five domains were selected for
experimentation. These datasets were derived from Tianqi-
houbao and Kaggle platforms.

For environmental science, air quality data from the
Tianqihoubao platform for Shenzhen, Guangdong Province
were selected. This dataset encompasses data collected from
October 31, 2013, to March 31, 2022, and primarily serves
the purpose of predicting PM2.5 concentrations in the air.
Datasets from the Kaggle platform were chosen for smart
transportation, the financial sector, construction engineering,
and electric load analysis. As an illustration, data on the count
of shared bicycle rentals in Washington, DC, USA [39] was
chosen primarily to forecast the demand for shared bicycles
in Washington, USA. In addition, California housing price
data [40] was also selected, which mainly predicts California
housing prices, while concrete strength data [41] mainly pre-
dicts concrete strength and historical PDB electricity demand
data mainly predicts PDB electricity demand.

The feature selection algorithm evaluates the good-
ness of the filtered feature subset by using the regres-
sion accuracy of the regression method. Therefore, in this
study, four regression evaluation metrics, namely RMSE,
RMSLE, R2, and MAPE, were used to evaluate the original
dataset, the dataset screened by the RFECV algorithm, and
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ImprovedRFECV algorithm, respectively, using four ensem-
ble tree models, including RF, LGBM, XGB, and GBDT. The
formulas for calculating RMSE, RMSLE, R2, and MAPE are
defined as follows.

1) RMSE: RMSE is a measure of the standard deviation
of the difference between the predicted and true values.
It is calculated by squaring the prediction error of each
sample, taking the average value, and then opening the
square. the smaller the RMSE, the better the fit of the
model.

RMSE =

√
1
n

∑n

i=1
(yi − ŷi)

2 (10)

where, n denotes the sample size, yi denotes the true
value, and ŷi denotes the predicted value.

2) RMSLE: RMSLE is an error measure proposed to
deal with large variations in the data. The smaller the
RMSLE, the more accurate the model’s prediction.

RMSLE =

√
1
n

∑n

i=1
(log(yi + 1) − log(ŷi + 1))2

(11)

where, n denotes the sample size, yi denotes the true
value, and ŷi denotes the predicted value. In RMLE,
both true and predicted values are calculated by adding
1 and taking the logarithm.

3) R2: R2 is a performancemetric for regression problems
that measures the correlation between the predicted
and true values of the model. r2 takes values between
0 and 1, with values closer to 1 indicating better pre-
diction and closer to 0 indicating poorer prediction.

R2 = 1 −

∑n
i=1 (yi − ŷi)2∑n
i=1 (yi − ȳi)2

(12)

where, n denotes the sample size, yi denotes the true
value, and ŷi denotes the predicted value, ȳi indicates
the average of the true values.

4) MAPE: MAPE is a measure of the magnitude of the
error between the predicted value and the true value.
MAPE is calculated by dividing the prediction error
of each sample by the true value, and then summing
and averaging the values and multiplying by 100%.
a smaller MAPE indicates a smaller prediction error of
the model.

MAPE =
1
n

∑n

i=1

∣∣∣∣yi − ŷi
yi

∣∣∣∣ · 100% (13)

where, n denotes the sample size, yi denotes the true value,
and ŷi denotes the predicted value.
For this experiment, we divided the entire dataset into a

test set consisting of the first 20% of the data and a train-
ing set consisting of the remaining 80%. We conducted the
experiments without making any optimization adjustments
to the model parameters. To ensure the repeatability of the
experimental results, we set the random state value of the
ensemble tree models. We used the default values for all

FIGURE 3. The average size of the best feature subset obtained using
different methods.

other parameters predefined in the models. The experiment
was divided into two parts: the feature subset comparison
experiment and the performance verification experiment.

B. FEATURE SUBSET COMPARISON EXPERIMENT
The feature subset comparison experiment aims to compare
the optimal feature subset size for the RFECV algorithm
and the ImprovedRFECV algorithm. As shown in Table 1.

In the field of environmental science, the raw data of
PM2.5 air quality in Shenzhen, Guangdong Province has
3032 sample points and 10 features. In the field of finance, the
raw data of house prices in California consists of 37,137 sam-
ple points and 9 features. In the field of smart transportation,
the raw data of bicycle sharing rental volume in Washington,
DC, USA, consists of 10,886 sample points and 12 features.
In the field of construction engineering, the raw concrete
strength data contains 1030 sample points and 10 features.
In the field of electric load, the PDB historical electricity raw
data has 103,776 sample points and 8 features.

As can be seen from Table 1, after feature engineering, the
number of features in the five datasets for the five domains
is 11, 17, 16, 17, and 19, respectively. The number of fea-
tures decreases after applying both the RFECV algorithm
and the ImprovedRFECV algorithm. The ImprovedRFECV
algorithm screened the best feature subsets with an average
of two fewer features compared to the RFECV algorithm
in both the environmental science and construction engi-
neering domains. The best feature subsets in the financial,
electric load, and smart transportation domains were roughly
the same size for both algorithms. Figure 3 further demon-
strates that the ImprovedRFECV algorithm has a smaller
average best feature subset size compared to the RFECV
algorithm. Next, performance test verification experiments
will be conducted to assess the combined performance of the
two algorithms.

C. PERFORMANCE TEST VERIFICATION EXPERIMENT
In this experiment, four ensemble tree models (RF, LGBM,
XGB, GBDT) were adopted for regression prediction of
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TABLE 1. Scale of candidate feature subsets for the four integrated tree
models on the five data sets.

problems in five different domains, and four evaluation met-
rics (R2, RMSE, RMSLE, MAPE) were used for validation
measurement. The experimental results are shown in Table 2.

This experiment employed a range of evaluation metrics to
evaluate the performance of machine learning models across
different domains. In the field of environmental science, the
R2 metric was chosen as it offers comprehensive insights
into the quality of the fit, including the significance of the
linear regression model and suitability in the data science
model. This metric is especially applicable in the case of
PM2.5 prediction [42]. For bike-sharing demand forecasting
in the smart transportation domain, RMSLEwas chosen. This
metric penalizes underprediction more than overprediction,
making it suitable for predicting shared bicycle demand [43].
In the financial field, a small number of outliers and out-
liers are usually found in the house price prediction class of

TABLE 2. Prediction accuracy of the four integrated tree models on the
five data sets.

problems due to the characteristics of the data set. And RMSE
can handle these outliers more sensitively [44]. Therefore,
RMSE is used as an evaluation metric. In the field of electric
load, MAPE has less influence on extreme values (e.g., value
0) and magnitudes, making it more suitable for assessing the
performance of electric load forecasting models [45]. In the
field of construction engineering, RMSE was deemed appro-
priate as it reflects the magnitude of the error between the
predicted results of the model and the actual values, which is
important for concrete strength prediction models [46], [47].
As Table 2 and Figure 4 illustrate, we evaluated the regres-

sion prediction results on five datasets from five domains.
We used four ensemble tree models and conducted a total
of 20 measurements. The performance of the models was
compared between those without feature selection and those
utilizing the RFECV and ImprovedRFECV algorithms. The
findings indicate that the ensemble tree models achieved the
highest scores in three cases without feature selection, four
cases when combined with the RFECV algorithm, and fifteen
cases when combined with the ImprovedRFECV algorithm.
These results demonstrate the capability of the Improve-
dRFECV algorithm in conducting a more comprehensive
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FIGURE 4. Algorithm performance comparison.

evaluation of feature subsets, leading to a more effective
screening than the RFECV algorithm. This indicates that
the ImprovedRFECV algorithm can enhance the accuracy
and generalization capability of machine learning models.
Overall, the experimental results support the reliability and
effectiveness of the ImprovedRFECV algorithm in feature
selection across various domains.

Analysis of Figure 5 reveals that the prediction accuracy
of most of the models is reduced using the best subset of
features selected by the RFECV algorithm. This is due to
the presence of strongly covariant features in the dataset.
RF-RFECV and XGB-RFECV solved the covariance prob-
lem of one set of features, and the prediction accuracy
was improved. The prediction accuracy of both LGBM and
GBDT is reduced. Although the ImprovedRFECV algorithm
solves only one set of covariance features, only the pre-
diction accuracy of LGBM has a thousand-digit decrease,
while all other models have improved. As shown in Fig. 5(c),
the RMSLEs of RF, XGB, and GBDT are all smaller than
those of the models corresponding to the best subset of
features screened using RFECV and thus have higher pre-
diction accuracy. There are 5 sets of covariance features in
the concrete strength prediction dataset. RF-RFECV solves
only one set of covariance features, LGBM-RFECV solves
only 2 sets of covariance features, GBDT-RFECV solves only
3 sets of covariance features, and the best feature subset
of XGB-RFECV has only one feature, so it solves 5 sets
of covariance features, and XGB-RFECV has the smallest
RMSE value and the best result. However, the ImprovedR-
FECV algorithm solves four groups of covariance features,
which makes the prediction accuracy of all four models
increase. From Figure 5(d), it can be seen that the RMSE
values of LGBM, GBDT, and RF predicted by using the
best subset of features obtained by the ImprovedRFECV
algorithm are all smaller than the RMSE values of predic-
tion by using the best feature best obtained by the RFECV
algorithm. Among them, it can be seen from Table 2 that
the prediction accuracy of LGBM-ImprovedRFECV is 22%
higher than that of LGBM-RFECV. There is a set of covari-
ance features in the power load dataset with 4 features. The

FIGURE 5. Experimental results on the predictive performance of various
models combined with diverse feature selection algorithms across
multiple domains.

best feature subsets of LGBM-RFECV, XGB-RFECV, and
RF-RFECV all contain these 4 features, and the best feature
subset of GBDT-RFECV contains 3 features in this group,
while the ImprovedRFECV algorithm eliminates 2 features
in this group, which more effectively mitigates the covariance
problem.

Figure 5(a) shows that all four models achieve the highest
R2 when using the best subset of features selected by the
ImprovedRFECV algorithm for prediction. Particularly, the
XGB-ImprovedRFECV model demonstrates a higher effec-
tiveness. Figure 5(b) demonstrates that combining LGBM,
XGB, and GBDT with the best subset of features selected
by the ImprovedRFECV algorithm leads to the lowest RMSE
values. In contrast, RF achieves its smallest RMSE value
without feature selection.

The L1, and L2 regularization introduced in the Improve-
dRFECV algorithm can effectively mitigate the covariance
between features. And ImprovedRFECV algorithm also
introduces stability evaluation, which enables a more com-
prehensive evaluation of the quality of feature subsets.
The integrated learning framework is also used to improve
the generalization ability of the algorithm. Therefore, the
best feature subset obtained through the ImprovedRFECV
algorithm can result in superior predictive accuracy when
applied to model predictions.

VI. CONCLUSION
This paper proposes the ImprovedRFECV algorithm, a novel
wrapped feature selection approach that enhances the accu-
racy and generalization capability of machine learning
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models. The algorithm engages in the following steps:
1) First, a randomly selected portion of the original data is
used as a training and testing set to train the models and
evaluate their performance. 2) The above process is repeated
several times, and the variance of scores obtained from dif-
ferent models for each feature is summed up to compute the
stability score for each feature. 3) To mitigate overfitting,
the importance of each feature is assessed comprehensively
by using L1 and L2 regularization term scores with different
regression models. 4) A both-end expansion removal strategy
employed to mitigate the strong covariance between features,
while maintaining flexibility in the number of selected.

The algorithm underwent testing on five datasets encom-
passing various domains, exhibiting superior performance
in comparison to the RFECV algorithm. In particular, the
algorithm achieved a 13-percentage point improvement in
the highest performance, and the average size of the optimal
feature subset was reduced by two features. These emphasize
the robustness and generalization capability of the Improve-
dRFECV algorithm, highlighting its potential for application
in various domains with diverse datasets.
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